DOT-HS-805 641

IHTSA-80-28

# SATISFACTION OF THE AUTOMOTIVE FLEET FUEL DEMAND AND ITS IMPACT ON THE OIL REFINING INDUSTRY

M. A. Moore SRI International 333 Ravenswood Avenue Menlo Park, CA 94025



DECEMBER 1980 FINAL REPORT

DOCUMENT IS AVAILABLE TO THE PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22161

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION Office of Research and Development Washington, DC 20590

HE 18.5 .A34 no. DOT-TSC-NHTSA-80-28

### NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

### NOTICE

The United States Government does not endorse proucts or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the object of this report.

### NOTICE

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policy or opinions, either expressed or implied, of the U.S. Government.

| 1. Report No.<br>- DOT-HS-805 641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2. Government Acces                                                                                                                                                                                                                                                                        | sion No.                                                                                                                                                                                                                                                                                                                                  | 3. Recipient's Catalog                                                                                                                                                                                                                                      | 3 No.                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4. Title and Subtitle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                           | 5. Report Date                                                                                                                                                                                                                                              |                                                                                                                                                                                                     |
| Satisfaction of the Autom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | otive Fleet Fu                                                                                                                                                                                                                                                                             | el                                                                                                                                                                                                                                                                                                                                        | December 198                                                                                                                                                                                                                                                | 80                                                                                                                                                                                                  |
| Demand and Its Impact on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | the Oil Refinin                                                                                                                                                                                                                                                                            | ng                                                                                                                                                                                                                                                                                                                                        | 6. Performing Organia                                                                                                                                                                                                                                       | the second s                                                                                      |
| Industry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                     |
| 7. Author(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                         | 8. Performing Organiz                                                                                                                                                                                                                                       | ation Report No.                                                                                                                                                                                    |
| M. A. Moore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                           | DOT-TSC-NHTSA-                                                                                                                                                                                                                                              | 80-28                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                           | 10, Work Unit No.                                                                                                                                                                                                                                           |                                                                                                                                                                                                     |
| 9. Performing Organization Name and Address<br>SRI International (former                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ly Stanford Re                                                                                                                                                                                                                                                                             | search                                                                                                                                                                                                                                                                                                                                    | HS159/R1405                                                                                                                                                                                                                                                 |                                                                                                                                                                                                     |
| Institute)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | i) ocaniora ne                                                                                                                                                                                                                                                                             | Scarch                                                                                                                                                                                                                                                                                                                                    | 11. Contract or Grant                                                                                                                                                                                                                                       | No.                                                                                                                                                                                                 |
| 333 Ravenswood Avenue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                           | DOT-TSC-106                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                   |
| Menlo Park, California 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4025                                                                                                                                                                                                                                                                                       | ŀ                                                                                                                                                                                                                                                                                                                                         | 13. Type of Report ar                                                                                                                                                                                                                                       | ad Period Coursed                                                                                                                                                                                   |
| 12. Sponsoring Agency Name and Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                     |
| U.S. DOT/NHTSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                            | Ļ                                                                                                                                                                                                                                                                                                                                         | Final repor                                                                                                                                                                                                                                                 |                                                                                                                                                                                                     |
| Office of Research and Deve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lopment                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                           | 14. Sponsoring Agency                                                                                                                                                                                                                                       | / Code                                                                                                                                                                                              |
| Washington DC 20590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                     |
| 15. Supplementary Notes U.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Department of 7                                                                                                                                                                                                                                                                            | Fransportation                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                            | l Programs Adminis                                                                                                                                                                                                                                                                                                                        | tration                                                                                                                                                                                                                                                     |                                                                                                                                                                                                     |
| Trans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | portation Syste                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                     |
| Kenda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ill Square, Camb                                                                                                                                                                                                                                                                           | oridge MA 02142                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                     |
| <pre>include petroleum refining in<br/>system. A number of changes i<br/>ciency and reduce pollutant em<br/>petroleum refining industry.<br/>try was developed to provide a<br/>impacts. Case studies perform<br/>• <u>A Potential Shift from</u><br/>scenario, automotive of<br/>of 0.17/1 to 0.8/1. A<br/>with a saving of about<br/>with the cost for the<br/>minimum at the 0.5/1 m<br/>base of 6.25 percent.<br/>• <u>The Potential Requirem</u><br/>In the same scenario,<br/>sulfur content of 100<br/>to 200 ppm costs about<br/>This work was performed during<br/>does not consider the possible</pre> | In the automoti<br>issions. Some<br>A mathematical<br>a technological<br>hed and include<br>a <u>Gasoline to D</u><br>liesel-to-gasol<br>A minimum refin<br>2.2 cents per<br>0.17/1 case.<br>Tatio, but it i<br>ment of <u>Sulfur</u><br>gasoline hydro<br>ppm costs abou<br>3 cents per g | ve fleet have bee<br>of these changes<br>model of the U.S<br>ly sound basis fo<br>d in this report<br><u>iesel Engines</u> In<br>ine ratios were s<br>ing cost was reac<br>gallon of gasoli<br>Refining energy c<br>s only 0.08 perce<br><u>Removal from Gaso</u><br>desulfurization (<br>t 2 cents per gal<br>allon.<br>time period. The | n proposed to<br>would have an<br>. petroleum re<br>r the assessme<br>are the follow<br>a 1995 conser<br>tudied over a<br>hed at a ratio<br>ne plus diesel<br>onsumption rea<br>ntage points b<br><u>line and Diese</u><br>HDS) to an ave<br>lon, and diese | <pre>improve effi-<br/>impact on the<br/>fining indus-<br/>nt of such<br/>ring:<br/>vation<br/>range<br/>of 0.3/1,<br/>compared<br/>ches a<br/>elow the<br/><u>l Fuel</u><br/>rrage<br/>l HDS</pre> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                     |
| 17. Key Words (Suggested by Author(s))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                            | 18. Distribution Statement                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                     |
| Motor fuel, refining, diesel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L,                                                                                                                                                                                                                                                                                         | Document is av                                                                                                                                                                                                                                                                                                                            | ailable to the                                                                                                                                                                                                                                              | public                                                                                                                                                                                              |
| fuel desulfurization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                            | through the Na                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                            | tion Service,                                                                                                                                                                                                                                                                                                                             | Springfield, V                                                                                                                                                                                                                                              | 'irginia                                                                                                                                                                                            |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                            | 22151                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                     |
| 19. Security Classif. (of this report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20. Security Classif. (c                                                                                                                                                                                                                                                                   | of this page)                                                                                                                                                                                                                                                                                                                             | 21. No. of Pages                                                                                                                                                                                                                                            | 22. Price*                                                                                                                                                                                          |
| Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Unclassifi                                                                                                                                                                                                                                                                                 | ed                                                                                                                                                                                                                                                                                                                                        | 221                                                                                                                                                                                                                                                         |                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                     |

\*For sale by the National Technical Information Service, Springfield, Virginia 22151



#### PREFACE

This report presents the results of developing a mathematical model of the U.S. oil refining industry and applying this model in case studies of dieselization and automotive fuel desulfurization. This work was performed for the U.S. Department of Transportation, Transportation Systems Center, under Contract Number DOT-TSC-1064 during the 1975-1977 time period. It, therefore, predates and does not include any consideration of the possible implications of the current synfuels program.

The author wishes to acknowledge the contributions of Mr. Jerry Horton and Mr. Norman Rosenberg of the Transportation Systems Center and of Mr. K. Ushiba and Ms. Meera Rao of SRI.

| Symbol                                                                                                        |                                               | 5           | 5 4            | Å                                     | E                       |                   |      | in <sup>4</sup><br>v@2           | mi <sup>2</sup>    |                                    |                 |             | 5 £              |                   |       |        | 11 02          | đ                   | ÷                 | 1031<br>113            | vd <sup>3</sup>  |              |                                            | 5<br>0              |                        |                  |                                                                                                         |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------|----------------|---------------------------------------|-------------------------|-------------------|------|----------------------------------|--------------------|------------------------------------|-----------------|-------------|------------------|-------------------|-------|--------|----------------|---------------------|-------------------|------------------------|------------------|--------------|--------------------------------------------|---------------------|------------------------|------------------|---------------------------------------------------------------------------------------------------------|
| c Meesures<br>To Find                                                                                         |                                               | inches      | inches<br>leet | yards                                 | miles                   |                   |      | square inches<br>square vsrds    | square miles       | @ Cr05                             |                 |             | ounces<br>pounds | short tons        |       |        | fluid ounces   | pints               | quarts            | gellons<br>cubic feet  | cubic yards      |              |                                            | Fahrenheit          | lempereture            | °F<br>212<br>212 |                                                                                                         |
| sions from Metric<br>Multinty by                                                                              | LENGTH                                        | 0.04        | 0.4            | 11                                    | 0.6                     | 4<br>6<br>6       | AKEA | 0.16                             |                    | 2.5                                | BLACC (meinke)  | fußiant cov | 0.036            | 11                |       | VOLUME | 0.03           | 2.1                 | 1.06              | 0.26                   | 1.3              |              | TEMPERATURE (exect)                        | 9/6 (then           | add 32)                | 98.6<br>20 1 100 | -                                                                                                       |
| Approximate Conversions from Metric Meesures<br>When You Know Multisly by To Find                             | When Tou Know                                 | millimeters | centimeters    | meters                                | hilameters              |                   | 1    | square centimeters               | square kilometers  | hecterss (10,000 $m^4$ )           |                 |             | grams            | tonnes (1000 kg)  |       |        | millilitera    | liters              | loters            | inters<br>cubic maters | cubic meters     |              | TEMP                                       | Celsius             | temperature            | in .             |                                                                                                         |
| lother                                                                                                        | Symbol                                        | UN1         | en cu          | ÷ E                                   | hm                      |                   |      | <sup>л</sup> е 7е                | hum <sup>2</sup>   | ta<br>t                            |                 |             | 5                | Ru 1              |       |        | Ē              | -                   |                   | - "6                   | : <sup>с</sup> е |              |                                            | °c                  |                        |                  | 1                                                                                                       |
| 55 53                                                                                                         | 12 0                                          | oz e        | 5T             | 81                                    |                         | 21                | 7e   |                                  |                    |                                    |                 |             |                  |                   |       |        |                |                     | tin               |                        |                  |              |                                            |                     |                        |                  |                                                                                                         |
| <b>33</b><br>3<br>3<br>4<br>4<br>4<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4 |                                               | 9 <b>50</b> |                |                                       |                         |                   |      | cm <sup>2</sup>                  |                    |                                    |                 | 5<br>5      |                  | 2 .               |       |        |                | ·                   | 3<br>Te           |                        |                  |              | 1<br>1<br>1<br>1<br>2                      |                     | الله<br>الله<br>د<br>د |                  | in                                                                                                      |
| 33 3<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                              |                                               |             |                | e e e e e e e e e e e e e e e e e e e |                         |                   |      |                                  |                    | square meters m <sup>4</sup>       | 2               | I           | Brams 0          | ma kg             |       |        | 1              | m                   |                   |                        |                  | -            | 2                                          |                     | •                      | '                | in                                                                                                      |
| 33 33<br>1000000000000000000000000000000000                                                                   | Symbol free free free free free free free fre |             |                | 6 centimaters cm                      | ters cm a me            | kildmeters kun    | AREA | cm <sup>2</sup>                  | squars motors      |                                    | hacters         | -           |                  | kilograma kg      | 4     | VOLUME | Ē              | millificers ml      | m                 |                        | liters l         | liters l     | 2                                          |                     | °,                     | 1                | in                                                                                                      |
|                                                                                                               | Te fiad Symbol                                |             |                | ss °2.6 centimeters cm                | Centimeters CM 2 manual | 1.6 hildmaters km |      | suuse canimaters cm <sup>2</sup> | 0.09 squars meters | square moters<br>sousre kilometars | 0.4 hectares he | 1           | grams            | 0.46 kilograma kg | 10mes |        | millihiters ml | te 16 millikiers ml | 30 millilitere ml | 0.24 liters I          | liters l         | 3.8 liters I | cubic meters m <sup>3</sup> k <sup>3</sup> | TEMPERATURE (exect) | Celsius °C             | lempérature      | "I m s 2.54 levacityi. Fur uther exact curversions and mure defailed tables, see NBS Alsc. Publ. 286. 5 |

METRIC CONVERSION FACTORS

iv

METRIC CONVERSION FACTORS

### CONTENTS

### Section

### Page No.

| 1 | EXECUTIVE SUMMARY                                                                                                                                                                      | 1         |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 2 | INTRODUCTION                                                                                                                                                                           | 5         |
|   | 2.1 Overview and Scope                                                                                                                                                                 | 5         |
|   | 2.2 General Approach                                                                                                                                                                   | 6         |
| 3 | MODEL DESCRIPTION AND DEVELOPMENT                                                                                                                                                      | 7         |
|   | 3.1 Refinery Model                                                                                                                                                                     | 7         |
|   |                                                                                                                                                                                        | 7         |
|   | 3.1.2 Description of Refinery Model                                                                                                                                                    | 9         |
|   | 3.2 Refining Industry Model                                                                                                                                                            | 1         |
|   | 3.2.1 The Oil Refining IndustryOverview                                                                                                                                                | 1         |
|   | and Conceptual Design                                                                                                                                                                  | 3         |
|   | 3.2.3 Validation of Refining Industry Model (RIM)<br>for 1974 Industry Operation                                                                                                       | 8         |
| 4 | CASE STUDIES                                                                                                                                                                           | 1         |
|   | 4.1         Base 1995         Scenario         2                                                                                                                                       | 1         |
|   | 4.1.2Petroleum Supply.24.1.3Facilities.24.1.4Prices of Crude Oil and Imported Products .24.1.5Federal, State, and Local Regulations .24.1.6Technology for Diesel Production and Sulfur | 2 4 7 7 7 |
|   | Removal from Gasoline and Diesel                                                                                                                                                       | /         |

| Se   | ectio | CONTENTS (Continued)                                                                                                                                                                                                  | Page No.       |
|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|      | 4.2   | Impact of Increased Diesel to Gasoline Production<br>Ratio on the Refining Industry                                                                                                                                   | 27             |
|      |       | <ul> <li>4.2.1 Overview.</li> <li>4.2.2 Summary and Conclusions</li> <li>4.2.3 Discussion and Analysis</li> <li>4.2.4 Review of Prior Studies</li> <li>4.2.5 Technology for Increasing Diesel Availability</li> </ul> | 28<br>30<br>31 |
|      | 4.3   | Impact of Transportation Fuel Desulfurization on the Refining Industry                                                                                                                                                | 53             |
|      |       | <ul> <li>4.3.1 Overview.</li> <li>4.3.2 Summary and Conclusions</li> <li>4.3.3 Discussion and Analysis</li> <li>4.3.4 Review of Previous Studies.</li> <li>4.3.5 Gasoline Desulfurization Technologies</li> </ul>     | 53<br>55<br>56 |
| 5    | GENEI | RAL CONCLUSIONS                                                                                                                                                                                                       | 67             |
| 6    | RECO  | MMENDATIONS                                                                                                                                                                                                           | 69             |
| 7    | REFEI | RENCES                                                                                                                                                                                                                | 71             |
| APPE | NDIXE | S                                                                                                                                                                                                                     |                |
|      | A     | DESCRIPTION OF REFINERY MODEL                                                                                                                                                                                         | 73             |
|      | В     | REFINING INDUSTRY MODEL                                                                                                                                                                                               | 95             |
|      | С     | REFINING INDUSTRY MODEL VALIDATION                                                                                                                                                                                    | 131            |
|      | D     | INDUSTRY DATA SOURCES                                                                                                                                                                                                 | 201            |
|      | E     | DEMAND FORECASTS FROM SRI STUDY FOR THE ELECTRIC<br>POWER RESEARCH INSTITUTE                                                                                                                                          | 213            |
|      | F     | REPORT OF INVENTIONS                                                                                                                                                                                                  | 221            |

## LIST OF ILLUSTRATIONS

| Figure    |                                                            |   | Page No. |
|-----------|------------------------------------------------------------|---|----------|
| 3.1.1-1   | Typical Refinery Process Flow                              | • | 8        |
| 3.1.2-1   | Refining and Petrochemical LP Model                        | ٠ | 10       |
| 3.2.2-1   | Refining Industry Model Conceptual Matrix for One District | • | 17       |
| 4.2.5.1-1 | Cetane Improvement by Additive                             |   | 47       |
| 4.2.5.1-2 | Calculated Cetane Index                                    |   | 49       |
| 4.2.5.2-1 | Cetane Index Improvement Through Hydrotreating             |   | 50       |

### LIST OF TABLES

| Table     |                                                                                                  | Page No. |
|-----------|--------------------------------------------------------------------------------------------------|----------|
| 1.1       | Cases Studied                                                                                    | 2        |
| 1.2       | 1995 Demand Scenario for Study Cases                                                             | 2        |
| 1.3       | Diesel Penetration Study Results                                                                 | 3        |
| 1.4       | Fuels Desulfurization Study Results, 1995                                                        | 3        |
| 3.2.1-1   | Refining Industry Geographical Distribution                                                      | 11       |
| 3.2.1-2   | Refining Industry Plant Size Distribution                                                        | 12       |
| 3.2.1-3   | Refining Industry Process Application                                                            | 13       |
| 3.2.2-1   | Typical Refinery Modes in the Refining Industry<br>Model for Pad District II Refinery Data Input | 16       |
| 3.2.3-1   | Validation of Refining Industry ModelTotal U.S.<br>Refinery Input/Output, 1974                   | 19       |
| 4.1.1-1   | Major Petroleum ProductsDemand Scenario                                                          | 23       |
| 4.1.2-1   | Petroleum Supply Limits in Refining Industry<br>Model Case Studies                               | 24       |
| 4.1.3.1-1 | Refining Capacity Limits, 1995 Base Case                                                         | 25       |
| 4.1.3.2-1 | Transportation Capacity Limits and Costs                                                         | 26       |
| 4.2.2-1   | Summary of Rim Results for Dieselization Cases                                                   | 29       |
| 4.2.3-1   | Dieselization Case Data Summary                                                                  | 32       |
| 4.2.3-2   | 1995, Base Refinery Input/Output Summary                                                         | 33       |
| 4.2.3-3   | 1995, Base Product Consumption Summary                                                           | 34       |
| 4.2.3-4   | 1995, Base Utility Summary                                                                       | 35       |
| 4.2.3-5   | 1995, 15 PCT Diesel Refinery Input/Output Summary                                                | 36       |
| 4.2.3-6   | 1995, 15 PCT Diesel Product Consumption Summary                                                  | 37       |
| 4.2.3-7   | 1995, 15 PCT Diesel Utility Summary                                                              | 38       |
| 4.2.3-8   | 1995, 30 PCT Diesel Refinery Input/Output Summary                                                | 39       |
| 4.2.3-9   | 1995, 30 PCT Diesel Product Consumption Summary                                                  | 40       |
| 4.2.3-10  | 1995, 30 PCT Diesel Utility Summary                                                              | 41       |
| 4.2.4-1   | Comparison of Dieselization Studies                                                              | 43       |
| 4.2.4-2   | Product Distribution                                                                             | 45       |
| 4.2.5.2-1 | Economics of Incremental Hydrotreating for Upgrading<br>Heating Oil Stocks to Diesel Quality     | 51       |

# LIST OF TABLES (Continued)

| Table     |                                                                                           | Page No |
|-----------|-------------------------------------------------------------------------------------------|---------|
| 4.2.5.3-1 | Incremental Hydrocracking for Diesel Production                                           | 52      |
| 4.3.2-1   | Fuels Desulfurization Summary                                                             | 54      |
| 4.3.3-1   | Fuels Desulfurization Case Data                                                           | 57      |
|           | 1995, 30 PCT Diesel, with Gasoline Desulfurization<br>Case 5Refinery Input/Output Summary | 58      |
|           | 1995, 30 PCT Diesel, With Gasoline Desulfurization<br>Case 5Product Consumption Summary   | 59      |
|           | 1995, 30 PCT Diesel, With Gasoline Desulfurization<br>Case 5Utility Summary               | 60      |
| 4.3.3-5   | Refinery Input/Output SummaryCase 6                                                       | 61      |
| 4.3.3-6   | Product Consumption SummaryCase 6                                                         | 62      |
| 4.3.3-7   | Utility SummaryCase 6                                                                     | 63      |
| 4.3.4-1   | Comparison of Desulfurization Cost                                                        | 64      |

### ABBREVIATIONS AND SYMBOLS

| Ъ               | barrel                                                           |
|-----------------|------------------------------------------------------------------|
| b/d             | barrels per day                                                  |
| BERC            | Bartlesville Energy Research Center                              |
| BuMine <b>s</b> | U.S. Bureau of Mines                                             |
| cd              | calendar day                                                     |
| D/G             | diesel-to-gasoline ratio                                         |
| DOE             | U.S. Department of Energy                                        |
| DOT             | U.S. Department of Transportation                                |
| EPRI            | Electric Power Research Institute                                |
| ERDA            | U.S. Energy Research and Development<br>Administration (now DOE) |
| FCC             | fluidized catalytic cracking                                     |
| FOB             | free on board                                                    |
| FOE             | fuel oil equivalent                                              |
| gal             | gallons                                                          |
| HDS             | hydrodesulfurization                                             |
| LP              | linear programming                                               |
| LPG             | liquefied petroleum gas                                          |
| М               | $10^3$ ; 1,000; one thousand                                     |
| MM              | 10 <sup>6</sup> ; 1,000,000; one million                         |
| min             | minute                                                           |
| MON             | motor octane number                                              |
| PAD             | Petroleum Administration for Defense                             |
| %               | percent                                                          |
| ppm             | parts per million                                                |
| RIM             | Refining Industry Model (SRI)                                    |
| RON             | research octane number                                           |
| sd              | stream day                                                       |
| TSC             | Transportation Systems Center (DOT)                              |
| VFR             | vehicle-fuel-refinery                                            |
| VGO             | vacuum gas oil                                                   |
| vol%            | volume-percent                                                   |
| wppm            | parts per million by weight                                      |

#### 1 EXECUTIVE SUMMARY

A number of actions proposed to improve the fuel economy and reduce air-polluting emissions of the automotive fleet will involve changes in the quality or quantity of the fuel being used. Such changes, in turn, will affect the refining industry, because automotive fuels are predominantly refined petroleum products.

To assess the extent of the potential impacts in terms of cost and energy efficiency, a mathematical (linear programming--LP) model was developed to simulate the U.S. refining industry. This model covers refining and bulk product distribution for each of the five Petroleum Administration for Defense (PAD) districts. The refinery sector simulation in the industry model was developed through the use of the detailed SRI refinery and petrochemical LP model.

Two series of case studies were performed with the Refining Industry Model (RIM):

- An assessment of the impact of increased penetration of the diesel-powered vehicle into the automotive market (dieselization study)
- (2) An assessment of the impact of a mandated reduction of sulfur content of both gasoline and diesel fuel (desulfurization study).

Both studies were performed within the framework of a 1995 scenario characterized by extensive petroleum conservation. Estimates of 1995 demand for gasoline and diesel fuel were provided by the U.S. Department of Transportation, Transportation Systems Center (DOT/TSC). Estimates of demand for other refined products were adapted from a concurrent SRI study for the Electric Power Research Institute (EPRI). The resulting 1995 scenario should be viewed as a plausible basis for analysis rather than as a forecast resulting from this project.

In this scenario, the total demand for gasoline plus diesel fuel, 7.3 million barrels per day (b/d), is about 78 percent of the 1978 total of about 9.4 million b/d. Six cases, as defined in Table 1-1, were analyzed. Quantitative results for these cases are summarized in Tables 1-2 through 1-4. The cost analyses shown in the summary tables have been updated to 1979 dollars from the 1974 values used in the original work. The W. L. Nelson construction and operating cost indices, published periodically in the <u>Oil and Gas Journal</u>, were used to adjust the refining costs to 1979 values.

### Table l-l

### CASES STUDIED

| Case No. | Description                                                                                    |
|----------|------------------------------------------------------------------------------------------------|
| Case l   | RIM validation with 1974 industry data                                                         |
| Case 2   | 1995 base case for dieselization study                                                         |
| Case 3   | 1995 scenario with 15 percent diesel penetra-<br>tion of the automotive fuel market            |
| Case 4   | 1995 scenario with 30 percent diesel penetra-<br>tion of the automotive fuel market            |
| Case 5   | Case 4 with desulfurization of all gasoline<br>to 100 ppm (by weight) sulfur content           |
| Case 6   | Case 5 with addition of diesel fuel desulfur-<br>ization to 200 ppm (by weight) sulfur content |

#### Table 1-2

### 1995 DEMAND SCENARIO FOR STUDY CASES

| Case                                                                       | U.S. Demand<br>(10 <sup>6</sup> b/cd <sup>*</sup> ) | Percent<br>of Total        |
|----------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|
| 1995 base case                                                             |                                                     |                            |
| Gasoline<br>Jet fuel<br>Diesel<br>Distillate fuel oil<br>Residual fuel oil | 5.4<br>2.3<br>1.8<br>2.0<br><u>1.3</u>              | 42<br>18<br>14<br>16<br>10 |
| Total major fuel products                                                  | 12.8                                                | 100                        |
| Case 315% diesel penetration                                               |                                                     |                            |
| Gasoline<br>Diesel                                                         | 4.7<br><u>2.5</u><br>7.2                            |                            |
| Case 430% diesel penetration                                               |                                                     |                            |
| Gasoline<br>Diesel                                                         | 4.0<br><u>3.2</u><br>7.2                            |                            |

\* Barrels per calendar day.

#### DIESEL PENETRATION STUDY RESULTS

|                                                  | 1974   |        | 1995   |        |  |
|--------------------------------------------------|--------|--------|--------|--------|--|
|                                                  | Case 1 | Case 2 | Case 3 | Case 4 |  |
| Diesel penetration, %                            | ~ ~    | Base   | 15     | 30     |  |
| Diesel/gasoline ratio                            | 0.17/1 | 0.32/1 | 0.53/1 | 0.80/1 |  |
| Diesel production, % refinery output             | 8.7    | 14.2   | 20.5   | 27.0   |  |
| Gasoline production, % refinery output           | 50.7   | 43.8   | 38.9   | 33.8   |  |
| Cost differential, \$/b (gasoline + diesel)*     | Base   | -0.92  | -0.78  | +0.075 |  |
| New investment, 10 <sup>6</sup> \$*              |        | 72.4   | 131    | 1,967  |  |
| Energy consumption, % of domestic products (FOE) | 6.31   | 6.25   | 6.17   | 7.30   |  |

Cost figures in this table are adjusted for inflation from the 1974 dollars shown in the body of the report to 1979 dollars using the W. L. Nelson inflation indices. The factors used are 1.50 for operating costs and 1.33 for investment.

#### Table 1-4

#### FUELS DESULFURIZATION STUDY RESULTS, 1995

|                                                                   | Case 4 | <u>Case 5</u> | <u>Case 6</u> |
|-------------------------------------------------------------------|--------|---------------|---------------|
| Diesel Penetration, %                                             |        | 30            |               |
| Gasoline desulfurization, % (100 ppm S)                           | 0.0    | 100           | 100           |
| Diesel desulfurization, % (200 ppm S)                             | 0.0    | 0.0           | 100           |
| Incremental cost, c/gal desulfurized gasoline                     | Base   | 3.0           | 3.0           |
| Incremental cost, c/gal desulfurized diesel                       |        | Base          | 4.5           |
| Incremental investment, $10^9$ \$*                                |        |               |               |
| For gasoline desulfurization<br>For diesel desulfurization        | Base   | 2.7<br>Base   | 4.8           |
| Incremental energy consumption, % of domestic product (FOE basis) |        |               |               |
| For gasoline desulfurization<br>For diesel desulfurization        |        | 1.1           | 0.4           |

Cost figures in this table are adjusted for inflation from the 1974 dollars shown in the body of the report to 1979 dollars using the W. L. Nelson inflation indices. The factors used are 1.50 for operating costs and 1.33 for investment. The major conclusions of the dieselization study are summarized as follows.

- If the demand for diesel fuel increases while demand for other distillate fuel oils is maintained at the projected level, a shortage of middle distillate products (jet fuel, diesel, and No. 2 fuel oil) tends to occur when gasoline production equals demand. Conversely, if crude oil runs are increased to meet demand for middle distillates, excess gasoline is produced.
- For the 15 percent diesel penetration case, the incremental cost of refining gasoline plus diesel increased by 0.3 cent per gallon (14 cents per barrel) as the volumetric production ratio of diesel-to-gasoline increased from the 1995 base case (Case 2) ratio of 0.3/1 to a ratio of 0.5/1. At a diesel/ gasoline ratio of 0.8/1, the refining cost rises sharply as new hydrocracking capacity is required, reaching about 2.0 cents per gallon of diesel plus gasoline more than the cost for the 0.5/1 ratio case.
- Refining energy consumption reaches a minimum value of 6.17 percent of domestic product output (fuel oil equivalent basis) at the 0.5/l diesel/gasoline ratio, a decrease of 0.08 percentage points below the 1995 base case.

Two fuels desulfurization cases were examined with the RIM:

- Desulfurization to 100 ppm sulfur of all gasoline produced in the 30 percent diesel penetration case (Case 5).
- (2) Desulfurization to 200 ppm sulfur of all diesel produced in the 30 percent diesel penetration case, as well as desulfurization of gasoline to 100 ppm sulfur (Case 6).

The RIM indicates that desulfurization of all gasoline to 100 ppm sulfur will cost about 3.0 cents per gallon and requires a refining industry investment in new facilities of about \$2.7 billion. Refinery energy consumption for this case increases to 8.4 percent of domestic refinery output, 1.1 percent more than consumption for Case 4.

The addition of diesel desulfurization to 200 ppm sulfur adds about 4.5 cents per gallon to the cost of diesel fuel and increases energy consumption by 0.4 percent of total domestic refined products over Case 5 consumption. The incremental investment for diesel desulfurization is \$4.8 billion.

The cost estimates for both cases assume that new hydrodesulfurization (HDS) facilities will be required. Thus, the costs may be reduced to the extent that existing HDS facilities are operable by 1995 and are technologically adequate for meeting the severe requirements. The industry model will facilitate the future examination of these parameters and will permit the analysis of numerous variations from the cases presented in this report.

#### 2 INTRODUCTION

#### 2.1 Overview and Scope

The interactions of the U.S. transportation system and the oil refining industry are extensive. Nearly half of U.S. refinery output by volume is motor gasoline, and substantial quantities of automotive diesel fuel, jet fuel, and bunker fuel are also produced. Virtually all of the energy consumed in U.S. transportation is currently derived from petroleum products. A few exceptions exist, such as electric transit systems, and some potential exists for replacement of petroleum-based fuels with alcohols or other substances that may be derived from nonpetroleum sources. However, for the next 10 to 20 years, petroleum fuels for transportation are unlikely to be extensively displaced by nonpetroleum alternatives. Thus, the petroleum refining industry is expected to continue to play a critical role in supplying the basic energy requirements of the U.S. transportation system.

Concern for environmental quality and energy conservation in recent years has focused on the automobile as a major source of air pollutants and as an inefficient fuel user. A number of changes in the automobile intended to lessen its detrimental effects on the environment and to increase its energy-efficiency are in various stages of implementation. Some changes alleviate one problem only at the expense of exacerbating the other; one example is the requirement for unleaded gasoline to reduce ambient lead concentrations, which increases the amount of crude oil required to produce a gallon of gasoline. Other potential changes in the automobile or in the required quality of automotive fuel could have equally profound effects on the oil refining industry. Two such changes addressed in this study are increased use of automotive diesel fuel and reduction of the allowable sulfur content of automotive fuels.

To provide a sound basis for assessing the effects on the oil refining industry of such changes, the objectives of this project are twofold.

- (1) Develop a mathematical modeling system of the U.S. petroleum refining industry, consisting of:
  - (a) A detailed refinery model
  - (b) A refining industry model.
- (2) Use the models to analyze the impact on the refining industry of the following hypothetical changes in the fuel requirements for the 1995 automotive fleet:

- (a) Two levels of displacement of gasoline by diesel fuel:15 and 30 percent of automotive fleet fuel requirements
- (b) Reduction of the sulfur content of gasoline and diesel fuel to 100 ppm and 200 ppm by weight, respectively, in the context of a 30 percent diesel penetration of the automotive fuel market.

#### 2.2 General Approach

The steps required in the case study method used in this work are summarized below. These topics are discussed in greater depth in the appropriate sections of the report.

- Define the specific hypothetical issues to be studied (i.e., increased diesel penetration of the automotive fuel market and desulfurization of automotive fuels). These definitions provide a basis for defining specific cases to be studied and indicate the types of information required. They also provide guidelines for making a number of decisions related to the type of model required, as discussed in the next step.
- Select a type of model that can adequately simulate the system under study, and construct the model. In this case, the petroleum refining industry was judged to be adequately simulated by LP techniques. This implies that the important characteristics of the U.S. petroleum refining industry may be mathematically described by linear equations. As constructed for this study, the RIM represents the domestic refining industry aggregated geographically by PAD districts.
- Validation of the RIM is the next logical step. This was performed by operating the model with data on historical industry capacity and product demands to match refinery output and product imports.
- The validated RIM is then modified with case-specific technological options and hypothetical product requirements and exercised to determine optimal industry operations.
- Finally, the case study results are interpreted by applying knowledge of industry practice, economics, and technology. An important aspect of this interpretation is the identification of possible consequences, both economic and noneconomic, for each type of refinery.

#### 3 MODEL DESCRIPTION AND DEVELOPMENT

#### 3.1 Refinery Model

#### 3.1.1 Petroleum Refining Overview

The key element in the petroleum refining industry is, of course, the refinery. The term refinery is used generically to describe any process plant that converts crude oil and other hydrocarbon feedstocks into the various petroleum products. Ideally, these products should be produced in the volumes and qualities required by the market, but the indigenous fractions of crude oil do not, in general, match either the quantities or qualities of the products in demand. Thus, the combination of process units called a refinery is required.

Over the years the petroleum refining industry has evolved the process technology to produce marketable volumes of products meeting various specifications from crude oils of varying quality. Although no two refineries in the United States are identical, there is considerable uniformity in the types of refining processes used.

As shown in the flow chart of a typical refinery depicted in Figure 3.1.1-1, catalytic reforming is the major process used to increase the octane number of low-octane naphthas. Catalytic cracking is the major process used to convert heavy distillate oils to gasoline. The light olefins--propylene and butylene--that are by-products of catalytic cracking are generally reacted with isobutane in a process called alkylation to produce a high-quality gasoline blend stock. Hydrocracking, a process commercialized in the 1960s, is used in many refineries to supplement catalytic cracking in the production of additional gasoline and jet fuel.

Residual oil processing in U.S. refineries has been directed primarily at converting much of this residual fraction to lighter, more valuable products. Thermal cracking processes ranging in severity from visbreaking to coking are the major processes in general refinery use for residual reduction, although solvent deasphalting is used in some cases. As the prices of low-sulfur residual fuel oil have moved closer to prices of distillates and gasoline, considerable interest has developed in residual HDS technology, and the first installations that use this type of process have recently started operating. In refineries that process high-sulfur (sour) crudes, hydroprocessing is extensively applied for sulfur removal from both naphtha and distillate streams.



FIGURE 3.1.1-1 TYPICAL REFINERY PROCESS FLOW

#### 3.1.2 Description of Refinery Model

This subsection briefly describes the LP refinery model used to develop the refinery sectors of the RIM. A more detailed description of the refinery model is included as Appendix A to allow interested readers to judge the level of detail considered in this work.

The LP refinery model used in this study is a generalized model that may be constrained and calibrated to simulate a specific existing refinery or used to simulate typical refineries in assessments of refining industry economics. A block flow diagram of the model is shown in Figure 3.1.2-1. The model is comprehensive in process coverage, including virtually all modern commercial petroleum refining processes, and in coverage of specifications for blending fuel products. It is capable of handling multiple crude oils and other hydrocarbon feedstocks. In addition, the model includes the process options for the production of basic olefin and aromatic petrochemicals. The investment, operating cost, product blending quality, and yield factors are modeled in sufficient detail to permit budgeting and scheduling of existing refinery operations, planning of new facilities, and determination of feedstock values and product pricing.

In specific mathematical terms, the model consists of a number of simultaneous linear equations and inequalities in the form of a matrix. The specific size of the matrix may vary with the problem being assessed and is thus influenced by such factors as the number of crude oils under study, the number of process options allowed, and the number of products or grades of products under study. The version used for the major part of this work covers four crude oils and a typical set of products; it requires 476 equations with 1,169 variables.

The specific processes included in the model are considered to be representative of the types most prevalent in the industry. Each process is represented in the LP model as an entity defined in terms of an investment, utility requirements, catalyst cost, feedstock requirements, yield streams as generally produced in the industry, and the blending qualities of each of these streams that pertain to the appropriate product options. If the operating severity of a process may vary in practice, the model has multiple sets of yields, utility, and feedstock requirements corresponding to the various severity levels. Each severity implies a set of process variables--temperature, pressure, space velocity, recycle ratio, and the like--that is not explicitly stated in the refinery model.

The refinery processes in which variation in operating severity is most critical are catalytic reforming and fluidized catalytic cracking (FCC). Multiple severity options are included in the proposed refinery for both of these processes. The catalytic reformer has five severities, ranging from 91 to 103 research octane number (RON). FCC conversion<sup>\*</sup>

In general practice, FCC conversion means the volume percent of feedstock cracked to 430°F and lighter material.



FIGURE 3.1.2-1 REFINING AND PETROCHEMICAL LP MODEL

varies from 60 to 90 percent. In addition, the hydrocracking process has options for maximum gasoline, turbofuel, and diesel operations.

#### 3.2 Refining Industry Model

#### 3.2.1 The Oil Refining Industry -- Overview

On 1 January 1979, the U.S. oil refining industry consisted of 289 operating refineries of various sizes distributed unevenly throughout the country. Table 3.2.1-1 shows that the largest number of refineries and the greatest share of capacity are situated in PAD District III, which includes the Gulf Coast states. A significant portion of the PAD III refinery output is transported to East Coast markets by coastal tankers and product pipelines.

#### Table 3.2.1-1

#### Percent Number of Capacity of U.S. <u>Refineri</u>es<sup>\*</sup> (10<sup>3</sup> b/d) PAD Capacity 1977 Region District 1974 1977 1974 1974 1977 East Coast Τ 28 28 1,678 1,732 11 11.2 4,030 Midwest ΤT 68 69 4,145 28 26.1 6,132 6,837 Gulf Coast III 83 96 41 43.1 Rocky Mountain IV 29 29 547 546 4 3.4 2,432 West Coast V 2,550 51 51 16 16.1 259 14,819 15,862 100 100.0 Total 273

#### REFINING INDUSTRY GEOGRAPHICAL DISTRIBUTION

Reported as operating.

Average

Source: Bureau of Mines, Petroleum Refineries, U.S. Department of the Interior (1 January 1974, and 1 January 1977).

The distribution of refineries by size is also a significant parameter in a study of the industry. Significant economies of scale are realized in petroleum refining, and the larger plants are generally more flexible in adjusting to changes in the feedstock qualities and product demand. On the other hand, some of the small refiners efficiently serve market

57.2

58.1

areas outside of the economic marketing areas of the large refiners. As shown in Table 3.2.1-2, the 42 percent of U.S. refineries with capacities less than 20,000 b/d produce 5 percent of U.S. petroleum products. On the other hand, about 60 percent of U.S. refining capacity exists in plants with capacities greater than 100,000 b/d, though such size plants account for only 18 percent of U.S. refineries.

#### Table 3.2.1-2

| Class                       | Num<br>of Pl | مل          | Percent<br>of Plants |             |        | Capacity<br>(103 b/d) |      | nt of<br>city |
|-----------------------------|--------------|-------------|----------------------|-------------|--------|-----------------------|------|---------------|
| <u>(10<sup>3</sup> b/d)</u> | 1974         | <u>1977</u> | <u>1974</u>          | <u>1977</u> | 1974   | 1977                  | 1974 | 1977          |
| 0-20                        | 109          | 112         | 42                   | 42          | 805    | 860                   | 5    | 5             |
| 20-50                       | 65           | 62          | 25                   | 23          | 2,249  | 2,113                 | 15   | 13            |
| 50 <b>-</b> 100             | 40           | 45          | 15                   | 17          | 3,002  | 3,269                 | 21   | 19            |
| 100-200                     | 30           | 31          | 12                   | 11          | 4,149  | 4,352                 | 28   | 26            |
| 200+                        | _15          | 19          | 6                    | 7           | 4,614  | 6,156                 | 31   | 37            |
| Total                       | 259          | 269         | 100                  | 100         | 14,819 | 16,750                | 100  | 100           |

#### REFINING INDUSTRY PLANT SIZE DISTRIBUTION

 $\star$ Refineries operating on 1 January of given year.

Source: "Annual Refining Surveys," <u>Oil and Gas Journal</u> (1 April 1974 and 28 March 1977)

Comparison of the 1974 and 1977 data in this table indicates that the number of refineries in each size class has changed little. However, the continuing trend to larger refineries is evident; about 80 percent of the 2 million b/d increase in capacity has come from refineries in the 200,000 b/d class. This suggests that refiners are generally expanding by adding capacity at existing sites rather than by building new refineries in other areas.

A third characteristic that has a significant impact on the flexibility of the industry in adjusting to changes in product mix or product quality is the application of "downstream" processes. As shown in Table 3.2.1-3, the major processes downstream of the primary crude distillation are the vacuum distillation of the residual stream from the primary crude unit, FCC, catalytic reforming, and the various applications of hydroprocessing. Because several of these processes are used in sequence, the percentages do not add up to 100 percent.

#### Table 3.2.1-3

|                          | Process Capacity<br>as Percent of<br>Crude Oil Capacity |             |  |  |
|--------------------------|---------------------------------------------------------|-------------|--|--|
| Process                  |                                                         | <u>1977</u> |  |  |
| Atmospheric distillation | 100.0                                                   | 100.0       |  |  |
| Vacuum distillation      | 35.6                                                    | 36.7        |  |  |
| FCC                      | 30.2                                                    | 29.2        |  |  |
| Catalytic reforming      | 22.4                                                    | 21.7        |  |  |
| Alkylation               | 5.6                                                     | 5.2         |  |  |
| Hydrocracking            | 5.7                                                     | 5.4         |  |  |
| Hydroprocessing          | 38.5                                                    | 43.6        |  |  |
| Coking                   | 6.7                                                     | 7.6         |  |  |
| Lube production          | 1.4                                                     | 1.4         |  |  |
| Asphalt production       | 4.4                                                     | 4.7         |  |  |
|                          |                                                         |             |  |  |

#### REFINING INDUSTRY PROCESS APPLICATION

Source: "Annual Refining Surveys," Oil and Gas Journal (1 April 1974 and 28 March 1977)

#### 3.2.2 <u>Refining Industry Model--Objectives, Scope, and</u> <u>Conceptual Design</u>

The basic objective of the industry model is to assess the effects on the oil refining industry of potential changes in the automotive fleet. The model is intended to permit assessment of:

- The ability of the industry to produce fuel products in amounts or qualities different from those currently produced
- The capital and energy requirements for such changes
- Effects of such changes on various sectors of the industry by geographic and refinery size classification
- The effects of supplies of supplemental feedstocks such as natural gas liquids.

The model covers the entire U.S. refining industry and is aggregated by PAD district. (Product transportation modes include major product pipelines and marine transportation.) Aggregation by PAD districts was selected for consistency with the data base developed by Bureau of Mines (BuMines)<sup>\*</sup> on refinery yields and crude oil and product movements.

LP was selected for this modeling effort for several reasons. From a theoretical standpoint, most of the quantifiable characteristics of the petroleum refining industry may be adequately expressed as linear quantities. Product output, capacity limitations, and product distribution are essentially material balance equations, which are inherently linear. Investment, though it is nonlinear for a single refinery, tends to approach linearity when it is calculated for an industry of several hundred refineries. Refinery operating costs that are not investmentrelated are generally linear, insofar as small process units can be designed with the same utility and catalyst requirements per barrel of capacity as larger units.

LP modeling has a number of advantages.

- The structure of an LP model is relatively simple, compared with that of heuristic, dynamic, stochastic, or other types of models
- LP modeling is widely used in the oil refining industry, and thus the advantages and limitations of the model are generally known
- Elaborate LP systems have been developed, and these are accessible to the public through several computer service vendors. The Control Data Corporation Apex III system was used in this work. The availability of an existing system for performing the mathematical procedure obviates the need for a considerable amount of programming needed to use other modeling techniques.

This discussion is not intended to be a comprehensive comparison of the advantages and disadvantages of LP with those of other modeling techniques. Such a comprehensive comparison is beyond the scope of the project. More detailed discussions of mathematical modeling as applied to the oil refining industry may be found in numerous sources.<sup>1-3</sup>

The objective function selected for optimization in the case studies is that of minimizing industry costs of products delivered to hypothetical bulk terminals in each of the PAD districts. This quantity was judged to be an acceptable indicator of the effects of a given change on the industry.

The generally good agreement of the RIM results with industry data shown in the validation work appears to support the use of cost minimization to reflect industry behavior. However, it may be of interest in further studies to examine other quantities for optimization. Energy used in refining and capital for new facilities are monitored in the model and could be selected for optimization.

Now available from Department of Energy (DOE), Energy Information Administration (EIA).

Structurally, the model comprises a refining submatrix (Table 3.2.2-1) and a distribution submatrix (Figure 3.2.2-1) for each PAD district. The refining submatrix is defined by equations that sum each product, feedstock, and resource used, and variables that represent each mode of refinery operation and the total of each product. As shown, the singledistrict refining industry matrix includes large and small refineries . L. with sweet and sour crude operations, each of which has base conversion, low conversion, and high conversion operating modes. In our analysis of PAD district III refineries, an intermediate size class was observed that differed in process configuration from the average configurations for small and large refineries. A medium capacity refinery mode was added to District III to account for this. Each of the refining modes in the model is derived from an optimal solution of the detailed Refinery Model described in Section 3.1. This approach assures that the yields and costs will accurately reflect the refinery process technology used.

New refining facilities that did not exist in 1974 are modeled as incremental refining modes. These incremental modes include the parameter of investment in addition to the operating cost parameters of the existing refinery modes. The existing incremental refinery modes are case-specific, as in the case of additional hydrotreating or hydrocracking for diesel fuel production and hydrotreating for gasoline and diesel desulfurization. Twenty-two types of refinery products are represented in the model, including aromatic chemicals.

The possible need for additional refining and pipeline capacity is allowed for in the aggregate total for a given facility in a given district, and the appropriate investment is included. The distribution submatrix in each district is defined by a second set of equations, one for each product and cost item. The variables in these equations are (1) the total production of a given product within the district; (2) the product volumes transferred in and out of the district; and (3) the consumption within the district. The submatrices for the various districts are linked by the transfer of the various products from one district to another. Two transportation modes--marine and pipeline--are available to all applicable product movements between the PAD districts and the foreign sector. Transfers that are physically improbable, such as marine transport from or to the Rocky Mountain district (PAD IV), have been excluded from the model.

The major user input data are the delivered product requirements in each PAD district, in thousands of barrels (42 gallons) per calendar day (b/cd). Output of the RIM consists of the Apex system listing of row and column values, plus a FORTRAN report providing tabular analyses of the optimal inter-PAD product movements, refining capacity utilization, utility and energy requirements, labor, operating costs, and investment.

Conversion in the general sense used in the industry describes the "cracking" of heavy crude oil fractions to lighter stocks, as by FCC, hydrocracking, and coking.

#### Table 3.2.2-1

# TYPICAL REFINERY MODES IN THE REFINING INDUSTRY MODEL FOR PAD DISTRICT II REFINERY DATA INPUT

|                                                                    | 20 CALHC* | 20 CALLC | 20 CASBA | 20 CASHC | 20 CASLC | 20 CBLBA | 20 CBLLC | 20 CBLHC |
|--------------------------------------------------------------------|-----------|----------|----------|----------|----------|----------|----------|----------|
| Input                                                              |           |          |          |          |          |          |          |          |
| Sweet crude<br>Sour crude<br>Californía crude<br>Alaskan crude     | -100.00   | -100.00  | -100.00  | -100.00  | -100.00  | -100.00  | -100.00  | -100.00  |
| Natural gasoline                                                   | -1.85     | -1.85    | -2.14    | -2.14    | -2.01    | -1.85    | -1.85    | -1.85    |
| Isobutane                                                          | -1.33     | -1.33    | -1.48    | -1.48    | -1.39    | -1.33    | -1.33    | -1.33    |
| Normal butane                                                      | -1.33     | -1.33    | -1.48    | -1,48    | -1.13    | -1.33    | -1.33    | -1.33    |
| Total                                                              | -104.51   | -104.51  | -105.10  | -105.10  | -104.53  | -104.51  | -104.51  | -104.50  |
| Output                                                             |           |          |          |          |          |          |          |          |
| C3 LPG                                                             | 2.44      | 2.44     | 1.97     | 2.30     | 1.85     | 2.44     | 2.44     | 2.44     |
| C <sub>4</sub> LPG                                                 | 0.54      | 0.54     | 0.49     | 0.59     | 0.46     | 0.54     | 0.44     | 0.54     |
| Naphtha                                                            | 0.88      | 0.88     |          |          |          | 1.08     | 0.88     | 0.88     |
| Regular gasoline                                                   | 20.78     | 19.45    | 19.31    | 14.91    | 13.01    | 25.39    | 21.56    | 27.07    |
| Premium gasoline                                                   | 16.07     | 16.07    | 12.20    | 4.97     | 4.34     | 16.07    | 16.07    | 16.07    |
| Low-lead gasoline                                                  | 9.01      | 7.20     | 8.37     | 14.91    | 13.01    | 11.04    | 7.20     | 13.24    |
| Lead-free gasoline                                                 | 13.31     | 9.54     | 7.27     | 14.91    | 13.01    | 9.54     | 9.54     | 12.40    |
| JP-4 jet fuel                                                      | 1.34      | 1.09     | 1.27     | 1.27     | 1.20     | 1.34     | 1.09     | 1.09     |
| Jet A jet fuel                                                     | 5.36      | 4.37     | 4.01     | 4.01     | 0.94     | 4.59     | 4.37     | 4.59     |
| Diesel                                                             | 7.75      | 18.75    | 11.00    | 10.00    | 23.96    | 6.32     | 15.51    | 5.69     |
| No. 2 fuel oil                                                     | 15.61     | 15.61    | 22.19    | 20.69    | 17.99    | 15.61    | 15.61    | 11,48    |
| High-sulfur No. 6                                                  | 1.78      | 2.24     | 3.89     | 3.54     | 3.65     | 2.24     | 2.24     | 1.78     |
| Low-sulfur No. 6                                                   | 2.73      | 2.24     | 3.89     | 3.54     | 3.65     | 2.24     | 2.24     | 1.78     |
| Lube stocks                                                        | 1.22      | 1.22     |          |          |          | 1.22     | 1.22     | 1.22     |
| Asphalt and road oil                                               | 3.01      | 3.01     | 7.65     | 7.65     | 5.72     | 3.01     | 3.01     | 3.01     |
| Coke (low-sulfur)<br>Coke (high-sulfur)<br>Coke (California crude) | 0.63      | 0.61     |          |          |          | 0.94     | 0.87     | 0.94     |
| Benzene                                                            |           |          |          |          |          | 0.14     | 0.14     | 0.14     |
| Toluene                                                            |           |          |          |          |          | 0.10     | 0.10     | 0.10     |
| Mixed xylenes                                                      |           |          |          |          |          | 0.19     | 0.19     | 0.07     |
| Míscellaneous products                                             | 2.72      | 1.40     | 1.37     | 1.51     | 1.29     | 1.40     | 1.40     | 1.40     |
| Total                                                              | 105.18    | 106.66   | 104.88   | 104.80   | 104.08   | 105.43   | 106.12   | 105.93   |
| Operating cost factors                                             |           |          |          |          |          |          |          |          |
| Purchased electric power                                           | 398.00    | 379.00   | 262.90   | 270.00   | 267.72   | 447.00   | 424.00   | 465.00   |
| Total fuel required                                                | 5.86      | 5.62     | 4.70     | 4.88     | 4.62     | 5.85     | 5.85     | 6.09     |
| Refinery energy consumption                                        | 6.59      | 6.33     | 5.20     | 5.39     | 5.12     | 6.69     | 6.64     | 6.97     |
| Labor                                                              | 500.00    | 500.00   | 500.00   | 500.00   | 500.00   | 500.00   | 500.00   | 500.00   |
| Operating costs                                                    | 16.04     | 14.01    | 11.27    | 12.00    | 9.38     | 16.40    | 14.90    | 18.57    |

\* Refinery nomenclature code is as follows:

- 20 PAD district II
- CA Low-sulfur crude
- CB High-sulfur crude
- L Large refinery, >50,000 BPCD
- S Small refinery, <50,000 BPCD
- BA Base operating mode
- LC Low conversion mode
- HC High conversion mode.





A complete equation listing of the RIM is presented in Appendix B, along with the naming conventions used. An example of the procedure for operating the RIM is provided in the validation work described briefly in the following section and in greater detail in Appendix C.

#### 3.2.3 <u>Validation of Refining Industry Model (RIM) for 1974</u> Industry Operation

In principle, the procedure for validating the RIM is straightforward; it consists of matching the output of the constrained model with actual industry data for a given base period. The RIM is exercised with the product demands, refining capacities, and prices presented in Appendix C to obtain an optimal solution. This gives values by PAD district for crude oil and other feedstocks used, refinery output, inter-PAD district product transfers by pipeline or marine modes, and products exported or imported. The corresponding actual industry values are reported in Appendix D.

A comparison of the total U.S. refinery input and output of major products of the RIM with BuMines data is summarized in Table 3.2.3-1. In general, the RIM has a tendency to minimize imported products by processing additional crude oil. This tendency may be explained by the relative price structure of domestic crudes versus that of imported products. Domestic crude oil prices are, on the average, lower by several dollars per barrel than international crude prices. This difference is largely the result of the regulation of domestic prices and volume allocations by the federal government. The order of magnitude of the resulting crude oil price differentials has ranged from \$4 to \$5.50/b, as indicated in the following tabulation.

|            | Average Crude Oil Refiner<br>Acquisition Cost <sup>4</sup><br>(dollars per barrel) |       |       |       |              |  |  |  |
|------------|------------------------------------------------------------------------------------|-------|-------|-------|--------------|--|--|--|
|            | 1974                                                                               | 1975  | 1976  | 1977  | 1978         |  |  |  |
| Foreign    | 12.52                                                                              | 13.93 | 13.48 | 14.53 | 14.57        |  |  |  |
| Domestic   | 7.18                                                                               | 8.39  | 8.84  | 9.55  | <u>10.61</u> |  |  |  |
| Difference | 5.34                                                                               | 5.54  | 4.64  | 4.98  | 3.96         |  |  |  |

The imported product prices used in this study reflect the higher foreign crude oil prices plus the product import fee of \$0.63/b. In addition, some of the product volumes reported in the import statistics come from U.S.-owned refineries in U.S. possessions in the Caribbean, such as the Amerada-Hess refinery on St. Croix. Because essentially all of the crude oil processed by these refineries is foreign, these refiners benefit from

### Table 3.2.3-1

VALIDATION OF REFINING INDUSTRY MODEL--TOTAL U.S. REFINERY INPUT/OUTPUT, 1974 (Thousands of Barrels per Calendar Day)

|                                            |        |         |             | Percent                           |
|--------------------------------------------|--------|---------|-------------|-----------------------------------|
|                                            | RIM    | BuMines | RIM-BuMines | Difference From<br>(BuMines base) |
| Inputs                                     |        |         |             |                                   |
| Crude oil                                  | 12,530 | 12,133  | 397         | +3.2                              |
| Natural gas liquids                        | 512    | 746     | -234        | -31.4                             |
| Total input                                | 13,042 | 12,879  | 163         | 1.3                               |
| Products                                   |        |         |             |                                   |
| Liquefied refinery gas                     | 277    | 320     | -43         | -13.4                             |
| Naphtha                                    | 198    | 262     | -64         | -24.4                             |
| Gasoline (includes<br>Avgas)               | 6,582  | 6,401   | 181         | 2.8                               |
| Naphtha-type jet fuel                      | 181    | 195     | -14         | -7.2                              |
| Jet fuel (includes<br>kerosene)            | 947    | 796     | 151         | 19.0                              |
| Distillate fuel oil                        | 2,911  | 2,668   | 243         | 9.1                               |
| Residual fuel oil                          | 1,063  | 1,070   | -7          | -0.6                              |
| Lubes and waxes                            | 216    | 213     | 3           | 1.4                               |
| Asphalt and road oil                       | 424    | 469     | -45         | -9.6                              |
| Petroleum coke<br>(10 <sup>3</sup> b, FOE) | 200    | 339     | -139        | -41                               |
| Imported products (net)                    |        |         |             |                                   |
| Gasoline                                   | 0      | 201     | -201        | -100                              |
| Jet A/kerosene                             | 0      | 138     | -138        | -100                              |
| Distillate fuel oil                        | 51     | 278     | -227        | -82                               |
| Residual fuel oil                          | 1,472  | 1,558   | -86         | -5.5                              |

<sup>\*</sup>Fuel oil equivalent barrels.

the DOE entitlements program. This program allows these refiners to charge lower prices than other foreign refiners charge, which could explain why volumes of imports are larger than the optimal amount indicated by the RIM.

The RIM/BuMines refining input/output comparison by PAD district is shown in Appendix C. Note that the demand limits were set only for the major fuel products--gasoline, Jet-A, diesel, No. 2 fuel oil, and No. 6 fuel oil. The minor products are produced in proportion to the crude processed, at average 1974 yields.

Similar comparisons of RIM/BuMines data for inter-PAD transfers for gasoline, Jet-A, distillate fuels, and residual fuels are given in Appendix C. The RIM estimates of product movements from PAD III to PAD I and PAD II are generally in accordance with the reported statistics. A complete set of RIM output tables for the 1974 validation case is also included in Appendix C.

The DOE entitlements program is a scheme of intercompany transfer payments designed to alleviate crude oil pricing inequities resulting from price ceilings previously imposed under the Emergency Petroleum Allocation Act of 1973. A layman's explanation of these programs is presented in the DOE's "Monthly Energy Review" for January 1977.

#### 4 CASE STUDIES

The application of the RIM to the quantitative evaluation of the effects on the refining industry of diesel penetration of the automotive fleet and reduction of the sulfur content of automotive fuels is described in this section. The general scenario (base case) used for the studies and the detailed analyses is described first.

#### 4.1 Base 1995 Scenario

The development of a scenario for an industry as complex as the petroleum refining and distribution industry requires consideration of a large number of variables, which can be outlined as follows:

- (1) Product demand by product and region
- (2) Petroleum supply
  - Domestic crude--high- and low-sulfur
  - Alaskan crude
  - Foreign crude--high- and low-sulfur
  - California crude
- (3) Facilities
  - New domestic capacity compared with product imports
  - Modifications for diesel production, desulfurization
  - Transportation--pipeline, marine
  - Construction cost inflation
  - Site considerations for new capacity
- (4) Prices (domestic product prices are not required for cost minimizing objective)
  - Crude oil
  - Product imports
- (5) Federal, state, and local regulations
- (6) Technology for diesel production and sulfur removal.

#### 4.1.1 Product Demand

The estimates used for the first of these factors--demand for major petroleum products by product and by region--are presented in Table 4.1.1-1. The gasoline and diesel demand forecasts were supplied by DOT/TSC.<sup>5</sup> These projections were reasonably consistent with those developed by SRI in a recent study<sup>6</sup> sponsored by EPRI for a high-conservation, low-demand growth case (see Appendix E). The projections for demand for fuel products other than gasoline and diesel fuel were, therefore, derived from the study for EPRI performed with the SRI National Energy Model. In brief, this model is a dynamic programming model that determines equilibrium prices for energy products needed to meet estimated energy demands for primary consumption such as vehicle miles traveled, space heating, and so on. The scope of the model covers the entire energy industry, from the primary energy resources through a network of conversion, refining, transportation, and transmission facilities.

A separate model is used to develop estimates of the primary energy demands over time by sector and region, and to determine price elasticities of demand. See the SRI report<sup>6</sup> on the EPRI study for detailed descriptions of these models. The basic assumptions used for the energy forecasts and the SRI energy model demand projections for the low-demand case are presented in Appendix E for the transportation, industrial, residential/commercial, and electric power sectors.

#### 4.1.2 Petroleum Supply

The RIM includes four types of crude oil:

- Low-sulfur, as typified by a South Louisiana crude
- High-sulfur, as typified by a West Texas sour crude
- California, a blend of Wilmington and West Texas sour
- Alaskan North Slope.

For the high- and low-sulfur crudes, the RIM does not distinguish between domestic and foreign sources. The implicit assumption is that refiners will selectively buy foreign crudes similar to the domestic crudes represented in the model.

The upper limits of crude availability in the RIM apply primarily to the low-sulfur crudes, as shown in Table 4.1.2-1. Alaskan crude is limited to the expected maximum of 2 million b/d. Total crude oil throughput is controlled by the refining capacity limits discussed in the following subsection.

#### Table 4.1.1-1

### MAJOR PETROLEUM PRODUCTS<sup>\*</sup>--DEMAND SCENARIO (Millions of Barrels per Calendar Day)

|                                                                    |                                         |                       |                                         |                                         |                                         | Total<br>United States                  |
|--------------------------------------------------------------------|-----------------------------------------|-----------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
|                                                                    | <u>L</u>                                |                       |                                         |                                         |                                         | United States                           |
| 1995 base case                                                     |                                         |                       |                                         |                                         |                                         |                                         |
| Gasoline<br>Avgas and military (est.)                              | 1.85<br>0.02                            | 1.92<br>0.02          | 0.645<br>0.020                          | 0.170<br>0.005                          | 0.790<br><u>0.020</u>                   | 5.375<br>0.085                          |
| Total gasoline                                                     | 1.87                                    | 1.94                  | 0.665                                   | 0.175                                   | 0.810                                   | 5.460                                   |
| Jet fuel (Jet A)<br>Kerosene fuel oil                              | 0.773<br><u>0.070</u>                   | 0.386<br><u>0.050</u> | 0.242<br><u>0.040</u>                   | 0.048<br><u>0.003</u>                   | 0.628<br><u>0.008</u>                   | 2.080<br>0.171                          |
| Total kerosene-type fuel                                           | 0.843                                   | 0.436                 | 0.282                                   | 0.051                                   | 0.636                                   | 2.251                                   |
| Diesel, No. 1<br>Diesel, No. 2<br>Distillate fuel<br>Residual fuel | 0.605<br>0.870<br>0.784                 | 0.608                 |                                         | 0.055<br>0.091<br>0.044                 |                                         | 1.760<br>1.991<br>1.307                 |
| 199515 percent diesel penetration                                  |                                         |                       |                                         |                                         |                                         |                                         |
| Gasoline<br>Diesel, No. 1<br>Diesel, No. 2<br>Total diesel         | 1.610<br>0.250<br><u>0.605</u><br>0.855 | 0.260<br><u>0.630</u> |                                         | 0.155<br>0.020<br><u>0.055</u><br>0.075 | 0.110                                   | 4.735<br>0.725<br><u>1.760</u><br>2.485 |
| 199530 percent diesel penetration                                  |                                         |                       |                                         |                                         |                                         |                                         |
| Gasoline<br>Diesel, No. 1<br>Diesel, No. 2<br>Total diesel         | 1.370<br>0.500<br><u>0.605</u><br>1.105 | 0.520<br><u>0.630</u> | 0.495<br>0.170<br><u>0.210</u><br>0.380 | 0.045                                   | 0.595<br>0.215<br><u>0.260</u><br>0.475 | 4.010<br>1.450<br><u>1.760</u><br>3.210 |

Demands for other coproducts were not fixed for this study.

The RIM could not meet this demand if production of other middle distillates was held constant and imports were limited; therefore, requirements in the final cases were relaxed to 60 percent of values shown.

#### Table 4.1.2-1

|              | Maxima<br>(10 <sup>3</sup> b/cd) |                 |                     |         |  |  |  |
|--------------|----------------------------------|-----------------|---------------------|---------|--|--|--|
| PAD District | Low-Sulfur                       | High-Sulfur     | California<br>Blend | Alaskan |  |  |  |
| I            | 690                              | NL <sup>*</sup> |                     |         |  |  |  |
| II           | 1,920                            | NL              |                     |         |  |  |  |
| III          | 3,132                            | NL.             |                     | NL      |  |  |  |
| IV           | 240                              | NL              |                     |         |  |  |  |
| V            | 680                              | NL              | NL                  | 2,000   |  |  |  |
| Total        | 6,662                            |                 |                     |         |  |  |  |

#### PETROLEUM SUPPLY LIMITS IN REFINING INDUSTRY MODEL CASE STUDIES

NL means not explicitly limited.

#### 4.1.3 Facilities

4.1.3.1 <u>Refining</u>. The value for the upper limit on domestic refining capacity is based on the 1977 level of about 16 million b/d. These limits are presented in Table 4.1.3.1-1. New capacity is allowed for large refineries at an average investment level of \$4,000 per daily barrel and for small refineries at \$6,000 per daily barrel. These expansion options have been added to the aggregate total for each district to allow flexibility in the selection of any of the available refining modes. The issue of additional domestic refining capacity may be of limited significance in this study, because the conservation demand scenario requires little expansion beyond current capacity if U.S.-owned Caribbean capacity is included.

4.1.3.2 <u>Transportation</u>. Transportation capacity limits and costs used in the study cases are presented in Table 4.1.3.2-1. Major product pipeline capacities are modeled with an option to expand at investment costs appropriate for the estimated sizes of required lines and distances. In making these estimates, it is assumed for this study that no major changes from the 1974 base pattern will occur.

Installation of new refining and pipeline capacity is allowed to occur at the optimal locations determined by the model. Marine transportation of products, where feasible, has unrestricted capacity.

## Table 4.1.3.1-1

REFINING CAPACITY LIMITS, 1995 BASE CASE (Thousands of Barrels per Calendar Day\*)

|                                      |       | PAD   | Distric                     | ب   |       | United States |
|--------------------------------------|-------|-------|-----------------------------|-----|-------|---------------|
| Limits                               | I     | II    | I III II                    | IV  | Λ     | Total         |
| Lower                                | 1,337 | 2,425 | 1,337 2,425 4,226 410 1,912 | 410 | 1,912 | 10,310        |
| lpper †                              | 1,693 | 3,937 | 1,693 3,937 6,497 518       | 518 | 2,422 | 12,645        |
| Model usage                          | 1,647 | 3,801 | 1,647 3,801 4,226           | 469 | 1,912 | 12,055        |
| ‡<br>1976 reported runs <sup>‡</sup> | 1,590 | 3,610 | 5,733                       | 443 | 2,078 | 13,453        |
| 1976 reported capacity               | 1,466 | 4,172 | 5,827                       | 561 | 2,588 | 15,561        |
|                                      |       |       |                             |     |       |               |

"Crude oil throughput.

Expansion allowed at investment cost of \$4,000 per daily barrel for large refineries, \$6,000 per daily barrel for small refineries.

\* Source: Bureau of Mines, Mineral Industry Surveys, Crude Petroleum, Petroleum Products, and Natural Gas Liquids (March 1977).

Source: Federal Energy Administration, Trends in Refinery Capacity and Utilization (June 1976).

|                 | <u>\$/b</u>                                         | 1.00                                       | 2.50<br>e"                                                                                                                                                                                                                                              |
|-----------------|-----------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | \$/b 10 <sup>6</sup> b/cd                           | 0<br>65<br>                                | <pre>1.20 1.50 2.5<br/>pipeline movements for 1974, multiplied by 1.25, as reported in U.S.<br/><u>Mineral Industry Surveys, Petroleum Statement</u> (February 1975)<br/>:osts in \$/b derived from various issues of "Platt's Oil Price Service"</pre> |
|                 |                                                     | 0.58<br>0.60                               | report<br>uary 1<br>Oil Pr                                                                                                                                                                                                                              |
| STS             | IV<br>10 <sup>6</sup> b/cd                          | 0<br>40<br>                                | 1.25, as<br>ment (Febr<br>"Platt's                                                                                                                                                                                                                      |
| AND COS         | strict<br>\$/b                                      | 0.60                                       | ied by<br><u>State</u> uues of                                                                                                                                                                                                                          |
| COSTS AND COSTS | To PAD District<br>III<br>10 <sup>6</sup> b/cd \$/b | 0<br>100<br>15<br>0                        | 4, multipl<br><u>Petroleum</u><br>arious iss                                                                                                                                                                                                            |
|                 | 4/\$                                                | 0.30<br>0.50<br>0.38                       | 1.50<br>or 197<br>from vi                                                                                                                                                                                                                               |
|                 | II<br>10 <sup>6</sup> b/cd                          | 200<br><br>30<br>0                         | 1.20 1.50 1.50<br>ipeline movements for 1974, multiplied by 1.25, as reported i<br><u>Mineral Industry Surveys, Petroleum Statement</u> (February 1975)<br>sts in \$/b derived from various issues of "Platt's Oil Price                                |
|                 | <u>ځ/ه</u>                                          | 0.27<br>0.42                               | 1.20<br>line m<br>$\frac{\text{eral I}}{\text{in } \frac{5}{2}}$                                                                                                                                                                                        |
|                 | I<br>10 <sup>6</sup> b/cd                           | <br>80<br>2,000<br>0<br>0                  | ed on pipe<br>Mines, <u>Min</u><br>tive costs                                                                                                                                                                                                           |
|                 | From PAD District<br>Pipeline                       | I<br>II<br>III<br>IV<br>Warine (cost only) | Sources: Limits based on<br>Bureau of Mines,<br>Representative c<br>daily                                                                                                                                                                               |

Table 4.1.3.2-1

TRANSPORTATION CAPACITY LIMITS AND COSTS

26

## 4.1.4 Prices of Crude Oil and Imported Products

For the current studies, the RIM is being operated on the assumption that the objective is to meet projected regional product demands at minimum total cost. Because crude oil transportation facilities are not currently included in the model, estimated crude oil transportation costs are included in the total cost of crude in each region. Imported products are assumed to come from a Caribbean supply source at prices FOB refinery plus shipping cost. These prices are summarized in Appendix C.

The set of price and cost parameters used in the 1974 case has produced a reasonable simulation of actual 1974 refining and product transportation patterns. Therefore, the study cases are defined in terms of constant 1974 dollars.

## 4.1.5 Federal, State, and Local Regulations

The RIM is currently structured to take into account regulations related to transportation fuels--fuel efficiency and vehicle sulfur emissions. Variations in regulations concerning the quality or use of residual fuels are beyond the scope of this study. However, the refinery model could readily be modified to develop additional refining options to conform with such regulations.

## 4.1.6 <u>Technology for Diesel Production and Sulfur Removal</u> from Gasoline and Diesel

The technology applied in this study for diesel production and desulfurization is commercially mature; however, the extension of the diesel desulfurization to very low levels has not been practiced commercially. The estimates of the costs of this operation are thus less certain than those for the other processes. The specific processes used for additional diesel production and for desulfurization (hydrocracking and HDS) are discussed in greater detail in later subsections.

## 4.2 <u>Impact of Increased Diesel to Gasoline Production Ratio</u> on the Refining Industry

## 4.2.1 Overview

The superior fuel efficiency of the diesel engine over the conventional spark-ignited gasoline engine has created widespread interest in diesel engines as a means of improving the fuel economy of the nation's automotive fleet. The possibility of significant penetration of the diesel into the automotive market raises questions of fuel supply and effects on the refining industry. This study addresses these impacts in terms of product mix, refining and transportation costs, energy consequences, and potential new investment required.

## 4.2.2 Summary and Conclusions

The effects of increased diesel-to-gasoline ratios have been studied over the range of 0.17/1 to 0.8/1. The major results are summarized in Table 4.2.2-1. Detailed model output is presented in Appendix C for Case 1. Summary output for Cases 2, 3, and 4 of the dieselization study are presented at the end of this section.

The major conclusions drawn from the output of the RIM runs for the study cases are as follows.

- Given the conservation-oriented scenario selected for this study, a significant increase in diesel fuel consumption when production of other middle distillate products is held constant will tend to produce a shortage of domestic output of middle distillates. Even at the 1995 base case (Case 2) ratio of 0.3/1 diesel to gasoline, imports of No. 2 fuel oil will reach the maximum allowed for this study. At 15 percent diesel penetration (Case 3, 0.5/1 diesel-to-gasoline ratio), No. 2 fuel imports remain at the maximum, and jet fuel imports of 174,000 b/cd are required. At the maximum diesel penetration of 30 percent (Case 4, 0.8/1 diesel-to-gasoline ratio), the maximum allowed import volumes of 400,000 b/cd each of No. 2 fuel oil and jet fuel are reached. The required volumes of diesel fuel are provided by increased hydrocracking, although options exist in the RIM for refining No. 2 fuel oils to diesel fuel by hydrotreating or the use of a cetane-improving additive.
- At the 0.3/1 ratio (Case 2), the model indicates that about half of existing hydrocracking capacity (907,000 b/d as of 1 January 1977<sup>7</sup>) would be shifted to diesel production from gasoline. Refining industry investment for Case 3 is \$90 million, compared with \$54 million for the 1995 base case (Case 2). Case 3 uses all of the existing hydrocracking capacity. At the Case 4 diesel penetration of 30 percent (0.8/1 diesel-to-gasoline ratio), the need for new hydrocracking capacity raises the required investment sharply to \$1.5 billion.
- Refinery energy consumption for Cases 2 and 3 decreases from the 1974 industry operation by about 0.06 percent and 0.14 percent, respectively. The Case 4 requirement for new hydrocracking capacity increases the refining energy consumption to 7.3 percent of domestic refinery output, or 1.13 percent more than the minimum for Case 3.
- The refining industry cost savings over Case 1 are greatest for Case 2, \$0.61/b of domestic production of gasoline plus diesel. The cost saving is less for Case 3, \$0.52/b of gasoline plus diesel. At 30 percent diesel penetration, the cost for Case 4 is \$0.05/b greater than the 1974 cost.

|                                                                          | Case 11974     | Case 21995       | Case 31995  | Case 41995       |
|--------------------------------------------------------------------------|----------------|------------------|-------------|------------------|
| Percent diesel penetration $\overset{*}{}$                               | 1              | Base             | 15          | 30               |
| Diesel production, 10 <sup>3</sup> b/cd (%) <sup>†</sup>                 | 1,127(8.7)     | 1,767(14.2)      | 2,492(20.5) | 3,211(27.0)      |
| Gasoline production, 10 <sup>3</sup> b/cd                                | 6,582(50.7)    | 5,460(43.8)      | 4,734(38.9) | 4,010(33.8)      |
| Diesel/gasoline ratio                                                    | 0.17/1         | 0.32/1           | 0.53/1      | 0.80/1           |
| Imported products, 10 <sup>3</sup> b/cd                                  |                |                  |             |                  |
| Jet A, 10 <sup>3</sup> b/cd<br>No. 2 Fuel Oil. 10 <sup>3</sup> b/cd      | 51             | 400 <sup>‡</sup> | 174<br>400‡ | 400 <sup>‡</sup> |
| No. 6 Fuel Oil, 10 <sup>3</sup> b/cd                                     | 1,971          | 273              | 338         | 433              |
| Domestic Crude runs, 10 <sup>3</sup> b/cd                                | 13,042         | 12,539           | 12,284      | 12,083           |
| Cost differentials, $\frac{1}{2}$ b gasoline + diesel <sup>8</sup>       | Base           | -0.61            | -0.52       | +0.05            |
| New investment, 10 <sup>6</sup> \$                                       | 0<br>1         | 54.4             | 98.8        | 1,479            |
| Energy consumption, percent of domestic products (FOE hasis)             | 15 9           | 6 25<br>6        | 6 17        | 7 30             |
|                                                                          |                |                  |             |                  |
| recent reduction from base                                               | Base           | -0.06            | -0.14       | +0.99            |
|                                                                          |                |                  |             |                  |
| Substitution of light diesel for motor gasoline, as forecast by DUT/TSC. | as torecast by | DUT/TSC.         |             |                  |

<sup>T</sup>Total production, thousands of barrels per calendar day, estimate for 1974 based on U.S. Bureau of Mines, Mineral Industry Surveys, Fuel Oil Sales (1975). Values in parentheses are percent of domestic refinery output.

\* Maximum allowed in study cases.

Computed from RIM objective function for total U.S. fuels refining industry; includes 20 percent beforetax simple return on new investment; constant 1974 dollar values for costs, including crude oil and imported products.

Table 4.2.2-1

- Case 4 approaches the lower limit of gasoline production if naphtha is used only for gasoline blending, as it now is. This is a limit of the model. Under an option for alternative uses for naphtha (e.g., as a petrochemical feedstock or in turbine fuel), the industry could show a preference for running additional crude to reduce the imports of middle distillates and selling the excess naphtha at a potential premium price.
- The proportion of crude oil used for petroleum products other than the major fuel products is assumed to be the same in 1995 as it was in 1974. This assumption is not intended to be a prediction. The use of refining facilities specifically for production of petrochemicals and other nonfuel products could add significantly to the crude oil requirements indicated in the cases shown in this study.

## 4.2.3 Discussion and Analysis

The effect of increasing the diesel-to-gasoline ratios in U.S. refining and distribution industries depends on several critical factors:

- Demands for other refined coproducts
- The extent of the change
- Refining facilities and process technology available
- Crude oil availability
- Product import policy.

Diesel fuel is one of the several fuels called middle distillates that have distillation temperatures in the range of about 400 to 650°F. No. 2 heating oil has virtually the same boiling range as No. 2 diesel, and kerosene (No. 1 heating oil) and commercial jet fuel (Jet-A) are similar to No. 1 diesel fuel. In many instances, the products sold as fuel oils will also meet diesel specifications.

In the current demand pattern, these distillate products are, as the name implies, produced from crude oil primarily by the distillation process; hydrotreating is required only for the stocks derived from sour crudes. In general, the volume demands for these products are in balance with the corresponding yield fractions of the crude oil processed, as implied in the previous statement. However, the United States, with its emphasis on gasoline production, is an exception to the pure "straightrun" distillate content of these products. Some cracked distillate byproducts of the FCC and coking processes are blended into No. 2 fuel oil. The cracked stocks tend to have a high content of aromatic components, which results in low cetane<sup>\*</sup> quality, and they are therefore not suitable

Cetane number is a measure of the quality of combustion in the diesel engine, analogous to the octane rating for gasoline.

stocks for diesel fuel unless hydrotreated. Hydrocracking, used primarily in the United States for gasoline production, may be operated at lower severity to produce excellent diesel or jet fuel blend stocks. The cost of this process is substantially greater than that of FCC.

The effect on cost of changing the diesel-to-gasoline ratio may be analyzed as a function of the extent of change. When demand figures for Jet A and No. 2 heating oil are "protected" (i.e., held constant), the first increment of additional diesel fuel is the volume of distillate oil in the crude that exceeds distillate demand. In the United States, this material is generally fed to the FCC unit for conversion to gasoline; it could be made available for diesel blending at the expense of reducing the production of gasoline. The next increment of diesel production is made by operating existing hydrocracking at reduced severity; again, the result is a reduction in gasoline production. This approach is carried further by adding new hydrocracking capacity to process vacuum gas oil (650-1000°F) feed currently being cracked in FCC units for gasoline production. The FCC units are also operated at low severity, and the distillate product is hydrotreated to improve cetane ratings.

The quantitative effects of these changes on an industry-wide basis for several diesel-to-gasoline ratios were studied with the RIM. Results were summarized in the preceding section. The RIM output for the diesel study cases is summarized in Table 4.2.3-1, and the RIM summary output for each of the dieselization cases is shown in Tables 4.2.3-2 through 4.2.3-10. Changing the proportions of gasoline and diesel fuel produced should have little effect on the distribution and marketing sectors through 1995 because both products are compatible with existing facilities.

Production of U.S. cars requiring premium gasoline (98-100 RON) virtually ceased in 1971.<sup>8</sup> At the historical scrapping rate for cars of about 10 percent per year, virtually all of the pre-1971 models will no longer be in use by 1995. If production of higher compression-ratio engines is not resumed, the need for three gasoline grades will not exist in 1995. Thus, the retail system that now provides three grades of gasoline can be adapted to provide two grades of gasoline and one grade of diesel. Our projections assume that leaded gasoline will be phased out entirely by 1995.

## 4.2.4 Review of Prior Studies

Several other studies of possible changes in gasoline-to-distillate ratio have been published. All have used a refinery LP model to evaluate "typical" refinery cases for various levels of diesel penetration, but they have been based on different scenarios, which, predictably, yield different absolute values for the effects of diesel penetration on the refining industry. For comparison with this study, it is particularly significant to note that these studies do not explicitly quantify the effects of the substantial regional differences in relative distillate product demands, crude oil qualities, and product imports.

## DIESELIZATION CASE DATA SUMMARY

|                                                                                                      | Case 11974<br>Validation<br>Case                                                                     | Case 21995<br>Base                                                                                     | Case 31955,<br>15 Percent<br>Diesel<br>Penetration                                                   | Case 41995,<br>30 Percent<br>Diesel<br>Penetration                                                 |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Refining industry cost * (10 <sup>3</sup> \$/d)                                                      | 149,026                                                                                              | 135, 145                                                                                               | 135, 817                                                                                             | 139, 913                                                                                           |
| Total refinery input <sup>†</sup> (10 <sup>3</sup> b/cd)                                             | 13,042                                                                                               | 12,539                                                                                                 | 12, 284                                                                                              | 12,083                                                                                             |
| Domestic refinery production,<br>10 <sup>3</sup> b/cd (vol%) <sup>\$</sup>                           |                                                                                                      |                                                                                                        |                                                                                                      |                                                                                                    |
| Gasoline<br>JP-4<br>Jet-A<br>Diesel<br>No. 2 fuel oil<br>No. 6 fuel oil<br>Other                     | 6,582 (50.7)<br>181 (1.4)<br>947 (7.3)<br>1,127 (8.7)<br>1,784 (13.7)<br>1,063 (8.2)<br>1,301 (10.0) | 5,460 (43.8)<br>165 (1.3)<br>1,350 (10.8<br>1,767 (14.2)<br>1,591 (12.8)<br>1,001 (8.0)<br>1,141 (9.1) | 4,734 (38.9)<br>166 (1.4)<br>1,176 (9.6)<br>2,492 (20.5)<br>1,591 (13.1)<br>936 (7.7)<br>1,083 (8.9) | 4,010 (33.8)<br>171 (1.4)<br>950 (8.0)<br>3,211 (27.0)<br>1,591 (13.4)<br>841 (7.1)<br>1,106 (9.3) |
| Total production                                                                                     | 12,985 (100.0)                                                                                       | 12,475 (100.0)                                                                                         | 12,179 (100.0)                                                                                       | 11,280 (100.0)                                                                                     |
| Imported products                                                                                    |                                                                                                      |                                                                                                        |                                                                                                      |                                                                                                    |
| Jet fuel (Jet A)<br>No. 2 fuel oil<br>No. 6 fuel oil<br>Total imports                                | 51<br><u>1,471</u><br>1,522                                                                          | 400<br>273<br>674                                                                                      | 174<br>400<br><u>338</u><br>\$12                                                                     | 400<br>400<br><u>433</u><br>1,233                                                                  |
| Total domestic demand                                                                                | 14, 507                                                                                              | 13, 149                                                                                                | 13,090                                                                                               | 13,113                                                                                             |
| Energy consumed by domestic<br>refining (10 <sup>3</sup> b/cd, FOE)                                  | 820                                                                                                  | 780                                                                                                    | 751                                                                                                  | 867                                                                                                |
| Incremental investment<br>(10 <sup>6</sup> \$, 1974)<br>Facilities for diesel (10 <sup>3</sup> b/cd) |                                                                                                      | 54.4                                                                                                   | 90.8                                                                                                 | 1,479                                                                                              |
| Existing hydrocracker<br>conversion<br>New hydrocracking                                             |                                                                                                      | 486                                                                                                    | 811                                                                                                  | 856<br>325                                                                                         |

\* Includes feedstock costs, imported product costs, refinery operating costs, and capital recovery costs for new facilities (in 1974 dollars).

<sup>†</sup>Crude oil and natural gas liquids.

<sup>\*</sup>Volume percentage values given in parentheses refer to total production output, including the contribution of natural gas liquids. These values are, therefore, not comparable to BuMines/ Mineral Industry Surveys yields expressed as percentage of crude input.

## 0. 0. T. TRANSPORTATION SYSTEMS CENTER

## SECTION A. 25

## PEFINING INDUSIRY MUDEL - 1995, 8ASE

## REFINEPT INPUL/OUTPUT SUMMARY P. A. D. DISTGICT

ļ

|                                       |             | •                                                                                           |                                 |                                           |                            |                                                          |                                                                                             |                                      |                                           |
|---------------------------------------|-------------|---------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------|----------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------|
|                                       | I           | 2                                                                                           | ę                               | 5                                         | 5                          | U.S.                                                     | IMDOMI                                                                                      | E X P OR T                           | <b>T</b> DTAL                             |
| INPUT                                 |             | •<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>• | 0<br>0<br>0<br>0<br>0<br>0<br>0 | -<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                                                                             | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| SWEET CRUDE                           | 690.0       | 1376.2                                                                                      | 2454.0                          | 240°0                                     | 478°D                      | 5239.2<br>539.2                                          |                                                                                             |                                      | 5238 • 2<br>5238 • 2                      |
| SUUK LAUVE<br>CALIF CRUDE             | .1 + 1 6 6  | 0.0242                                                                                      | 100111                          | 0 * 6 7 7                                 | 1434.0                     | 1434.0                                                   |                                                                                             |                                      | 100000                                    |
| ALASKAN CRUDE<br>Matheal Casoline     | 16.5        | 74.3                                                                                        | 165.7                           | 2622                                      | 26.8                       | 249.4                                                    |                                                                                             |                                      | 249.4                                     |
| NATURAL BAJULINE<br>Normal Butane     | 6.0         | 52.6                                                                                        | 42.7                            | 3.5                                       | 26.3                       | 135.0                                                    |                                                                                             |                                      | 135.0                                     |
| ISOBUTANE                             | 1.9         | . •v.                                                                                       | 29.6                            | 1.5                                       | 14 . 3                     | 6°66                                                     |                                                                                             |                                      | 6°66                                      |
| TOTAL INPUT                           | 1675.3      |                                                                                             | 4403.9                          | 500.0                                     | 1979.4                     | 12539.3                                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                      | 12539.3                                   |
| OUTPUT                                |             |                                                                                             |                                 |                                           |                            |                                                          |                                                                                             |                                      |                                           |
| C3 LPG                                | 51.7        | 85°1                                                                                        | 26.9                            | 5.0                                       | 27.6                       | 196.2                                                    |                                                                                             |                                      | 196.2                                     |
| C4 LPG                                | 14.3        | 15.9                                                                                        |                                 | • 2                                       | 6 • 1                      | 36.4                                                     |                                                                                             |                                      | 36.4                                      |
| NAP HTHA                              | 1.8         | 21.3                                                                                        | 37.2                            |                                           | 24.9                       | 65°l                                                     |                                                                                             |                                      | 1.00                                      |
| REGULAR GASOLIME                      |             |                                                                                             |                                 |                                           |                            | ,<br> <br>(                                              |                                                                                             |                                      |                                           |
| PREFIUN GASULINE<br>Low Lead Gasoline |             |                                                                                             |                                 |                                           |                            |                                                          |                                                                                             |                                      |                                           |
| LEAD FREE GASOLINE                    | 729.1       | 1922.0                                                                                      | 1823.0                          | 196.5                                     | 766.5                      | 5460.0                                                   |                                                                                             |                                      | . 5460.0                                  |
| JP-4 JET FUEL                         | 9.1         | 43.9                                                                                        | 54.9                            | 13.7                                      | 42.8                       | 165.7                                                    | 1.5                                                                                         |                                      | 166.5                                     |
| JET A JET FUEL                        | 353°C       | 316.5                                                                                       | 266.2                           | 30.0                                      | 382.0                      | 1350.0                                                   |                                                                                             |                                      | 1350.0                                    |
| 016 SEL                               | 8° <b>3</b> | 476.3                                                                                       | 815°H                           | 136.9                                     | 247.0                      | 1767.3                                                   |                                                                                             |                                      | 1767.3                                    |
| NO. 2 FUEL OIL                        | 163.0       | 620°9                                                                                       | 731.8                           | 48.9                                      | 6 • 4                      | 1501.0                                                   | 4 C O • O                                                                                   |                                      | 1991.0                                    |
| HI SULFUR NO. 6                       | 81°C        | 107.9                                                                                       | 116.3                           | 15.0                                      | 184.2                      | 506.4                                                    | 130.6                                                                                       |                                      | 631.0                                     |
| LO SULFUR NO. 6                       | 69°6        | 107.9                                                                                       | 116.3                           | 15.0                                      | 194.2                      | 695°O                                                    | 142.6                                                                                       |                                      | 637.0                                     |
| LUBE STOCKS                           | 4 C • B     | ÷.                                                                                          | 6 • 4 A                         | 1.1                                       | 19.6                       | 175.6                                                    |                                                                                             |                                      | 175.6                                     |
| ASPHALT AND ROAD OIL                  | 63.9        | 178.3                                                                                       | 13.3                            | 6 • 6 2                                   | 00.5                       | 40104                                                    |                                                                                             |                                      | 5°105                                     |
| COKE (LO SULFUR)                      | 1.9         |                                                                                             | 9°1                             | 1.1                                       | 1 • 3                      | 13.3                                                     |                                                                                             |                                      | . • • • • • • • • • • • • • • • • • • •   |
| CUKE (HE SULFUK)                      | 17 + 4      | 21°0                                                                                        | 10.01                           | [ • ]                                     |                            | 1 ° 1 5                                                  |                                                                                             |                                      | 1 • • • • • • • • • • • • • • • • • • •   |
| CURE ILAL LRUVEJ                      |             |                                                                                             |                                 |                                           | 0 • n †                    |                                                          |                                                                                             |                                      |                                           |
|                                       | 1.3         | 5 n<br>9 n                                                                                  | 1.54                            |                                           | 101                        | 2002                                                     |                                                                                             |                                      | 37.7                                      |
| MIXED XYLENES                         | • •         | C ° 7                                                                                       | 25.6                            |                                           | 3.7                        | 34.6                                                     |                                                                                             |                                      | 34 • 6                                    |
| HISC. PRODUCTS                        | 12.9        | 52 · B                                                                                      | 22.3                            |                                           | 2.4                        | 4.59                                                     |                                                                                             |                                      | 94                                        |
| TOTAL OUTPUT                          | 1769.2      | 4012.7                                                                                      | 4256.4                          | 492.2                                     | 2004.0                     | 12475.1                                                  | ÷74.0                                                                                       | 0<br>0<br>0<br>0<br>0<br>0<br>0      | 13144.1                                   |
| , OUTPUT/INPUT, PCT                   | 192.9       | 100.4                                                                                       | 96.7                            | 98°5                                      | 5.101                      | 99°5                                                     |                                                                                             |                                      | 104.9                                     |
|                                       |             |                                                                                             |                                 |                                           |                            |                                                          |                                                                                             |                                      |                                           |

.

## 0. 0. T. TRANSPORTATION SYSTEMS CENTER

REFINING INDUSTRY MODEL - 1995, BASE

SECTION 8. 11

PRODUCT CONSUMPTION SUMMARY

| 1   |    |
|-----|----|
| 1   |    |
| 1   |    |
|     |    |
|     |    |
| 1   |    |
|     |    |
| -i  |    |
| - 1 |    |
| ÷.  |    |
|     |    |
| - 0 |    |
| i   |    |
|     |    |
| Ì   |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     | 5  |
|     | 2  |
|     | 2  |
|     | Ξ. |
| i.  | 5  |
| -i- | -  |
| i.  | 0  |
| ÷.  | -  |
| ł   |    |
| i   | 0  |
| 1   |    |
| i.  | ٠  |
| 0   | ۲  |
|     |    |
| ÷.  |    |
|     | α. |
|     |    |

|                         |         | i      | P. A. D. DISTRICT | RICT        | 0<br>0<br>0<br>0<br>0<br>0<br>0 |         |                                                                                                  |                            |         |
|-------------------------|---------|--------|-------------------|-------------|---------------------------------|---------|--------------------------------------------------------------------------------------------------|----------------------------|---------|
|                         | 1       | 2      | 3                 | 4           | ŝ                               | U • S • | EXPORIS                                                                                          | 101 dx3                    | TOTAL   |
| C3 LPG                  | 51.7    | 85.1   | 26.9              | 5.0         | 27.6                            | 196.2   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0 | 196.2   |
| C4 LPG                  | 14.3    | 15.9   |                   | • 2         | 6.1                             | 36.4    |                                                                                                  |                            | 36.4    |
| NAPHTHA<br>NAPHTHA<br>N | 1.8     | 21.3   | 37.2              |             | 24.9                            | 85.1    |                                                                                                  |                            | L.c.    |
| REGULAR GASOLINE        |         |        |                   |             |                                 |         |                                                                                                  |                            |         |
| PREMIUM GASOLINE        |         |        |                   |             |                                 |         |                                                                                                  |                            |         |
| LOW LEAD GASOLINE       |         |        |                   |             |                                 |         |                                                                                                  |                            |         |
| LEAD FREE GASOLINE      | 1870.0  | 1940.0 | 665.0             | 175.0       | 010.0                           | 5460.0  |                                                                                                  |                            | 5460.0  |
| JP-4 JET FUEL           | 4 2 ° B | 31.5   | 30.0              | <b>6.</b> 8 | 49.5                            | 166.5   |                                                                                                  |                            | 164.5   |
| JET A JET FUEL          | 506.0   | 262.0  | 170.0             | 30.0        | 382.0                           | 1350.0  |                                                                                                  |                            | 1350.0  |
| DIE SEL                 | 605.0   | 630.0  | 219.0             | 62.3        | 260.0                           | 1767.3  |                                                                                                  |                            | 1767.3  |
| ND. 2 FUEL DIL          | 870.0   | 60A.U  | 242.0             | 91.0        | 180.0                           | 0.1991  |                                                                                                  |                            | 1991.0  |
| MI SULFUR NO. 6         | 392.0   | 65.3   | 65.0              | 15.0        | 100.0                           | 637.0   |                                                                                                  |                            | 637.0   |
| LO SULFUR NO. 6         | 392.0   | 65.0   | 65.0              | 15.0        | 100.0                           | 637.0   |                                                                                                  |                            | 637.0   |
| LUBE STOCKS             | 4 C . 6 | 29.6   | 6.45              | 1.1         | 19.6                            | 175.5   |                                                                                                  |                            | 175.6   |
| ASPHALT AND ROAD DIL    | 63.9    | 170.3  | 73.3              | 25.5        | 66.8                            | 407.9   |                                                                                                  |                            | 401 ° 4 |
| COKE (LO SULFUR)        | 1.9     |        | 9.1               | 1.1         | 1.3                             | 13.3    |                                                                                                  |                            | 13.3    |
| COKE (HI SULFUR)        | 4.3     | 21.0   | 10.6              | 1.3         |                                 | 37.3    |                                                                                                  |                            | 37.3    |
| COKE (CAL CRUDE)        |         |        |                   |             | 10.6                            | 10.6    |                                                                                                  |                            | 10.6    |
| BENZENE                 | 1.3     | 3.4    | 13.7              |             | 1.7                             | 20.2    |                                                                                                  |                            | 20.2    |
| TOL UENE                | ۰.      | 2.3    | 22.3              |             | 4.2                             | 32.7    |                                                                                                  |                            | 32.7    |
| MIXED XYLENES           |         | 7 . 2  | 25.6              |             | 3.7                             | 34.6    |                                                                                                  |                            | 34.6    |
| MISC. PRODUCTS          | 12.9    | 52°B   | 22.3              |             | 2.4                             | 40°4    |                                                                                                  |                            | 9 Û . 4 |
| - 101AL                 | 4972.2  | 4015.8 | 1781.5            | 429.3       | 2050.3                          | 13149.1 | 0<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 |                            | 13149.1 |
|                         |         |        |                   |             |                                 |         |                                                                                                  |                            |         |

SECTION C. 4

D. U. T. TRANSPORTATION SYSTEMS CENTER Refining industry mudel - 1995, base

UTILITY SUMMARY

PETROLEUM ADFINSTRATION FOR DEFENSE DISTRICTS (PAD)

|                          | 1      | 2       | 6       | 7      | 5      | U • S •          |
|--------------------------|--------|---------|---------|--------|--------|------------------|
| ELEC. PWR (1000KWH/D)    | 6056.5 | 13906.1 | 16615.7 | 1443.6 | 9448.3 | 47464.2          |
| FUEL REQD. (1000FDE8/D)  | 76.6   | 204.1   | 243.7   | 23 • 3 | 113.1  | 660 <b>.</b> 6   |
| ENERGY CUNS. (1000FDEB/D | 94.6   | 232.6   | 291.7   | 28 • 0 | 133.1  | 179.9            |
| LABOR (NO. EMPLOYEES)    | 8235.0 | 19006.1 | 21130.0 | 2343。8 | 9560°D | 67274 <b>.</b> 8 |
| UPER COSTS (M\$/D)       | 136.1  | 491.6   | 296°8   | 30•6   | 149°3  | 1194.5           |
| INVESTMENTS (MM\$)       | 12.0   | 4 ° 5   | 30.2    | 3.7    | 4 • L  | 54.4             |

35

## Q. U. T. TRANSPORTATION SYSTEMS CENTER

SECTION A. 25

## REFINING INDUSTRY MUDEL - 1995, 15 PCT DIESEL

## REFINERY INPUT/UUTPUT SUMMARY

|                      |                                                          | i         |                                           |             |           |                                      |        |                                                                                             |                                      |
|----------------------|----------------------------------------------------------|-----------|-------------------------------------------|-------------|-----------|--------------------------------------|--------|---------------------------------------------------------------------------------------------|--------------------------------------|
|                      |                                                          | •         | • A• U• •                                 |             |           |                                      |        |                                                                                             |                                      |
|                      | 1                                                        | 2         | æ                                         | \$          | 5         | U•5.                                 | THPORT | EXPORT                                                                                      | 10141                                |
| . Indui              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |           | 5<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>1 |             |           | 0<br>0<br>0<br>0<br>1<br>0<br>1<br>0 |        | 9<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 |
|                      | 0.044                                                    | 0 6171    | 7.6515                                    | 0 076       | 170 0     | 5042.0                               |        |                                                                                             | 0000                                 |
|                      | 0 4 4 4 U                                                | 0.5444    | 1126.4                                    | 2 2 2 2 2   |           | 1.7244                               |        |                                                                                             | 1 2644                               |
|                      |                                                          | 0.0343    | L • D > 7 T                               | C C C C C C | 1434.0    | 1626.0                               |        |                                                                                             | 70 7271                              |
| AL AT TRUCE          |                                                          |           |                                           |             |           | 0.000                                |        |                                                                                             |                                      |
| MATURAL GASDIIME     | 13.4                                                     | 75.1      | 106.6                                     | 26.2        | 26.8      | 248.0                                |        |                                                                                             | 244.0                                |
| NOP MAL AUTANE       | 9.0                                                      | 5.62      | 37.0                                      | 8.6         | 24.7      | 126.6                                |        |                                                                                             | 126.6                                |
|                      |                                                          | 53.2      | 23.5                                      | 1.9         | 14.3      | 6.46                                 |        |                                                                                             | 6 • 5 6                              |
| TOTAL INPUT          | 1360.3                                                   | +010+2    | 4425.4                                    | 500.6       | 1977.8    | 12283.6                              |        | 5<br>6<br>6<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                               | 12293.6                              |
| OUTPUT               |                                                          |           |                                           |             |           |                                      |        |                                                                                             |                                      |
|                      |                                                          |           |                                           |             |           |                                      |        |                                                                                             |                                      |
| C3 LPG               | 39.3                                                     | 19.4      | 27.2                                      | 4.7         | 22.9      | 173.5                                |        |                                                                                             | 173.5                                |
| C4 LPG               | 9.8                                                      | 7.9       |                                           | • 2         | 1.7       | 19.4                                 |        |                                                                                             | 19.4                                 |
| NAP HTHA             | 1.8                                                      | 6.15      | 42.2                                      |             | 25.2      | 90.6                                 |        |                                                                                             | 90.6                                 |
| REGULAR GASOLINE     |                                                          |           |                                           |             |           |                                      |        |                                                                                             |                                      |
| PREMIUM GASOLINE     |                                                          |           |                                           |             |           |                                      |        |                                                                                             |                                      |
| LOW LEAD GASOLINE    | 546 0                                                    | 1204 7    | 1428.4                                    | 1 4 4       | 461 0     | A 725 A                              |        |                                                                                             | 4735.0                               |
| LEAD FREE GASOLINE   |                                                          |           | 10001                                     |             |           |                                      |        |                                                                                             |                                      |
| JP-4 JET FUEL        | 8.3                                                      | 4 * * *   | 57.4                                      | 13.7        | 42.8      | 166.5                                |        |                                                                                             | 166.5                                |
| JET A JET FUEL       | 231.0                                                    | 262.0     | 271.0                                     | 30.0        | 3 H 2 . D | 1175.0                               | 174.C  |                                                                                             | 1350.0                               |
| 01E SEL              | 139.6                                                    | 7 + 4 - 7 | 1034.2                                    | 141.3       | 432.4     | 2492.2                               |        |                                                                                             | 2492.2                               |
| ND. 2 FUEL DIL       | 173.1                                                    | 652.4     | 1.017                                     | 49.0        | 6 • 4     | 1591.0                               | 4.0.0  |                                                                                             | 1991.0                               |
| HI SULFUR ND. 6      | 66.9                                                     | 169.3     | 120.6                                     | 15.0        | 180.9     | 494.7                                | 142.3  |                                                                                             | 637.0                                |
| LO SULFUR NO. 6      | 57.5                                                     | 169.3     | 120.6                                     | 15.0        | 139.2     | 441.6                                | 195.4  |                                                                                             | 637.0                                |
| LUBE STOCKS          | 1.76                                                     | 29.6      | 85.4                                      | 1.1         | 17.3      | 170.5                                |        |                                                                                             | 170.5                                |
| ASPHALT AND ROAD DIL | 51.3                                                     | 181.1     | 6.07                                      | 25.5        | 56.2      | 3 8 4 . 5                            |        |                                                                                             | 344.5                                |
| COKE (LO SULFUR)     | 1.9                                                      |           | 11.6                                      | 6.          | 1.1       | 15.5                                 |        |                                                                                             | 15.5                                 |
| COKE (HI SULFUR)     | 2.9                                                      | 21.0      | 6°9                                       | 1.3         |           | 32.0                                 |        |                                                                                             | 32.0                                 |
| COKE (CAL CRUDE)     |                                                          |           |                                           |             | 10.6      | 10.6                                 |        |                                                                                             | 10.6                                 |
| BENZENE              | 6.                                                       | 3 ° 4     | 13.6                                      |             | 1.7       | 19.9                                 |        |                                                                                             | 19.9                                 |
| TOL UENE             | ф                                                        | 2.3       | 25.4                                      |             | 4 • 2     | 32.5                                 |        |                                                                                             | 32.5                                 |
| MIXED AYLENES        | ۳                                                        | 1.1       | 27.6                                      |             | 3.7       | 36.5                                 |        |                                                                                             | 36.5                                 |
| MISC. PRODUCTS       | 10.4                                                     | 53.3      | 33.0                                      |             | 2.4       | 96.1                                 |        |                                                                                             | 96.1                                 |
| TOTAL OUTPUT         | 1361.8                                                   | 4030.6    | 4282.7                                    | 441.9       | 191.7     | 12178.7                              | 911.7  |                                                                                             | 13050.3                              |
| OUTPUT/INPUT, PCT    | 101.6                                                    | 100.3     | 96.8                                      | 96.2        | 1.00.1    | 1.00                                 |        |                                                                                             | 106.6                                |
|                      |                                                          |           |                                           |             |           |                                      |        |                                                                                             |                                      |

## D. O. I. FRANSPORTATION SYSTEMS CENTER

## REFINING INDUSTRY MODEL - 1995, 15 PCT DIESEL

SECTION 8. 11

## P. A. O. OIST91CT

|                                      | 1          | 2       | £      | 5     | S      | U • S • | EXPORTS | EXP TOT | TOTAL   |
|--------------------------------------|------------|---------|--------|-------|--------|---------|---------|---------|---------|
| i                                    |            | 19.4    | 27.2   |       | 22.9   | 173.5   |         | 8       | 173.5   |
|                                      | 9°6        | 7.8     |        | • 2   | 1.7    | 19.4    |         |         | 19.4    |
|                                      | 1.8        | 21.3    | 42.2   |       | 25.2   | 90.6    |         |         | 40.6    |
| REGULAR GASOLINE<br>Premium Gasoline |            |         |        |       |        |         |         |         |         |
| DL INF                               | 0.0641     | 1680.0  | 580.0  | 155.0 | 200.0  | 4735.0  | 1       | ſ       |         |
| JI INE                               |            |         |        |       |        |         |         |         |         |
|                                      | 9.2.6      | C • 7 F | 30.0   | 0.0   | C*A+5  | 100.7   |         |         | 100.5   |
|                                      | 506.0      | 262.0   | 170.0  | 30.0  | 382 .0 | 1359.7  |         |         | 1350.0  |
|                                      | 855.0      | 0.098   | 295.0  | 82.2  | 370.0  | 2492.2  |         |         | 2492.2  |
|                                      | 870.0      | 668.0   | 242.0  | 91.0  | 180.0  | 1991.0  |         |         | 1991.0  |
| 6                                    | 392.0      | 65 ° 0  | 65 ° 0 | 15.0  | 100.0  | 637.0   |         |         | 637.0   |
| Ŷ                                    | 392.6      | 65°0    | 65°G   | 15.0  | 106.0  | 037.0   |         |         | 637.0   |
|                                      | 37.1       | 29.6    | 85.4   | 1.1   | 17.3   | 170.5   |         |         | 173.5   |
| DAD OIL                              | 51,3       | 101.1   | 70.3   | 25°5  | 56.2   | 384.5   |         |         | 384.5   |
| ( N )                                | 1.9        |         | 11.6   | 6.    | 1.1    | 15.5    |         |         | 1:.5    |
| JR )                                 | 2.9        | 21.0    | 6 • 8  | 1.3   |        | 32.0    |         |         | 32 • O  |
| ( )                                  |            |         |        |       | 10.6   | 10.6    |         |         | 10.6    |
|                                      | 6.         | 3.4     | 13.8   |       | 1.7    | 19.9    |         |         | 19.61   |
|                                      | • 0        | 2.3     | 25.4   |       | 4.2    | 32.5    |         |         | 32.5    |
|                                      | <b>ç</b> • | 4.7     | 27.6   |       | 3.7    | 36.5    |         |         | 3°; 8   |
| MISC. PRODUCTS                       | -          | 53+3    | 30°0   |       | 2 . 4  | 96.1    |         |         | 96.1    |
|                                      |            | 7 9007  | 1703.4 |       | 2038 F |         | *       | 0       | 13000 3 |

| $\sim$ |
|--------|
| 8      |
| 3      |
|        |
| 2      |
| •      |
| 4      |
|        |
| e      |
| peed.  |
| Ъ      |
| g      |
| F-1    |

D. D. T. TRANSPORTATION SYSTEMS CENTER

REFINING INDUSTRY MODEL - 1995, 15 PCT DIESEL

\$

SECTION C.

UTILITY SUMMARY

PETROLEUM ADMINSTRATION FOR DEFENSE DISTRICTS (PAD)

|                          | 1             | 2       | 5<br>1<br>1<br>1<br>1<br>1<br>1 |        |        | IJ. S.  |
|--------------------------|---------------|---------|---------------------------------|--------|--------|---------|
| ELEC. PWR (1000KWH/D)    | 4781.4        | 13996.9 | 16091.7                         | 1420.7 | 9448•3 | 45739.1 |
| FUEL REQ0. (1000FDE8/D)  | 59.8          | 192.8   | 236.5                           | 22 • 9 | 103.3  | 615.5   |
| ENERGY CONS. (1COOFDEB/D | 75 • 5        | 234.5   | 283.7                           | 27 • 6 | 130.2  | 751.4   |
| LABOR (NO. EMPLOYEES)    | 6685.O        | 19190.2 | 21291.8                         | 2343.8 | 9560.0 | 59073.7 |
| OPER COSTS (M\$/D)       | 93 <b>.</b> 8 | 364 • 6 | 269•5                           | 36•6   | 79.6   | 944.1   |
| INVESTMENTS (MMS)        | 12 • J        | 26°3    | 30.5                            | 3 . 7  | 16.6   | 9 ° V 6 |

## D. U. T. IMANSPORTATION SYSTEMS CENTER

SEC 110N A. 25

## REFINING INDUSTRY MUDEL - 1995, 30 PCT. DIÉSEL

| 61     5     5       240.0     478.0     545       220.0     478.0     545       23.1     1434.0     143       23.1     1434.0     143       23.1     16.3     127       24.0     1070.4     127       13.7     26.3     127       14.3     26.3     127       15.0     1970.4     127       16.3     1070.4     127       13.7     26.3     127       16.3     1070.4     127       16.3     1070.4     127       16.4     1070.4     127       16.5     1070.6     171       16.5     184.2     123       15.0     184.2     123       16.1     10.6     137       15.1     10.6     137       16.6     184.2     123       16.1     10.6     113       16.1     10.6     113       10.6     10.6     113       10.6     10.6     113       10.6     10.6     113       10.6     10.6     113       10.6     10.6     113       10.6     10.6     113       10.6     10.6     113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |                |                                                     |              | 1          | TPUT SUMMAR | ۲۲<br>۲          |             |        |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------|-----------------------------------------------------|--------------|------------|-------------|------------------|-------------|--------|---------|
| I         2         3         4         5           DE         647.0         1920.0         3132.0         240.0         478.0         647.0           DE         647.0         11270.0         3132.0         240.0         478.0         647.0           DE         647.0         1920.0         3132.0         240.0         478.0         647.0           DE         647.0         11270.0         3122.0         240.0         674.0         143           DE         647.0         1360.3         3180.1         500.07         494.9         1079.4         1279           ASOLINE         39.3         3180.1         500.07         494.9         107.0         24.0         17.9           ASOLINE         39.3         3180.1         500.07         49.9         24.0         17.9         24.0         17.9           ASOLINE         39.3         31.0         11.0         31.0         11.0         17.9         12.9         12.9           ASOLINE         560.0         1250.0         1276.0         1276.0         12.9         24.0         10.9           ASOLINE         560.0         160.1         10.0         10.0         10.0 <th1< th=""><th></th><th></th><th>i <b>e</b></th><th>A. D.</th><th>) (</th><th></th><th></th><th></th><th></th><th></th></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                | i <b>e</b>                                          | A. D.        | ) (        |             |                  |             |        |         |
| DF         690:0         1127.0         3132.0         240.0         470.0         670.0           DF         647.0         11270         3132.0         240.0         470.0         470.0         143           RUDE         647.0         11270         3132.0         3132.0         240.0         470.0         470.0         470.0         143           RUDE         130.3         3186.1         5300.7         494.9         1979.4         1208           ASOLINE         39.3         53.8         32.2         5.0         497.9         1979.4         1208           ASOLINE         39.3         53.8         32.2         5.0         497.9         1979.4         1208           ASOLINE         39.3         53.2         497.9         32.2         5.0         497.9         24.2           ASOLINE         39.3         32.2         5.0         32.2         5.0         32.2         5.0         32.2           ASOLINE         546.9         127.9         32.2         5.0         32.2         5.0         32.2         5.0         32.2         5.0         32.2         5.0         32.2         32.2         5.0         32.2         5.0         32.2 </th <th></th> <th></th> <th>2</th> <th>1</th> <th></th> <th>Ş</th> <th>U+S+</th> <th>140041</th> <th>EXPORT</th> <th>TOTAL</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |                | 2                                                   | 1            |            | Ş           | U+S+             | 140041      | EXPORT | TOTAL   |
| DE<br>NUCE         697.0<br>6477.0         1127.0<br>1127.0         3132.0<br>1724.1         240.0<br>228.8         479.0<br>1934.0           ANDLE<br>RUDE         13.4<br>8.0         58.2<br>41.5         124.1<br>30.3         22.7<br>30.3         240.0<br>50.8         479.0<br>144.3           ANDLINE         13.4<br>8.0         58.2<br>41.5         124.1<br>30.3         22.7<br>30.3         24.0<br>50.8         479.0<br>50.3           I.INDUT         1360.3         3188.1         5000.7         499.9         144.3         24.7<br>24.9         24.7<br>24.9           ANDLINE         30.3         3188.1         5000.7         499.9         24.2<br>24.9         24.2<br>24.9         24.2<br>24.9           ASOLINE         54.0         125.2         5.0<br>25.2         1470.6         13.7<br>25.2         24.2<br>24.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                | -<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 |              |            |             |                  | -           |        |         |
| CRUDE         647.0         1127.0         1724.1         220.8         1434.0         1           AN CRUDE         1.0         41.5         43.7         2.1         1434.0         1           AN CRUDE         1.0         41.5         43.7         2.1         2.4         2.4           AN CRUDE         1.0         41.5         30.8         124.1         2.0         14.3           TANE         1.0         41.5         30.4         1.5         40.9         1979.4         12           TOTAL INPUT         1360.3         3180.1         5060.7         49.9         147.3         26.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SWEET CRUDE                          | 696.0          | 1920.0                                              | 0.2515       | 240.0      | 478.0       | 6450°0           |             |        | 6460.0  |
| AN CRUE<br>AN CRUE<br>AN CRUE<br>AN CRUE<br>A L 6450LIME<br>B 0 0 01746<br>1.0 0 110<br>TAKE<br>D 017ME<br>1.0 0 110<br>1.0 0 110<br>1.0 0 1250.3<br>1.0 011<br>1.0 0 1250.3<br>1.0 011<br>1.0 01<br>1.0 01<br>1.0 01<br>1.0 01<br>1.0 01<br>1.0 01<br>1.0 01<br>1.0 0<br>1.0 0<br>1 | SOUR CRUDE                           | 647.0          | 1127.0                                              | 1724.1       | 228.8      | 1434.0      | 3726.8<br>1434.0 |             |        | 3726.8  |
| AL GASOLIME         13.4         58.2         124.1         22.7         26.8           L MAE         1.9         41.5         30.0         7.1         1.1         2.1         1.4         2.1           TAME         1.9         41.5         30.0         7         49.4         1.1         2.1.3         2.0.3           TOTAL INPUT         1360.3         3180.1         500.0         41.5         500.7         494.9         1979.4         12           Mat         59.3         3180.1         59.0         32.2         5.0         24.2         24.3           Mat         63011ME         596.9         12.8         32.2         5.0         24.2         24.3           Mat         63011ME         596.9         12.8         31.3         13.7         24.2         24.9           Mat         63011ME         596.9         1259.3         147.0         558.0         24.2           AR         63011ME         596.9         1259.3         147.6         137.9         24.2         24.9           AR         63011ME         596.9         1259.3         147.6         157.0         167.0         558.0         127.9           AR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ALASKAN CRUDE                        |                |                                                     |              |            |             |                  |             |        |         |
| Leutame         0.0         41.5         30.8         2.1         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NATURAL GASOLINE                     |                | 58.2                                                | 124.1        | 22.7       | 26.8        | 245.1            |             |        | 245.1   |
| TOTAL INPUT         1360.3         3188.1         5360.7         494.9         1979.4         12           G         39.3         63.8         32.2         5.0         24.2           G         39.3         63.8         32.2         5.0         24.2           G         39.3         63.8         32.2         5.0         24.9           G         34.3         1.3         7         24.2         24.9           A         GASOLINE         546.9         1259.3         1476.0         558.0           MA <gasoline< td="">         546.9         1259.3         1478.6         167.0         598.0           JET FUEL         711.9         111.9         13.7         42.8           JET FUEL         711.9         13.7         42.8         64.4           JET FUEL         235.4         104.2         13.6         44.5         64.4           JET FUEL         235.4         114.9         735.6         10.6         144.5         144.5         144.5         144.5         144.5         144.5         144.5         144.5         144.5         144.5         144.5         144.5         144.5         144.5         144.5         144.5         144.5</gasoline<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NORMAL BUTANE<br>Isobutane           | 8 • 0<br>1 • 9 | 41°5<br>41.5                                        | 43.7<br>36.8 | 1.3<br>2.1 | 20.3        | 120.4            |             |        | 120.8   |
| 6     39.3     63.8     32.2     5.0     24.2       6     550.11ME     98     550.0     24.2       7     98     550.1     24.9     24.9       7     98     550.1     21.3     499     24.9       7     98     550.1     24.9     24.9     24.9       7     93     1478.8     167.0     558.0       7     93     34.3     71.9     13.7     42.8       9.1     71.9     146.7     317.9     382.0       9.1     71.9     146.7     317.9     382.0       9.1     71.9     146.7     317.9     382.0       9.1     146.7     317.9     167.0     596.0       9.1     146.7     317.9     167.0     194.2       9.1     146.7     317.9     167.0     194.2       9.1     146.7     117.9     13.7     42.8       161.01     237.5     162.6     166.9     164.5       17.0     137.0     509.4     162.2     194.5       17.0     101.0     114.3     10.2     10.6       17.0     114.7     23.7     162.2     10.1       11.1     21.9     10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      | 1              | 188                                                 | 5060.7       | . + 6      | 1979.4      | 2083             |             |        | 12083.4 |
| 39.3     63.61     5.2     5.0     24.2       9.6     5.2     5.0     24.2       6450LINE     5.6.9     21.3     49.9     24.2       6450LINE     5.6.9     1259.3     1476.8     167.0     556.0       6450LINE     546.9     1259.3     1476.8     167.0     556.0       6450LINE     546.9     1259.3     1476.8     167.0     556.0       6450LINE     546.9     1259.3     1476.8     167.0     556.0       6450LINE     545.9     1259.3     1476.8     167.0     556.0       6450LINE     545.9     1259.3     171.9     13.7     42.0       6450LINE     545.9     1259.3     171.9     13.7     42.0       6450LINE     545.9     155.0     166.3     499.0     362.0       71.9     166.3     166.2     150.0     184.2       71.0     57.5     57.5     155.0     166.3     194.2       8     10.6     13.7     166.3     10.6     10.6       8     10.6     116.3     10.3     10.3     10.3       8     10.6     11.0     10.3     10.3     10.6       8     10.6     11.6     13.9     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UTPUT                                |                |                                                     |              |            |             |                  |             |        |         |
| 9.8       5.2       49.9       -2       1.7         1.8       21.3       49.9       -2       24.9         1.8       21.3       1478.8       167.0       558.0         9.3       34.3       17.9       167.0       558.0         9.3       34.3       17.9       167.0       558.0         9.3       34.3       17.9       167.0       558.0         9.3       71.4       146.7       17.9       13.7         71.4       146.7       71.9       13.7       528.0         71.4       146.7       150.7       167.3       10.0         235.4       804.2       150.6       196.0       194.2         235.4       804.2       150.6       194.6       104.2         235.4       804.2       150.6       194.6       104.2         235.5       10.3       10.3       10.4       104.2         10.9       10.3       10.3       10.6       1.1         10.4       10.4       10.3       10.3       2.4         10.4       10.4       10.3       495.7       196.1       2.4         10.4       10.3       495.3       495.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C3 LPG                               | 39.3           | 63.8                                                | 32.2         | 5.0        | 24.2        | 164.5            |             |        | 364.5   |
| 1.8     21.3     49.9     24.9     24.9       INE     546.9     1259.3     1478.8     167.0     558.0       9.3     34.3     71.9     13.7     42.8       9.3     34.3     71.9     13.7     42.8       71.4     148.7     71.9     13.7     42.8       71.4     148.7     71.9     13.7     42.8       71.4     148.7     793.6     44.5     6.4       71.4     148.7     793.6     44.5     6.4       235.4     804.2     793.6     44.5     6.4       235.5     804.2     793.6     166.3     499.0       235.5     166.6     146.3     166.3     199.6       235.5     57.5     162.8     15.0     199.6       37.1     2.9     9.8     10.3     1.3       2     9.8     10.3     1.3     1.3       0.1     1.1     25.5     28.4     3.7       10.4     42.5     28.4     3.7     3.7       2.9     9.8     1.3     495.7     10.7       10.4     42.5     28.4     3.7     3.7       2.9     9.4     10.3     495.7     1969.1       10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C4 LPG                               | 9°8            | 5.2                                                 |              | • 2        | 1.7         | 16.8             |             |        | 16.8    |
| File     5+6.9     1259.3     1470.6     556.0       File     5+6.9     1259.3     1470.6     167.0     556.0       9.3     34.3     71.9     13.7     42.8       71.4     146.7     317.9     13.7     42.8       71.4     146.7     317.9     13.7     42.8       71.4     146.7     317.9     13.7     42.8       71.4     146.7     156.5     166.3     499.0       235.4     804.2     156.5     166.3     499.0       237.9     509.4     793.6     162.8     156.0       237.5     57.5     156.2     166.3     196.0       37.1     120.6     114.3     25.5     10.1       10.9     12.0     10.3     1.0     1.3       2.9     9.8     10.3     1.0     1.0       2.9     9.8     1.0     1.0     1.7       0.9     1.0     2.9     1.0     1.0       0.9     1.0     1.0     1.0     2.4       0.9     1.0     1.0     1.0     1.0       0.9     1.0     2.9     1.0     1.0       0.1     1.0     2.9     1.0     2.4       0.4     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NAP HTHA                             | 1.8            | 21.3                                                | 49°9         |            | 24.9        | 97.9             |             |        | 97.9    |
| INE       546.9       1259.3       1478.8       167.0       558.0         71.4       143.7       71.9       13.7       42.8         71.4       143.7       71.9       13.7       42.8         71.4       143.7       71.9       13.7       42.8         71.4       143.7       317.9       30.0       382.0         71.4       143.7       150.7       30.0       382.0         71.4       143.5       150.6       166.3       499.0         237.0       509.4       749.6       146.2       166.4         237.0       509.4       749.6       166.0       196.0         37.15       29.4       10.3       1.1       1.3         239       9.8       10.3       1.1       1.3         1.9       1.0       1.4       1.3       1.1         2.9       9.8       1.1       1.3       1.0         2.9       9.8       1.0       1.3       1.0       1.7         2.9       9.8       1.1       1.3       1.3       1.1         2.9       9.8       1.0       1.1       1.3       2.4         2.9       5.4       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | REGULAR GASOLINE<br>PREMIUM GASOLINE |                |                                                     |              |            |             |                  |             |        |         |
| 0     13.7     13.7     42.9       71.9     13.7     14.6     14.6     17.9     13.7       71.4     146.7     17.9     13.7     42.9       235.4     804.2     152.0     17.9     30.0     382.0       235.4     804.2     152.0     17.9     30.0     382.0       235.4     804.2     152.0     157.9     30.0     382.0       237.9     70.9     152.0     154.0     104.2       37.1     27.9     152.0     154.0     136.0       37.1     27.9     10.3     10.6     1.9       10     1.1     1.1     25.5     1.0     1.0       2.9     9.0     1.0     1.1     1.0     1.0       2.9     1.0     1.0     1.0     1.0     1.0       2.9     1.0     1.0     1.0     1.0     1.0       2.0     1.0     2.5     2.4     2.4     2.4       10     10.1     2.0     1.0     2.4     2.4       10     10.1     2.0     1.0     2.4     2.4       10     10.1     2.0     1.0     2.4     2.4       10     10.1     2.4     2.4     2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LOW LEAD GASOLINE                    | 546.0          | 1 260 3                                             | 1470 0       | 167 0      | 55A.0       | 4010-0           |             |        | 4010.0  |
| 71.4       146.7       317.9       30.0       382.0         235.4       804.2       1565.7       166.3       499.0       382.0         237.0       509.4       78.5       156.6       156.6       44.5       66.4         237.0       509.4       78.5       156.6       156.6       166.3       499.0       382.0         57.0       509.4       78.5       156.6       156.0       156.6       166.4       499.0       499.0         57.0       57.6       166.3       166.0       150.0       136.0       136.0       166.4         37.1       27.9       166.3       162.2       114.3       25.5       1.1       19.6         1.9       1.0       1.0       1.0       1.0       1.0       1.0       1.1         2.9       9.8       1.0.3       25.5       1.1       1.1       1.7       3.7         2.0       1.1       2.5       5.4       2.4       3.7       3.7       3.7         2.6       1.1       2.5       5.4       3.7       3.7       3.7       3.7       3.7         10.6       13.1       3.465.7       1369.1       495.7       1369.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LEAU THEE VAJULANE                   |                | 2 2 2 2                                             | 71.0         | 5 - E E    | A 2 . A     | 171.0            |             |        | 171.0   |
| 235.4       804.2       155.7       166.3       4990         237.0       509.4       793.6       166.3       4990         57.0       509.4       793.6       156.0       156.0         57.0       509.4       78.5       156.0       190.6         57.0       57.0       509.4       793.6       150.0       1364.2         57.1       27.5       166.3       499.6       199.6         37.1       21.2       16.2       114.3       25.5       199.6         10.9       1.0       1.0       1.0       1.0       1.0       1.0         2.9       9.8       10.3       1.0       1.1       1.3       1.1       1.3         2.9       9.9       1.0       1.0       1.0       1.0       1.0       1.1       1.3         2.9       1.0       1.0       1.0       1.0       1.1       2.2       3.7       2.4         2.0       1.0       1.0       1.0       1.0       2.4       2.4       2.4         1.0       1.0       2.2       2.3       3.7       3.7       2.4       2.4         1.0       2.0       2.44       2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JET & JET FUEL                       | 4.17           | 5 · 1 - 1                                           | 917.9        | 30.0       | 382.0       | 01010            | 400.0       |        | 1350.0  |
| 2.37.0       509.4       793.6       44.5       6.4.5       15.0       194.5         6.89       78.5       162.8       15.0       194.5       194.5         57.1       57.9       162.0       15.0       194.5         37.1       51.3       120.6       114.3       194.6         37.1       51.3       120.6       114.3       194.6         37.1       10.4       16.6       114.3       25.5       10.4         10.0       1.4       10.3       10.5       10.4       10.4         2.9       9.8       10.3       10.5       1.4       10.4         2.9       9.8       10.3       1.6       1.4       1.4         2.9       9.8       1.0.4       2.5       1.4       2.4         2.4       2.4       2.4       2.4       2.4       2.4         10.4       4.2.5       2.8       2.4       2.4       2.4       2.4         10.1       113.1       19.1       196.7       119.2       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4       2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DIESEL                               | 235.4          | 804 .2                                              | 1565.7       | 164.3      | 499.0       | 3217.7           | k<br>9<br>1 |        | 3210.7  |
| 0     162.8     15.0     184.2       57.5     57.9     65.0     15.0     184.2       57.5     57.9     65.0     15.0     184.2       57.1     29.6     114.3     25.5     66.4       10     1.9     1.1     1.9     1.0       11     2.9     9.8     10.3     1.0     1.3       10     2.9     9.8     10.3     1.0     1.3       10     2.9     9.8     10.3     1.0     1.0       2.9     9.8     10.3     1.0     1.0     1.0       0.0     1.0     1.0     1.0     1.0     4.2       0.0     1.0     2.4     2.4     2.4       0.0     1.0     2.4     2.4     2.4       10.4     4.2     5.3     4.4     2.4       10.4     4.2     5.3     4.4     2.4       10.4     4.2     5.3     4.4     2.4       10.1     1301.0     4.4     4.4     5.4       10.1     101.6     1.0     4.4     5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NO. 2 FUEL OIL                       | 237.0          | 509.4                                               | 743.6        | 44.5       | 6.4         | 1591.0           | 400.0       |        | 1991.0  |
| 0     157.5     57.9     65.0     15.0     136.0       37.1     27.9     162.2     1.1     196.0       1     1.9     7.9     10.3     15.0     136.0       1     1.9     7.9     10.3     15.0     136.0       1     2.9     9.8     10.3     1.0     1.3       1     2.9     1.0     13.9     1.0     1.0       1     .6     1.0     25.5     53.4     2.2       1     .6     1.1     25.5     53.4       1     .6     1.0     25.5     53.4       10.4     .6     1.0     2.4     2.4       10.4     .6     1.0     2.4     2.4       10.4     .6     .6     1.0     2.4       10.4     .6     .6     .6     2.4       10.4     .6     .6     .6     .7       10     .6     .6     .6     .7       10     .6     .6     .6     .7       10     .6     .7     .6     .7       10     .6     .7     .7     .7       10     .6     .7     .7     .7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HI SULFUR NO. 0                      | 68.9           | 78.5                                                | 162.8        | 15.0       | 104.2       | 5r9.5            | 127.5       |        | 637.0   |
| 0     37.1     29.6     162.2     1.1     19.6       1     1.9     7.9     14.3     25.5     66.8       1     1.9     7.9     9.8     1.3     1.3       1     2.9     9.8     10.3     1.3     1.3       1     2.9     9.8     10.3     1.3     1.3       1     2.9     9.8     10.3     1.3     1.3       1     .6     1.1     25.5     3.7     3.7       10.4     2.2     29.4     2.4     2.4       10.4     4.2.5     53.4     2.4     2.4       10.4     4.45.3     4.85.7     1969.5     11       101.6     100.3     95.7     98.1     54.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LO SULFUR NO. 6                      | 51.5           | 57.9                                                | 65°0         | 15.0       | 136.0       | 331.4            | 365.6       |        | 637.0   |
| 0 01L     51.3     120.6     114.3     25.5     64.6       1.9     7.9     0.8     11     1.3       2.9     9.8     10.3     1.3     10.6       1.9     7.9     0.3     1.3     10.6       1.0     2.2     2.5     5.5     5.4.6       1.0     2.9     1.0     1.0       1.0     5.2     1.0     1.0       1.1     2.2     2.2     5.4.8       1.1     2.2     2.4.8     3.7       1.1     10.4     4.2.5     5.3.4       1.1     131.6     3197.9     4455.3       1.1     101.6     100.3     95.7       101.6     100.3     95.7     98.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LUBE STOCKS                          | 37.1           | 24.6                                                | 162.2        | 1 • 1      | 19.6        | 1 89.6           |             |        | 189.6   |
| 1     1.9     7.9     8.8     1.01     1.3       1     2.9     9.8     10.3     1.3     10.6       2     9     1.6     13.9     10.5     1.7       0     0     1.1     25.5     2.8     1.1       0     5     2.2     2.8     1.1     2.4       1     2     2.2     2.8     3.7     2.4       1     2.4     42.5     53.4     2.4     2.4       10     412.5     445.3     465.7     11969.5     11       10     10     4100.3     45.7     98.1     54.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ASPHALT AND ROAD OIL                 | 51.3           | 120.6                                               | 114.3        | 25.5       | 66.0        | 379°A            |             |        | 378.6   |
| 1     2.9     9.8     10.3     1.3     10.6       0     9     1.6     13.9     1.7     1.7       0     9     1.6     13.9     1.7     1.7       0     6     1.2     5.5     5.4     2.2       10     2     2.2     53.6     53.4     2.4       10     4     2.2     63.4     2.4     2.4       10     4     2.5     63.4     485.7     1964.5       10     10     100.3     45.7     98.1     54.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COKE (LU SULFUR)                     | 1.9            | 7.9                                                 |              | 1.1        | 1.3         | 21.0             |             |        | 0.15    |
| 1     0.01     13.9     13.9     13.9     10.6       1     7     1     25.5     53.5     53.5       10.4     2.2     2.2     28.8     3.7       10.4     42.5     63.4     495.7     1969.5       11     3197.9     495.5     495.7     98.1       101.6     100.3     95.7     98.1     57.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | COKE (HI SULFUR)                     | 2 ° 9          | 9°6                                                 |              | 1.3        |             | 24.4             |             |        | 24.4    |
| 9     1.6     13.9     1.7       .6     1.1     25.5     3.7       .6     1.1     25.5     3.7       10.4     4.2.5     53.4     3.7       11.1     3197.9     4945.3     465.7     1969.5       11.1     101.6     103.3     95.7     98.1     54.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | COKE (CAL CRUDE)                     |                |                                                     |              |            | 10.6        | 10.6             |             |        | 10.6    |
| .6     1.1     25.5     4.2       .5     2.2     29.8     3.7       10.4     42.5     53.4     2.4       10.4     42.5     53.4     1.4       11.1     3197.9     4945.3     485.7     1969.5       101.6     103.3     95.7     98.1     54.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |                | 1.6                                                 | 13.9         |            | 1.7         | 18.1             |             |        | 16.1    |
| .5     2.2     29.8     3.7       10.4     42.5     63.4     2.4     1       10.4     42.5     63.4     2.4     1       11.1     3197.9     4945.3     485.7     1969.5     11.3       101.6     103.3     95.7     98.1     54.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |                | 1.1                                                 | 25.5         |            | 4.2         | 9.15             |             |        | 31.4    |
| 10.4     42.5     63.4     2.4     110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MIXED XYLENES                        | ч.<br>•        | 2.2                                                 | 28.8         |            | 3.7         | 35.2             |             |        | 35.2    |
| UF 1331.6 3197.9 4945.3 485.7 1969.5 11390<br>101.6 103.3 95.7 98.1 55.5 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | 1              | 42.5                                                |              |            |             | 118.7            |             |        | 1.8.7   |
| 101.¢ 103.3 95.7 98.1 54.5 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | ~              | 3197.9                                              | 345.         |            |             | 11390.2          | 1233.1      |        | 13113.3 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DUTPUT/INPUT, PCT                    | 101.6          | 100.3                                               | 95.7         | 98.1       | 6°56        | æ                |             |        | 108.5   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                | J<br>F<br>F                                         | P<br>P       | #<br>}     |             |                  |             |        |         |

| 6   |
|-----|
|     |
| ŝ   |
|     |
| 2   |
|     |
| 4   |
| e,  |
| 1   |
| 2   |
| a l |
| E-  |
|     |

## D. U. T. IRANSPORTATION SYSTEMS CENTER

SECTION 8. 11

## REFINING INDUSTRY MODEL - 1995, 30 PCT. DIESEL

|                      |            |        | PR ODUC 1         | PRODUCT CONSUMPTION | ON SUMMARY                                                                                       |         |                                                                                             |                                           |         |
|----------------------|------------|--------|-------------------|---------------------|--------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------|-------------------------------------------|---------|
|                      |            |        | P. A. D. DISTRICT | RICT                | 6<br>0<br>6<br>8<br>6<br>8<br>6<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | 0       |                                                                                             |                                           |         |
|                      | 1          | 2      | ۲ <b>۵</b>        | *                   | 5                                                                                                | U • S • | FXPORTS                                                                                     | EXP 101                                   | TOTAL   |
| C3 LPG               | 39.3       |        | 32.2              | 5 0                 | 24.2                                                                                             | 164.5   | 0<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                   | 8<br>9<br>9<br>9<br>8<br>8<br>8<br>9<br>9 | 164.5   |
| C4 LPG               | 9.9        | 5 . 2  |                   | • 2                 | 1.7                                                                                              | 16.9    |                                                                                             |                                           | 16.0    |
| NAPHIHA<br>NAPHIHA   | 1.8        | 21.3   | 49.4              |                     | 24.9                                                                                             | 97.9    |                                                                                             |                                           | 9.14    |
| REGULAR GASOLINE     |            |        |                   |                     |                                                                                                  |         |                                                                                             |                                           |         |
| PREMIUM GASOLINE     |            |        |                   |                     |                                                                                                  |         |                                                                                             |                                           |         |
| LOW LEAD GASOLINE    |            |        |                   |                     |                                                                                                  |         |                                                                                             |                                           |         |
| LEAD FREE GASOLINE   | 1370.0     | 1420.0 | 995.0             | 130.0               | 0.000                                                                                            | 0.0104  |                                                                                             |                                           | 4010.0  |
| JP-4 JET FUEL        | 42.8       | 31.5   | 36.0              | 11.3                | 49°5                                                                                             | 0.171   |                                                                                             |                                           | 171.0   |
| JET A JET FUEL       | 504.0      | 262.0  | 170.0             | 30.0                | C.SHE                                                                                            | 0.0361  |                                                                                             |                                           | 1356.0  |
| DIESEL               | 1105.0     | 1150.0 | 360.0             | 100.7               | 475.0                                                                                            | 3217.7  |                                                                                             |                                           | 321J.7  |
| NO. 2 FUEL DIL       | 676.0      | 608.0  | 242.0             | 91.0                | 140.0                                                                                            | 1991.0  |                                                                                             |                                           | 1991.0  |
| HI SULFUR ND. 6      | 392.0      | 65.3   | 65°3              | 15.0                | 106.0                                                                                            | 637.0   |                                                                                             |                                           | 637.0   |
| LO SULFUR NO. 6      | 392.0      | 65.0   | 65°0              | 15.0                | 100.0                                                                                            | 637.0   |                                                                                             |                                           | 637.0   |
| LUBE STOCKS          | 37.1       | 24.6   | 162.2             | 1.1                 | 19.0                                                                                             | 149.6   |                                                                                             |                                           | 189.6   |
| ASPHALT AND ROAD DIL | 51.3       | 120.6  | 114.3             | 25.5                | 66.8                                                                                             | 379.6   |                                                                                             |                                           | 374.6   |
| COKE ILO SULFUR)     | 1.9        | 7.9    | 8 e H             | 1.1                 | 1.3                                                                                              | 21.0    |                                                                                             |                                           | 21.0    |
| COKE (HI SULFUR)     | 2.9        | 8°6    | 10.3              | 1.3                 |                                                                                                  | 24.44   |                                                                                             |                                           | 24.4    |
| COKE (CAL CRUDE)     |            |        |                   |                     | 10.6                                                                                             | 10.6    |                                                                                             |                                           | 10.6    |
| BENZENE              | 6°         | 1.6    | 13.9              |                     | 1.7                                                                                              | 18.1    |                                                                                             |                                           | 16.1    |
| TOL UENE             | • 0        | 1.1    | 25.5              |                     | 4 • 2                                                                                            | 31.4    |                                                                                             |                                           | 91.4    |
| MIXED XYLENES        | <b>.</b> 5 | 2.2    | 28°8              |                     | 3.7                                                                                              | 35.2    |                                                                                             |                                           | 35.2    |
| MISC. PRODUCTS       | 16.4       | 42.5   | 63.4              |                     | 2.4                                                                                              | 119.7   |                                                                                             |                                           | 119.7   |
| TOTAL                | 4834.1     | 3907.0 | 1962.5            | 427.2               | 2142.5                                                                                           | 13113.3 | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |                                           | 13113.3 |

D. D. T. FRANSPORTATION SYSTEMS CENTER

REFINING INDUSTRY MODEL - 1995, 30 PCT. DIESEL

3

SECTION C.

UTILITY SUMMARY

PETROLEUM ADMINSTRATION FOR DEFENSE DISTRICTS (PAD)

|                          |          | 2       | E       | 4      | 5       | U • S •       |
|--------------------------|----------|---------|---------|--------|---------|---------------|
| ELEC. PWR (1000KWH/D)    | 4781.4   | 12825.9 | 24725.5 | 1485.0 | 12940.4 | 56758.1       |
| FUEL REQD. (1300FDEB/D)  | 59 ° b   | 152.7   | 252.1   | 23 • 2 | 166.2   | 594°0         |
| ENERGY CONS. (1000FDEB/D | 68°9     | 197.3   | 396.4   | 26.0   | 178.7   | 967.2         |
| LABOR (NO. EMPLOYEES)    | 6685 ° 0 | 15270.9 | 24451.2 | 2343。8 | 9644.2  | 5 R 3 9 5 • 0 |
| OPER COSTS (M\$/D)       | 93 ° 8   | 262.2   | 331.5   | 25.4   | 75.5    | 788.4         |
| INVESTMENTS (MM\$)       | 12.0     | 199.1   | 847.1   | 3.7    | 416.8   | 1478.7        |

41

The studies reviewed in the following discussion are the major ones that were available to the author when this report was written. The omission of a study implies no value judgment about their quality or validity. Comparisons of cost and energy savings estimates for various studies are presented in Table 4.2.4-1.

A 1974 Exxon study<sup>9</sup> for EPA indicates a maximum saving of about \$0.50/b of automotive fuel (diesel plus gasoline) at a 1/l ratio of diesel to gasoline. This is compared with a base case of a 1/10 diesel-togasoline ratio. The corresponding process energy savings is about 2 percent of the total process energy consumption. This study was based on a new, 100,000 barrels per stream day (b/sd) refinery that would come onstream between 1990 and 2000. Thus, much of the cost saving is attributable to the smaller investment required for a refinery specifically designed to produce the 1/l ratio of diesel to gasoline. This differs from SRI's model, which recognizes no investment credit for idle facilities. Investment and operating costs are in 1973 dollars.

A 1976 study released by Bonner and Moore Associates, Inc.,<sup>10</sup> also based on a refinery LP model, is somewhat more comprehensive in its coverage of multiple demand scenarios derived from an earlier SRI report.<sup>11</sup> The comparable diesel scenario from this study provides cases covering a range of diesel/gasoline ratios from 0.1/1 to 1.2/1. The consumer cost effects for these cases result from changes in costs of refining, marketing, and distribution. Distribution costs are based on the assumption that three grades of gasoline will continue to be marketed until 1990, so that additional facilities will be required for diesel marketing. This study indicates a maximum net saving of \$2.34/b (\$0.056/gallon) of gasoline plus diesel in 1990 dollars<sup>\*</sup> at a gasoline/diesel ratio of about 0.7/1. The maximum refinery and distribution energy saving of about 1.1 percent below the baseline case occurs at the 1.2/1 ratio.

The approach of optimizing the vehicle-fuel-refinery (VFR) system was analyzed in a study by Wilson and Tierney of Texaco.<sup>12</sup> This study also used a single refinery LP model. A base case representing the U.S. refining industry in 1972 included process capacities typical of the industry configuration for that year. Parametric cases were developed in which only production of highway transportation fuels was allowed to vary, with other products held stable at base case volumes. These cases were:

- An all unleaded 91 RON gasoline case with base case diesel production
- A maximum diesel case
- Two maximum broadcut fuel (100-650°F) cases with base case diesel volume.

Escalated from the 1975 base year at the various rates given in Reference 11.

## COMPARISON OF DIESELIZATION STUDIES

|    | Q + 11 21.                                                     | Range of<br>Diesel/Gasoline<br>(D/G) Ratios | Maximum Cost Saving<br>(corresponding D/G<br>volume ratio)<br>\$/b | Saving<br>ng D/G<br>io) | Maxi<br>Ene<br>P<br>Domes | Maximum Refinery<br>Energy Saving,<br>Percent of<br>Domestic Products<br>(FOE) | ery<br>g,<br>icts | Industry<br>Investment<br>Energy<br>10 <sup>6</sup> | Industry Incremental<br>Investment at Maximum<br>Energy Saving,<br>10 <sup>6</sup> 1974 \$<br>\$/h/A |
|----|----------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|-------------------------|---------------------------|--------------------------------------------------------------------------------|-------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------|
|    | arad                                                           | Studied                                     | D + G                                                              | D/G                     | Base                      | Saving                                                                         | D/G               | Total                                               | D + G                                                                                                |
|    | SRI/DOT                                                        | 0.17-0.80                                   | 0.61                                                               | 0.32                    | 6.31                      | 0.14                                                                           | 0.53              | 90.8                                                | 19 5                                                                                                 |
|    | Kant et al. <sup>y</sup>                                       | 0.11-2.7                                    | 0.52                                                               | 1.0                     | 9.1                       | 1 9                                                                            | 92 0              |                                                     | ) - 1 -<br>) - 1 -                                                                                   |
| 43 | Bonner and Moore <sup>10</sup>                                 | 0.11-1.20                                   | 2.34                                                               | 0.69                    | с и<br>Г                  |                                                                                |                   | : ()<br>()<br>()                                    | 10.1                                                                                                 |
|    |                                                                |                                             | $(1.57)^{\dagger}$                                                 | •                       | T ° O                     | 1°1                                                                            | 1.2               | 120                                                 | 102.7                                                                                                |
|    | Shearer and Wagner <sup>13</sup>                               | 0-00-0                                      | None‡                                                              |                         | 15.4                      | 1.4                                                                            | 0.46              | *                                                   | 41.0                                                                                                 |
|    | *<br>Single refinery effect, not extrapolated to H.S. industru | ct, not extrapolate                         | d to ILS, indus                                                    | 1                       |                           |                                                                                |                   |                                                     |                                                                                                      |

trapolated to U.S. industry.

<sup>†</sup>Deflated to 1974 costs at 3 percent per year. <sup>‡</sup>This study<sup>13</sup> indicated cost increases for D/G ratios higher than the base case.

For the maximum diesel case, the diesel/gasoline ratio was about 0.36/1, compared with 0.18/1 in the base case. The refinery fuel requirement decreased from 8.6 percent of crude in the base case to 7.2 percent in the maximum diesel case. Cost data were not presented. Only existing process unit capacities were considered, and it is not clear whether the option of hydrocracking for maximum distillate production was permitted.

A study by Shearer and Wagner<sup>13</sup> of Amoco showed that raw material and variable operating costs increased for all cases of increased diesel/ gasoline ratios. In this study, based on a single refinery model with Arabian light crude, the increase in feedstock cost more than offset the reduction in refinery fuel requirement. The base refinery configuration did not include hydrocracking and did not produce residual fuel oil.

As shown in Table 4.2.4-1, the cost and energy savings estimates developed in these studies vary considerably. The major difference between the SRI study and the others is that SRI applied an industry-wide model, whereas the others used single refinery models. In particular, the SRI model's flexibility in balancing regional product demands with imported products and interregional transfers leads to more moderate estimates of changes required in the domestic refinery sectors. The effect of this feature is particularly evident in SRI's lower estimates of energy savings for dieselization. The numerous other differences in scenarios also undoubtedly contribute to the differences in results of various studies. The major source of these variations is probably differences in the product mixes (see Table 4.2.4-2) used in the studies. The projected demand for jet fuel is especially critical because the major components of this product are also the major components of automotive diesel fuel.

Beyond this general discussion, a detailed quantitative reconciliation of the study results is probably not feasible. The differences among the studies may be considered useful as a measure of the range of uncertainty in quantifying effects of dieselization on the refinery industry. The maximum refinery energy saving found in any study is only about 2 percent,<sup>9</sup> and that saving was calculated for a new refinery optimally designed to handle a product mix different from today's demand pattern. Existing U.S. refining capacity, supplemented by U.S.-owned Caribbean refineries, may be sufficient to obviate the need for any substantial amount of new U.S. refining capacity. Thus, the economics of new refineries are probably not a realistic reflection of the industry-wide impact of changes in the product mix.

## 4.2.5 Technology for Increasing Diesel Availability

As discussed in the preceding section, a number of steps may be taken in a refinery to increase diesel fuel production at the expense of reductions in output of other products. The effects of reductions in light gas oil feed to FCC units and reduced conversion severity of FCC units are implicitly accounted for in the low-conversion refinery modes in the RIM.

|                                                                         | SRI <sup>11*</sup> | Kant et al.11 <sup>†</sup>                                | Bonner and<br>Moore <sup>10‡</sup> | Stearer and<br>Wagner <sup>13</sup> § |
|-------------------------------------------------------------------------|--------------------|-----------------------------------------------------------|------------------------------------|---------------------------------------|
| Domestic products (volume percent of refinery output)                   |                    |                                                           |                                    |                                       |
| Liquid propane gas                                                      | **                 | 3.2                                                       | **                                 |                                       |
|                                                                         | 43.8               | 57.0                                                      | 33.03                              | 40.1                                  |
| Jet fuel                                                                | 12.1               | 9.2                                                       | 18.42                              | 9.8                                   |
| Diesel                                                                  | 14.2               | 5.6                                                       | 8.92                               | 18.3                                  |
| Heating oil                                                             | 12.8               | 17.9                                                      | 14.28                              | 16.9                                  |
| Residual                                                                | 8.0                | 7.2                                                       | 12.69                              | ÷<br>÷                                |
| Other                                                                   | 9,1                | -                                                         | 12.66                              | 14.9                                  |
|                                                                         | 100.0              | 100.0                                                     | 100.00                             | 100.0                                 |
| Imported products (volume percent of<br>corresponding refinery product) |                    |                                                           |                                    |                                       |
| Jet fuel                                                                | 0°0                | 8                                                         | 1                                  |                                       |
| Heating oil                                                             | 25.0               | :                                                         | 8                                  |                                       |
| Residual                                                                | 27.3               | 4                                                         | 54.4                               |                                       |
| All products (volume percent of total domestic demand)                  |                    |                                                           |                                    |                                       |
| Domestic                                                                | 94.9               | :                                                         | 93.5                               | ;                                     |
| Imported                                                                | 5.1                | 8                                                         | 6.5                                | 8                                     |
|                                                                         | 100,0              |                                                           | 100.0                              |                                       |
| *<br>Case 2, 1995 base domestic refinery                                |                    | §<br>Case of maximum energy                               | ergy savings.                      |                                       |
|                                                                         | л<br>т<br>т<br>т   | LPG included in "Other" product category.                 | )ther" product                     | category.                             |
| HOW THET OLI CASE.                                                      | d l l              | <sup>11</sup> Produced coke instead of residual fuel oil. | cead of residu                     | al fuel oil.                          |
| Baseline scenario for 1995.                                             |                    |                                                           |                                    |                                       |

PRODUCT DISTRIBUTION Table 4.2.4-2

45

The following discussion describes explicit incremental options in the RIM for increased diesel production.

Any significant increase in the proportion of diesel fuel produced is likely to require the use of refinery streams that are deficient in cetane quality. Cetane quality improves as the aliphatics content of the blend stocks increases and the aromatics content decreases. Therefore, increasing the hydrogen content of the stock (e.g., by hydrotreating or hydrocracking) improves cetane quality. Additives such as amyl or hexyl nitrates also increase cetane quality.

4.2.5.1 Additives for Cetane Improvement. Amyl and hexyl nitrates produce cetane number improvement, as shown in Figure 4.2.5.1-1. The cost of a four-point cetane index improvement resulting from additives is about 0.22 cents/gallon of diesel fuel, based on a recent price of 45 cents per pound in tank-car quantities.<sup>14</sup> According to the response curve in Figure 4.2.5.1-1, this quality increase corresponds to an additive requirement of 0.06 volume-percent.

This level of cetane improvement was selected for inclusion in the RIM for the sake of consistency with the hydrotreating option described in the following section. If this option for incremental production of diesel fuel at the expense of No. 2 fuel oil were to be studied in depth, several levels of cetane improvement could be developed from the response curve and cost data.

However, a basic problem exists in assessing cetane improvement methods in evaluations of incremental diesel production. The volume of marginal cetane quality blend stocks that could be added to the national diesel pool by upgrading is not explicitly known. Production of FCC light cycle oil and light coker gas oil may be estimated from published capacity data for the two relevant cracking processes, but such estimates were not made for this study because the chosen scenarios indicated that No. 2 fuel oil would be in short supply.

Surveys of the qualities of No. 1 and No. 2 fuel oils produced in the United States are published annually by the DOE (formerly ERDA) Bartlesville Energy Research Center (BERC).<sup>15</sup> The available quantities corresponding to the reported sample qualities are noted only by classes of volumes produced. It is thus only possible to estimate roughly the extent of cetane improvement required and the corresponding volume of incremental diesel fuel produced.

Note also that the average cetane values reported in the annual survey of diesel fuel quality by BERC<sup>16</sup> exceed the American Society of Testing and Materials (ASTM) minimum of 40 by 5-10 points. This study has not established whether the apparent excess cetane quality is the result of the need to meet specifications required for market competition, or is simply characteristic of the distillate stocks of the crude oils currently processed in U.S. refineries. Some indication supporting the latter



SOURCE: Ethyl Corporation, "Diesel Fuel Additives," Brochure PCD417872 (Undated)

FIGURE 4.2.5.1-1 CETANE IMPROVEMENT BY ADDITIVE

explanation is obtained by calculating the average cetane index of No. 1 and No. 2 heating oils from data reported in the annual BERC fuel oil survey. Using the ASTM D-613 correlation of cetane index versus API gravity and mid-boiling point (Figure 4.2.5.1-2), the sample averages are well above 40 cetane index. This suggests a general availability of excess cetane quality in the U.S. refining industry distillate pool at current levels of diesel production.

4.2.5.2 Hydrotreating for Cetane Improvement. The traditional commercial application of distillate hydrotreating has been in sulfur removal required to meet SO2 emission regulations. In this application, some degree of aromatic ring saturation occurs, and this saturation improves the cetane quality of diesel blend stocks. In the refinery model, an allowance of a four-point cetane number improvement is provided for hydrotreated kerosene stocks and a two-point improvement is provided for light gas oils. More severe hydrotreating with catalysts designed for aromatic ring saturation could provide a considerably greater cetane improvement than the four point improvement allowed in the Refinery Model, but published data on this particular type of operation are scarce, probably because of the previously discussed traditional lack of incentive for applying such severe hydroprocessing. However, an analogy may be drawn to hydrotreating for jet fuel smoke point improvement, which is practiced to a limited extent in the refining industry.<sup>17</sup> Using the increase in gravity (°API) as a measure of aromaticity reduction, several examples given in this reference show a 2-4°API increase between feed and product. Applying this to the D976 correlation presented in Figure 4.2.5.2-1 at a constant mid-boiling point of, say 440°F, 36°API, the calculated cetane index increases from 39 to 47 for a 4°API increase in gravity.

The economics of this process as represented in the RIM as an option for incremental diesel production were adopted from the distillate hydrotreating data in the Refinery Model, as summarized in Table 4.2.5.2-1. The problem of estimating the limits of potential application are the same as those discussed for the additive option.

4.2.5.3 <u>Hydrocracking for Diesel</u>. Of the three options developed for the production of incremental diesel fuel, only hydrocracking produces diesel fuel at the sacrifice of gasoline production. The rationale is that heavy gas oil feedstocks currently being cracked in FCC units for gasoline production may alternatively be charged to hydrocracking for production of high-quality diesel fuel. It should be noted that the FCC process may be operated at low cracking severity to produce a lower gasoline-tocracked-distillate ratio. However, the cetane quality of the cracked distillate is poor, so this stock is usually blended into the No. 2 fuel oil pool. As mentioned previously, severe hydrotreating may be used to upgrade cracked distillates to diesel or even jet fuel quality, but this option has little commercial application with the traditional product mix. If extensive diesel penetration occurs, this approach will probably be explored by the refining industry.



NOTE—The Calculated Cetane Index equation represents a useful tool for *estimating* cetane number. Due to inherent limitations in its application, Index values may not be a valid substitute for ASTM Cetane Numbers as determined in a test engine.



By publication of this standard no position is taken with respect to the validity of any patent rights in connection therewith, and the American Society for Testing and Materials does not undertake to insure anyone utilizing the standard against liability for infringement of any Letters Patent nor assume any such liability.

SOURCE: 1974 Annual Book of ASTM Standards, Petroleum Products and Lubricants (I), Part 23 (1974).

FIGURE 4.2.5.1-2 CALCULATED CETANE INDEX



----

No()—The Calculated Cetane Index equation represents a useful tool for *estimating* cetane number. Due to inherent limitations in its application. Index values may not be a valid substitute for ASTM Cetane Numbers as determined in a test engine.

FIG. 1 Nomograph for Calculated Cetane Index (ECS-1 Meter Basis-Method D 613).

By publication of this standard no position is taken with respect to the validity of any patent rights in connection therewith, and the American Society for Testing and Materials does not undertake to insure anyone utilizing the standard against liability for infringement of any Lettery Patent nor assume any such liability.

SOURCE: 1974 Annual Book of ASTM Standards, Petroleum Products and Lubricants (I), Part 23 (1974).

FIGURE 4.2.5.2-1 CETANE INDEX IMPROVEMENT THROUGH HYDROTREATING

## Table 4.2.5.2-1

## ECONOMICS OF INCREMENTAL HYDROTREATING FOR UPGRADING HEATING OIL STOCKS TO DIESEL QUALITY

| Yields (barrels)                             |        |
|----------------------------------------------|--------|
| No. 2 fuel                                   | -1.0   |
| Diesel                                       | +1.0   |
| Refinery fuel (FOE b)                        | -0.022 |
| Electric power (kWh/b of incremental diesel) | 0.008  |
| Labor (No./10 <sup>3</sup> b/d)              | 0.50   |
| Operating cost (\$/b diesel)                 | 0.0125 |
| Total energy (FOE b/b of diesel)             | 0.025  |
| Investment (10 <sup>3</sup> \$/b/d)          | 0.510  |

Hydrocracking is a versatile, if relatively costly, process for converting heavy gas oils to lighter products ranging from diesel fuel to gasoline and even lighter fuels. Most of the hydrocracking capacity now installed is intended to operate in the maximum gasoline mode, but may be used to produce additional jet fuel or diesel, as the particular refiner's market requires.

To quantify the incremental effects of using hydrocracking to produce diesel at the expense of gasoline produced by FCC, the Refinery Model was run in (1) a high gasoline demand mode with limited hydrocracking capacity available, and (2) in a high diesel demand mode with unlimited hydrocracking capacity available. The differences in yields and costs between these two operations represent the incremental effects used in the RIM. Table 4.2.5.3-1 summarizes the two refinery model runs described. As shown in this table, the yield and cost differences are normalized on a quantity per barrel of gasoline reduction for inclusion in the RIM. The investment requirement for this operation is based on requirements for incremental capacity only; no credit is allowed for unused process capacity.

The units per barrel of gasoline values are the coefficients used in the RIM, as shown in Table 4.2.5.3-1, with the exception of gasoline. The 1.0 value for gasoline is based on a reduction weighted to reduce production of leaded premium and regular grades in greater proportion than low-lead and unleaded grades, as is consistent with existing trends.

A separate set of hydrocracking options is included in the RIM to represent the conversion of existing gasoline hydrocracking capacity to the maximum diesel mode. The upper limits of these options are set at 1.3 times the existing capacity to allow for the potential of higher

## INCREMENTAL HYDROCRACKING FOR DIESEL PRODUCTION

|                                             | <u>High Gasoline</u> | <u>High Diesel</u> | Difference | Difference per<br>Barrel of Gasoline |
|---------------------------------------------|----------------------|--------------------|------------|--------------------------------------|
| Yields, volume percent of crude             |                      |                    |            |                                      |
| C3 LPG                                      | 0.83                 | 0.83               |            |                                      |
| C <sub>A</sub> LPG                          | 0.25                 | 0.25               |            |                                      |
| Naphtha                                     | 0.88                 | 0.88               | ••         |                                      |
| BTX                                         | 2.85                 | 2.85               |            |                                      |
| Gasoline                                    | 44.01                | 32.69              | -11.32     | -1.0                                 |
| JP-4                                        | 1.80                 | 1.80               | ••         |                                      |
| Kerosene                                    | 1.40                 | 1.40               | ••         |                                      |
| Jet-A                                       | 4.70                 | 4.70               |            |                                      |
| Diesel                                      | 17.40                | 31.38              | +13.98     | +1.235                               |
| No. 2 fuel                                  | 12.00                | 12.00              |            |                                      |
| No. 6 fuel                                  | 9.89                 | 5.60               | -4.29      | -0.379                               |
| Lubes                                       | 2.00                 | 2.00               | ••         |                                      |
| Asphalt                                     | 1.40                 | 1.40               |            |                                      |
| Coke                                        | 0.29                 | 0.29               |            | *                                    |
| Refinery fuel                               | 5.67                 | 6.38               | 0.89       | 0.0786                               |
| Utilities                                   |                      |                    |            |                                      |
| Electricity $[(kWh \times 10^3)/d]$         | 337.95               | 713.38             | 375.43     | 33.16                                |
| Operating cost (10 <sup>3</sup> \$/d)       | 3.78                 | 3.36               | -0.432     | -0.0382                              |
| Labor (no. people/103 b/d)                  |                      |                    |            | 0.8                                  |
| Energy consumption (FOE b/b gasoline)       |                      |                    |            | 0.520                                |
|                                             |                      |                    |            | Investment                           |
|                                             |                      |                    |            | 106 1973 \$                          |
| Incremental facilities $(10^3 \text{ b/d})$ |                      |                    |            |                                      |
| Vacuum still                                | 37.5                 | 40                 | 2.5        | 0.22                                 |
| Gas recovery                                | 3.0                  | 4.4                | 1.4        | 0.46                                 |
| Gasoline reformer                           | 16.0                 | 18.5               | 2.5        | 1.6                                  |
| Distillate merox                            | 1.4                  | 4.2                | 2.8        | 0.12                                 |
| Hydrogen plant                              |                      | 0.88               | 0.88       | 7.04                                 |
| Isomerization unit                          | 0.25                 | 1.23               | 0.98       | 0.43                                 |
| Hydrocracking                               | 0.90                 | 19.5               | 18.6       | 16.6                                 |
| Electrical distribution (MW)                | 12.66                | 29.7               | 17.02      | 1.6                                  |
| Steam (10 <sup>3</sup> lb/hr)               | 141                  | 164                | 23         | 0.23                                 |
| Cooling water (gal/min)                     | 24.0                 | 35.8               | 11.8       | 0.33                                 |
|                                             |                      |                    |            | 28.63                                |
|                                             |                      |                    |            | 20.05                                |

Notes: Correction for inflation:  $$28.6 \times 10^6 \times 1.54^{\dagger} = $43.0 \times 10^{6}$ .

Investment per barrel of gasoline reduction:  $43.0/11.32 = 53.8 \times 10^3$  b/day.

\* Included with No. 6 fuel reduction.

<sup>†</sup>Based on Nelson Inflation Index, published periodically in <u>Oil and Gas Journal</u>.

throughput at the lower severity required for diesel operation. A nominal investment of \$100/b/d is allowed for minor process modification. The yield and utility differentials used in this option are based on the values for the gasoline and diesel options in the refinery model.

## 4.3 <u>Impact of Transportation Fuel Desulfurization on the</u> <u>Refining Industry</u>

## 4.3.1 Overview

The primary impetus for further reduction of sulfur in gasoline is the finding that the catalytic converters applied to 1975 and later model cars for reduction of undesirable exhaust emissions convert sulfur to sulfuric acid and sulfate particles. Catalyst systems now used in the catalytic converters require an essentially lead-free gasoline. Coincidentally, the major refinery processes used to provide the octane quality previously provided by tetraethyl lead produce blend stocks with a very low sulfur content. This has resulted in current lead-free gasoline sulfur levels of about 300 ppm. Although other approaches to the automobile emission reduction problem could be used, this study analyzes only the effects of reducing the sulfur in gasoline to 100 ppm.

Further sulfur removal from distillate (diesel) fuels is related to concern for sulfur emissions because the diesel exhaust inherently contains low concentrations of hydrocarbons and CO without converters. Control of  $NO_x$  emissions is a complex issue that is excluded from this study.

## 4.3.2 Summary and Conclusions

For gasoline desulfurization, it is assumed for this study that all gasoline produced in 1995 will be lead-free, and that the predominant process used for gasoline desulfurization will be HDS of light straight-run stocks and FCC feedstock. These assumptions are supported by the studies cited in Section 4.3.3. The costs and investments in this study are based on the total cost of desulfurizing all gasoline produced to 100 parts per million by weight (wppm) sulfur and all the diesel production to 200 wppm sulfur, using presently known commercial catalytic HDS technology.

The base case for the desulfurization studies is Case 4, the 30 percent diesel penetration case. Table 4.3.2-1 summarizes the RIM results for Case 5. The reduction of the sulfur content of 4,010 b/cd of gasoline production to 100 wppm costs \$0.834/b, or about 2 cents/gallon of gasoline produced. The facilities investment required is about \$2 billion, and the energy increase in refining is indicated to be 1.1 percent above the base, or 7.3 percent of total domestic refinery output.

## FUELS DESULFURIZATION SUMMARY

|                                             | <u>Case 4</u> | <u>Case 5</u>      | <u>Case 6</u> |
|---------------------------------------------|---------------|--------------------|---------------|
| Percent diesel penetration                  | 30            | 30                 | 30            |
| * Percent of gasoline desulfurized          | Base          | 100                | 100           |
| Percent of diesel desulfurized <sup>†</sup> | Base          | Base               | 100           |
| Incremental cost, \$/b desulfurized product | Base          | 0.834 <sup>‡</sup> | 1.018         |
| Incremental cost, \$/b desulfurized product |               | Base               | 0.18          |
| Incremental investment, $10^6  \$^{**}$     | Base          | 1,940              | 5,580         |
| Incremental investment, 10 <sup>6</sup> \$  | <i>~</i> ~    | Base               | 3,640         |
| Energy consumption (FOE basis), percent     |               |                    |               |
| of domestic production                      | 7.3           | 8.4                | 8.8           |
| Incremental                                 | Base          | 1.1                | 1.5           |
| Incremental                                 | * *           | Base               | 0.4           |

\*From Case 4 sulfur level (about 300 wppm) to an average of 100 wppm. \*From Case 4 sulfur level (600-1,700 wppm) to an average of 200 wppm. \*\$/b gasoline.

§/b gasoline plus diesel.

Investment based on constant 1974 dollars.

Reducing the sulfur content of the Case 4 production of 3,210 b/cd of diesel fuel to 200 wppm adds about \$0.18/b of gasoline plus diesel output. Applied to diesel only, the incremental cost above Case 5 is \$1.22/b, or about 3 cents/gallon of diesel. The increase in energy consumption for diesel desulfurization over Case 5 is 0.4 percent of total domestic refined products.

For both the gasoline and diesel desulfurization cases, the costs shown represent the maximum cost case, which assumes that all new facilities will be required by 1995. To the extent that existing facilities for desulfurization will be operable and technologically adequate by 1995, the costs presented may be higher than actual costs. Estimates of the potential for adapting existing facilities is beyond the scope of this study, as is estimation of the effects of potential new developments in technology.

## 4.3.3 Discussion and Analysis

Reduction of sulfur in leaded gasoline to current levels has long been practiced to minimize the unfavorable effect of sulfur on octane improvement by tetraethyl-lead.<sup>18</sup> Lead-free gasoline has a higher concentration of very low-sulfur, high-octane components than leaded gasoline. The major gasoline components that are not already desulfurized for refinery process requirements are the light straight-run ( $C_5$ -175°F) stocks, coker gasoline, and FCC gasoline, an important component for improving octane rating and increasing volume. Because we expect only lead-free gasoline to be produced by 1995, this analysis of the major technological options for further sulfur reduction focuses on these blend stocks. Naphtha for catalytic reformer feed is currently desulfurized to a level of 1-2 wppm to protect the reformer catalyst.

FCC gasoline desulfurization does, however, present several technological options for consideration. These are summarized briefly here and discussed in detail in Section 4.3.5.

- (1) The full range of FCC gasoline may be desulfurized using existing commercial processes, with a potential loss of octane quality resulting from the concommitant saturation of olefins. The octane loss may be a minimal problem if the recently announced "Selective Ultrafining" process<sup>19</sup> developed by Amoco proves to be commercially feasible.
- (2) The FCC feed may be desulfurized to provide low-sulfur gasoline and low-sulfur fuel oil blend stocks with the additional benefits of improved FCC yields and reduced FCC sulfur emissions.
- (3) As proposed in a recent study by Bonner and Moore, Inc.,<sup>20</sup> for BERC, the FCC gasoline octane loss problem in HDS may be ameliorated by prior fractionation of the FCC gasoline into a light fraction containing most of the olefins and little sulfur and applying HDS to the heavier fraction containing more sulfur and less olefins.

The process economics selected for inclusion in the RIM for this study are based on a 1974 study by Pullman-Kellogg<sup>21</sup> sponsored by EPA. This study concluded that FCC feed HDS plus light naphtha HDS were economically preferable to the alternatives mentioned.

Analyzing the possibility of reducing the sulfur content of diesel fuel from the current averages of 600-1,000 wppm to about 200 wppm presented a problem of data availability. Because specific data on this operation could not be developed within the time frame allowed for this phase of the study, the economics used in the RIM for this operation were assumed to be similar to those for vacuum gas oil desulfurization (VGO) for 95 percent desulfurization. This assumption may overstate the cost of HDS of diesel fuel to 200 wppm, but perhaps our cost estimates represent a maximum-cost case. The availability of hydrogen for fuels HDS is another issue that requires further investigation. Our analyses of both gasoline and diesel sulfur removal assumed that the incremental HDS facilities would be supplied with hydrogen available from existing refinery sources, primarily the catalytic reformers. Because the actual situation may be characterized by reduced gasoline consumption, and thus perhaps by less gasoline reforming and greater HDS hydrogen requirements, the hydrogen balance requires further analysis.

The RIM output for the study cases is summarized in Table 4.3.3-1. Detailed results by PAD district are presented in Tables 4.3.3-2 through 4.3.3-7 for Cases 5 and 6.

## 4.3.4 Review of Previous Studies

The Bonner and Moore, Inc., study<sup>20</sup> provides a detailed analysis and critique of prior assessments of gasoline desulfurization costs. The comparison summary from Volume II of that study is presented in Table 4.3.4-1, with the SRI results added, adjusted to first-quarter 1976 dollars with the same factors indicated in the table for mid-1974. As shown in Table 4.3.4-1, the cost values derived from the RIM are at least within the range of the reported values that could be explained by the widely varying scenarios used in the different estimates. A detailed reconciliation of these figures with those of one or more of the other studies cited is beyond the scope of this study.

## 4.3.5 Gasoline Desulfurization Technologies

Two basic refining approaches can be used to achieve the required gasoline sulfur reductions. One is to desulfurize individual gasoline blending stocks. The other is to desulfurize feedstocks for process units such as the cat cracker that produce gasoline blending stocks. Specific operations belonging to these two different approaches are listed below. All of these operations are commercially feasible, and some are already practiced.

## (1) Option 1: Desulfurize Gasoline Blending Stocks

- (a) Hydrotreat cat gasoline.
- (b) Hydrotreat straight-run gasoline.
- (c) Hydrotreat coker gasoline.
- (d) Hydrocrack coker gasoline.
- (e) Cat crack straight-run gasoline, coker gasoline, or cat gasoline.
- (f) Merox-extract sulfur compounds in gasoline.

## FUELS DESULFURIZATION CASE DATA

|                                                                                                                                              | Case 4 (1995)<br>30% Diesel<br>Penetration | se 4 (1995)<br>30% Diesel<br>Penetration | Case 5<br>Case 5<br>with G<br>Desulfu | Case 5 (1995)<br>Case 4<br>with Gasoline<br>Desulfurizstion | Case 6<br>Gaso<br>and D<br>Desulfui | Case 6 (1995)<br>Gasoline<br>and Diesel<br>Desulfurization |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------|---------------------------------------|-------------------------------------------------------------|-------------------------------------|------------------------------------------------------------|
| Refining industry cost, <sup>*</sup> 10 <sup>3</sup> \$/dsy                                                                                  | 139,913                                    |                                          | 143,157                               |                                                             | 147,185                             |                                                            |
| Total refinery input, $^{T}$ 10 <sup>3</sup> b/cd                                                                                            | 12,083                                     |                                          | 12,090                                |                                                             | 12,090                              |                                                            |
| Domestic refinery production, 10 <sup>3</sup> b/cd (vol%)                                                                                    |                                            |                                          |                                       |                                                             |                                     |                                                            |
| Gssoline                                                                                                                                     | 4,010                                      | (33.8)                                   | 4,010                                 | (6.66)                                                      | 4,010                               | (33.9)                                                     |
| JP-4                                                                                                                                         | 171                                        | (1.4)                                    | 172                                   | (1.4)                                                       | 172                                 | (1.4)                                                      |
| Jet-A                                                                                                                                        | 950                                        | (8.0)                                    | 950                                   | (8.0)                                                       | 950                                 | (8.0)                                                      |
| Diesel                                                                                                                                       | 3,211                                      | (27.0)                                   | 3,210                                 | (27.2)                                                      | 3,210                               | (27.2)                                                     |
| No. 2 fuel                                                                                                                                   | 1,591                                      | (13.4)                                   | 1,591                                 | (13.5)                                                      | 1,591                               | (13.5)                                                     |
| No. 6 fuel                                                                                                                                   | 841                                        | (1.1)                                    | 786                                   | (9.9)                                                       | 786                                 | (9.9)                                                      |
| Other                                                                                                                                        | 1,106                                      | (9,3)                                    | 1,100                                 | (6,9)                                                       | 1,100                               | (6, 3)                                                     |
| Total production                                                                                                                             | 11,880                                     | (0.001)                                  | 11,819                                | (100.0)                                                     | 11,819                              | (100,0)                                                    |
| Imported products                                                                                                                            |                                            |                                          |                                       |                                                             |                                     |                                                            |
| Jet fuel (jet A) <sup>†</sup>                                                                                                                | 400                                        |                                          | 400                                   |                                                             | 400                                 |                                                            |
| No. 2 fuel <sup>*</sup>                                                                                                                      | 400                                        |                                          | 400                                   |                                                             | 400                                 |                                                            |
| No. 6 fuel                                                                                                                                   | 433                                        |                                          | 488                                   |                                                             | 488                                 |                                                            |
| Total imports                                                                                                                                | 1,233                                      |                                          | 1,288                                 |                                                             | 1,288                               |                                                            |
| Total domestic demand                                                                                                                        | 13,113                                     |                                          | 13,107                                |                                                             | 13,107                              |                                                            |
| Energy consumed by domestic refining, 10 <sup>3</sup> b/cdFOE                                                                                | 867                                        |                                          | 066                                   |                                                             | 1,035                               |                                                            |
| Incremental investment, $10^6$ \$, 1974                                                                                                      | Base                                       |                                          | 1,941                                 |                                                             | 5,581                               |                                                            |
| Fscilities for desulfurization, 10 <sup>3</sup> b/cd feed                                                                                    |                                            |                                          |                                       |                                                             |                                     |                                                            |
| Light naphtha HDS                                                                                                                            | 1                                          |                                          | 385                                   |                                                             | 385                                 |                                                            |
| FCC feed HDS                                                                                                                                 | ;                                          |                                          | 3,031                                 |                                                             | 3,031                               |                                                            |
| Diesel HDS                                                                                                                                   | :                                          |                                          |                                       |                                                             | 1,670                               |                                                            |
| *                                                                                                                                            |                                            |                                          |                                       |                                                             |                                     |                                                            |
| Includes feedstock costs, imported product costs, refinery operations costs, and capital recovery costs<br>for new facilities (1974 Anilare) | finery of                                  | erations                                 | costs, a                              | nd capital                                                  | recovery                            | / COSES                                                    |
|                                                                                                                                              |                                            |                                          |                                       |                                                             |                                     |                                                            |

 $^\dagger {\rm Crude}$  oil snd natural gas liquids.  $^\dagger {\rm Imports}$  of Jet A snd No. 2 as shown are at maximum value allowed.

## D. U. I. IHANSPORTATION SYSTEMS CENTER

SECTION A. 25

PEFINING INDUSTRY MUDEL - 1995, 3U PCT. DIEJLL #/(ASC. DESU F.--CASE 5

## Refluert Input/OUFPUT SUMMARY

|                                      |        | •<br>• | . A. 0. DISTAICT | I A L C T |           |           |                                      |          |                  |
|--------------------------------------|--------|--------|------------------|-----------|-----------|-----------|--------------------------------------|----------|------------------|
|                                      | 1      | ~      | m                | ÷         | 3         | ° 5 ° N   | IMPORT                               | 1404 X 3 | TOTAL            |
| INPUT                                |        |        |                  |           |           |           |                                      |          |                  |
| SWEET CRUDE                          | 690°0  | 1920.0 | 3132.0           | 240.0     | 478.0     | 6460.3    |                                      |          | 6460.5           |
| SOUR CRUDE                           | 647.0  | 1292.1 | 1231.4           | 228.8     |           | 3699.3    |                                      |          | 3694 . 3         |
| CALIF CRUDE                          |        |        |                  |           | 1434.0    | 1434.0    |                                      |          | 1434.0           |
| MATURAL GASDINE<br>Matural Gasdine   | 13.4   | 61.7   | 118.5            | 22.7      | 26.8      | 0-642     |                                      |          | 0.625            |
| NOR HAL BUTANE                       | 8.8    | 45.6   | 4 4 4 7          | 1.6       | 27.1      | 127.7     |                                      |          | 127.7            |
| I SO BUT ANE                         | Ð • 41 | 52.5   | 46.0             | 3• 3      | 18.2      | 125.7     |                                      |          | 125.7            |
| . TOTAL INPUT                        | 1364.9 | 3371.9 | 4872.5           | 496.3     | 1984.1    | 12089.8   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |          | 12089.8          |
| OUTPUT                               |        |        |                  |           |           |           |                                      |          |                  |
|                                      | 5 0 5  | 1 27   | 3.0.6            | 4         | 6 76      | 1 2 2 1   |                                      |          | 1 1 1 1          |
|                                      | 8.9    |        |                  |           | 1.7       | 17.6      |                                      |          | 17.4             |
| NAPHIMA                              | 1.8    | 21.3   | 46.1             | ;         | 24.9      | 0.40      |                                      |          | 0.46             |
| REGULAR GASOLINE                     |        |        |                  |           |           |           |                                      |          |                  |
| PREMIUM GASOLINE                     |        |        |                  |           |           |           |                                      |          |                  |
| LOW LEAD GASOLINE                    |        |        |                  | 147 0     |           | 0.010     |                                      |          | 4010.0           |
| LEAU FREE GAJULINE<br>10-4 iet fiifi | 040°.  | 34.45  | 7 07 CT          | 101.01    | 0 ° 0 C C | 4010°     |                                      |          | 3 1 2 1          |
| JET A JET FIJEL                      | 0.00   | 3.721  | 2022             | 0.05      | C . C M C | 0.411     | 0-007                                |          | 1350.0           |
| DIESEL                               | 222.3  | 914.6  | 1347.8           | 166.3     | 0.995     | 3210-0    |                                      |          | 3210.0           |
| NO. 2 FUEL DIL                       | 225.5  | 547.1  | 771.1            | 43.7      | 3.6       | 0.194.    | 466.0                                |          | 0.1911           |
| HI SULFUR NO. 6                      | 68.9   | 9.49   | 149.2            | 15.0      | 184.2     | 502.3     | 134.7                                |          | 637.C            |
| LO SULFUR NO. 6                      | 5.76   | 6°6    | 65.0             | 15.0      | 136.6     | 2 9 3 . 4 | 3:3.6                                |          | 637.0            |
| LUBE STOCKS                          | 1.76   | 29.6   | 46.B             | 1.1       | 19.6      | 144.2     |                                      |          | 104.2            |
| ASPHALT AND ROAD DIL                 | 51.3   | 133.2  | 100.1            | 25.5      | 66.8      | 377.0     |                                      |          | 377.0            |
| COKE (LO SULFUR)                     | 1.9    | 6.9    | 8.6              | 1.1       | 1.3       | 19.9      |                                      |          | 19.9             |
| COKE (HI SULFUR)                     | 2.9    | 11.2   | 9.2              | 1.3       |           | 24.6      |                                      |          | 24.6             |
| COKE (CAL CRUDE)                     |        |        |                  |           | 10.6      | 10.4      |                                      |          | 10.6             |
| BENZEME                              | 6.     | 9 · 1  | 13.9             |           | 1.7       | 19.3      |                                      |          | 16.3             |
|                                      | •      | 1.2    | 25.4             |           | 4 • 2     | 31.5      |                                      |          | 31.5             |
| MIXEU XYLENES                        | ¢.     | 2 • 2  | 21.9             |           | 3.7       | 34.5      |                                      |          | 1 <del>1</del> . |
| MISC. PRODUCTS                       | 10.4   | 44.7   | 64.9             |           | 2.4       | 122.4     |                                      |          | 122.4            |
| TUTAL OUTPUT                         | 1379.1 | 3337.6 | 4653.9           | 484.9     | 1906.7    | 11419.2   | 1218.3                               |          | 13107.5          |
| OUTPUT/INPUT,PCT                     | 101.0  | 0.94   | 45.5             | 97.7      | 1.94      | c 7 . A   |                                      |          | 100.4            |

## **D. U. T. FRANSPORTATION SYSTEMS CENTER**

# REFINING INDUSTRY NJDEL - 1395, 30 PCT. DIESEL. #/6450. DTS' F.--CASE 5

SECTION 8. 11

## PRODUCT CONSUMPTION SUMPARY

1

|                                         |         | 2       | •      | *     | 5      | N• S•   | EXPOPTS                                   | EXP 101                                                                                     | LJIAL    |
|-----------------------------------------|---------|---------|--------|-------|--------|---------|-------------------------------------------|---------------------------------------------------------------------------------------------|----------|
| C3 LPG                                  | 34.3    | 07.1    | 30.6   | 5.0   | 24.2   | 166.1   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | 166.1    |
| C4 LPG                                  | 9°6     | 5 • B   |        | •2    | 1.7    | 17.4    |                                           |                                                                                             | 17.4     |
| NAP HIHA                                | 1.8     | 21.3    | 40.1   |       | 24.9   | 0.45    |                                           |                                                                                             | 0.45     |
| REGULAR GASOLINE<br>PREMIUM GASOLINE    |         |         |        |       |        |         |                                           |                                                                                             |          |
| LUW LEAU GASULINE<br>LEAD FREE GASOLINE | 0.0761  | 1420.0  | 495.0  | 130.0 | 595°0  | 4010.0  |                                           |                                                                                             | 4010.0   |
| JP-4 JET FUEL                           | 4 2 ° F | 31.5    | 36.1   | 12.0  | 49.5   | 171.8   |                                           |                                                                                             | 171.6    |
| ET A JET FUEL                           | 506.0   | 262.0   | 170.0  | 30.0  | 342.0  | 1350.0  |                                           |                                                                                             | 1350.0   |
| OIE SEL                                 | 1105.0  | 1150.0  | 360.0  | 100.0 | 475.0  | 3219.9  |                                           |                                                                                             | 321U ° O |
| 0. 2 FUEL DIL                           | 970.0   | 6V3.0   | 242.0  | 91.0  | 180.0  | 1991.0  |                                           |                                                                                             | 1991.0   |
| I SULFUR NO. 6                          | 392.0   | 0°49    | 65.V   | 15.0  | 100.0  | 637.0   |                                           |                                                                                             | 637.0    |
| O SULFUR NO. 6                          | 392.0   | 65 . Ú  | 65.0   | 15.0  | 100.0  | 627.9   |                                           |                                                                                             | £37.C    |
| UBE STJCKS                              | 37.1    | 29.6    | 96.6   | 1.1   | 19.6   | 194.2   |                                           |                                                                                             | 184.2    |
| SPHALT AND ROAD OIL                     | 51.3    | 133.2   | 101.1  | 25.5  | 66.0   | 377.3   |                                           |                                                                                             | 377.0    |
| OKE (LO SULFUR)                         | 1.9     | 6.9     | 0°9    | 1.1   | 1.3    | 19.9    |                                           |                                                                                             | 19.91    |
| COKE (HI SULSER)                        | 2.9     | 11.2    | 3°5    | L.3   |        | 24.6    |                                           |                                                                                             | 24.6     |
| COKE (CAL CRUDE)                        |         |         |        |       | 10.6   | 10.6    |                                           |                                                                                             | 10.6     |
| BEN ZENE                                | • 9     | 1 • H   | 13.9   |       | 1.7    | 19.3    |                                           |                                                                                             | 1e.3     |
| TOL UENE                                | • 0     | 1.2     | 25.4   |       | 4.2    | 3:•5    |                                           |                                                                                             | 31.5     |
| IXED XVLENES                            | ۍ<br>۲  | 2.5     | 27.9   |       | 3.7    | 34.5    |                                           |                                                                                             | 34.5     |
| IISC. PRODUCTS                          | 10.4    | 44.7    | 64°3   |       | 2.4    | 122.4   |                                           |                                                                                             | 122.4    |
| TOTAL                                   |         | 30.24.0 | 1476.7 |       | 2562.5 | 12107.5 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0                                                                                           | 12107 5  |

|                          |           |              | 0<br>0<br>0<br>0<br>0<br>0                | 1000        |             |                |
|--------------------------|-----------|--------------|-------------------------------------------|-------------|-------------|----------------|
|                          | PETROLEUM | EUM ADMINSTR | ADMINSTRATION FOR DEFENSE DISTRICTS (PAD) | EFENSE DIST | RICTS (PAD) |                |
|                          | 1         | 2            | 3                                         |             |             | U • S •        |
| ELEC. PWR (1000KWH/D)    | 5355•6    | 18559.7      | 24871.6                                   | 1660.4      | 13526.2     | 63973.7        |
| FUEL RE40. (1000F0E8/D)  | 68 • 6    | 180.4        | 272.1                                     | 25 • 9      | 115.1       | 662.1          |
| ENERGY CONS. (1000FDEB/D | 78.7      | 296.2        | 403.1                                     | 29.0        | 188.7       | 989.7          |
| LABOR (NO. EMPLOYEES)    | 1.6107    | 16924.8      | 24374.1                                   | 2444 • C    | 0*6266      | <b>50735.1</b> |
| OPER COSTS (M\$/D)       | 101.0     | 293.6        | 357.5                                     | 27.5        | 82•A        | 862.4          |
| INVESTMENTS (MMS)        | 230.8     | 1135.6       | 1339.2                                    | 70.5        | 640•0       | 3420.0         |
|                          |           |              |                                           |             |             |                |

D. D. T. TRANSPORTATION SYSTEMS CENTER

REFINING IMDUSTRY MODEL - 1995, 30 PCT. DIESEL, W/GASO. DESU F.--CASE.

UTILITY SUMMARY

SECTION C. 4

60

|                                   |            |                                                |                       | GNINI JOH    | ISOUM THISOUNT ONLY IS | JULI                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                         |
|-----------------------------------|------------|------------------------------------------------|-----------------------|--------------|------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------|
|                                   |            | rikk faller och and en statementer med stateme | REF                   |              | 2U                     | řCASE 6                                   | C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                  |                                         |
|                                   | -          | i                                              | • A. D. DISTHICT      | k1CT         |                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                         |
|                                   | -          | ~                                              | - e i                 | 3            | 5                      | U.S.                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EXPORT                                                                                           |                                         |
|                                   |            |                                                | 0<br>0<br>1<br>0<br>0 |              | 1<br>0<br>0<br>0<br>0  | 0<br>0<br>1<br>0<br>1<br>0<br>0<br>0<br>0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 8<br>0<br>0<br>8<br>8                   |
| Sweft CRUNE                       | 0.063      | 1920.0                                         | 0.3FTE                | 0°072        | 478.0                  | 6460.0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  | 0*09*9                                  |
| SOUR CRUDE                        | 647.0      | 1292.1                                         | 1531.4                | 228.6        |                        | 544°3                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  | 5.494.3                                 |
| CALIF CRUDE                       |            |                                                |                       |              | 1434.0                 | 1434.0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  | 1434.0                                  |
| ALASKAN CRUDE<br>Matheal casoline | A 51       | 41.7                                           | 2.011                 | 1 66         | 9 40                   | 0 676                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  | 0 6 4 6                                 |
| NOPMAL BUTANE                     | - G G.     | 45.0                                           |                       | 1.6          | 27.1                   | 127.7                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  | 127.7                                   |
|                                   | 5.8        | 25.5                                           |                       | 3.3          | 18.2                   | 125.7                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  | 125.7                                   |
| TOTAL INPUT                       | 1364.9     | 9371.4                                         | 4872.5                | 496.3        | 1984.1                 | 12089.8                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  | 12089.8                                 |
| 01JTPUT                           |            |                                                |                       |              |                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                |                                         |
| C3 [ b6                           | 14°.4      | 67.1                                           | 30.6                  | 2°0          | 24.2                   | 166.1                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  | 166.1                                   |
| C4 LPG                            | 9°8        | 5.8                                            |                       | ۰ <i>د</i> ر | 1.7                    | 17.4                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  | 17.4                                    |
| NAPHTHA                           | 1.A        | 21.3                                           | 46.1                  |              | 24.9                   | 94.0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  | 94.0                                    |
| REGULAR GASOLINF                  |            |                                                |                       |              |                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                         |
| FREWIUM GASULINE                  |            |                                                |                       |              |                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                         |
| TEATERFE GACHINE                  | 546.9      | N.1221                                         | 1516.3                | 187.0        | KKA B                  |                                           | And a state of the |                                                                                                  | 2010-0                                  |
| JP-4 JET FUEL                     | B . 3      | 36.4                                           | 70.6                  | 13.7         | 42.8                   | 171.8                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  | 171.8                                   |
| JET A JET FUFL                    | 5.66       | 137.5                                          | 307.3                 | 30 . 0       | 342.0                  | 450.0                                     | 400°0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  | 1350.0                                  |
| DIFSEL                            | £:222      | 974.6                                          | 1347.H                | 166.3        | 0.99.4                 | 1210.0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  | 0°012E                                  |
| NO. 2 FUEL OIL                    | 225.5      | 547.1                                          | 771.1                 | 43.7         | 3.6                    | 1541°0                                    | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  | 1991.0                                  |
| HI SULFUR NO. 6                   | 6A.9       | 6.49                                           | 149.2                 | 15.0         | 184.2                  | 502.3                                     | 134.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  | 637.0                                   |
| TO SULFUP NO. 6                   |            | 6.6                                            | 65 ° U                | 15:0         | 136.1                  | 243.4                                     | 353.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  | 637.0                                   |
| LUHE STOCKS                       | 37.1       | 29.65                                          | 46.4                  | 1.1          | 19.6                   | 144.2                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  | 184.2                                   |
| ASPHALT AND ROAD OIL              | 6.12       | 2.661                                          | 100.1                 | 2°24         | 66°8                   | 377.0                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  | 0.116                                   |
|                                   | •          | 5 ° C                                          | 80.0                  | 1.1          | 1.5                    | 6.61                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  | × • • •                                 |
|                                   | F          | 2*11                                           | 7*6                   | L • 1        |                        | 0 • • · ·                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                         |
| DENZENE- (LAL UNUVE)              | 0          |                                                |                       |              |                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  | 2 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - |
|                                   | •          |                                                |                       |              |                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                         |
| I ULUENE<br>MIYEO YYI ENEC        | <i>C</i> u | 2°1                                            | 4 ° C V               |              | * P<br>* 1             | ر الا<br>۲                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  | C•15                                    |
| MIATU ATLINES                     |            |                                                | 5°12                  |              | 1.5                    | 5+ ° 1                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                         |
|                                   | 11.4       | 1 . 44                                         | P . 40                |              | 5.4                    | 122.4                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  | 122.4                                   |
| TOTAL OUTPUT                      | 5          | 3337.6                                         | 4650.9                | 444          | 1966.7                 | 11419.2                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  | 13107.5                                 |
|                                   |            |                                                |                       |              |                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                         |

Table 4.3.3-5

61

.

Table 4.3.3-6

D. U. T. THANSPOHTATION SYSTEMS CENTER

SECTION P. 11

PEFINING INDUSTAY MODEL

1

|                      |            | a.      | A. D. DISTUICT | ніст  |         |         |         |         |        |
|----------------------|------------|---------|----------------|-------|---------|---------|---------|---------|--------|
|                      | -          | 2       | ٤              | 4     | s       | 1)+5+   | ExPORTS | FAP T01 | TOTAL  |
|                      |            |         | 30.6           | 2.0   | 24.2    | 1.166.1 |         |         | 166.I  |
| C4 1 PG              | т<br>0     | л.<br>г |                | 2.    | 1.7     | 17.4    |         |         | 17.4   |
| NAPHTHA              | 1 н        | 21.3    | 46.1           |       | 24.9    | 44.0    |         |         | 94.0   |
| PEGULAR GASOL INF    | ×× -       |         |                |       |         |         |         |         |        |
| PREMIUM GASOLINE     |            |         |                |       |         |         |         |         |        |
| LOW LEAD GASOLINE    |            |         |                |       |         |         |         |         |        |
| LEAD FREE GASOLINE   | 0.07ET     | 0.0541  | 0.564          | 130.0 | 295°D   | 10100   |         |         | 0.0104 |
| JP-4 JFT FUFL        | 2.24       | 31.5    | 36.1           | 12.0  | 44°5    | 171.4   | ,       |         | 171.6  |
| JET A JFT FUFL       | 504.0      | 262.0   | 170.0          | 30.0  | 342.0   | 1.350.0 |         |         | 1350.0 |
| TESE.                | 1145.0     | 1150.0  | 140-0          | 100.0 | 475.0   | 121456  |         |         | 3210.0 |
| 10. 2 FUFL OTL       | H70.0      | 60H.0   | 242.0          | 0.10  | 140.0   | 0.1421  |         |         | 1991.0 |
| HI SULFUR NO. 6      | U° ChE     | 65.0    | 65.0           | 15.0  | 100.0   | 637.0   |         |         | 637.0  |
| O SULFUP NO. 6       | .0°26E     |         |                |       | 100:001 | 0.153   |         |         | 0:159  |
| UHF STOCKS           | 1°16       | 79°62   | 96.A           | 1 • 1 | 19.6    | 144.2   |         |         | 184.2  |
| ASPHALT AND ROAD OIL | 51.3       | 133.2   | 100.1          | 25.5  | 66.A    | 377.0   |         |         | 377.0  |
| רמאד ונא בטנ בטאז    | 6.1        | P.4     | н. н. н.       | 1.1   |         | <u></u> |         |         | 6.61   |
| CONF (H] SULFUR)     | ۍ <i>د</i> | 11.2    | 9°5            | ٤.1   |         | 24°6    |         |         | 24.6   |
| COKE (CAL CHIDE)     |            |         |                |       | 10.6    | 10.6    |         |         | 10.5   |
| RENTENE              | <b>b</b> • | н.1     | 6*E1           |       | ·       |         |         |         | E.H[   |
| TOLIENE              | ÷.         | 1.2     | 25.4           |       | 4°5     | 31.5    |         |         | 31.5   |
| MIXFD XYLFNES        | ۍ<br>•     | 2.5     | 27.9           |       | 3.7     | 34 .5   |         |         | 34.5   |
| MISCSTOURDER         |            | - t.4.7 | 6* 79          |       | 2.4     | 122.4   |         |         | 122.4  |
| TOTAL                |            |         |                |       |         |         |         |         |        |

U.S. 73988.9 687.7 681.6 62661.1 1034.7 7060.1 PETHOLEUM ADMINSTRATION FOR DEFENSE DISTRICTS (PAD) S 8.56 15083.3 10278.5 119.1 195.7 1205.9 PEFINING INDUSTRY MODEL P. O. T. THANSPORTATION SYSTEMS CENTER UTTLTTY SUMMANY -- CASE 6 27.2 28.5 2179.1 4 2543.7 E. IE 259.1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29076.9 282.9 25182.8 365.5 422.0 2467.6 Table 4.3.3-7 2 21600.3 188.2 17504.6 244.5 303.9 7. 4455 E.4403 70.4 81.8 7146.5 102.3 4H2.9 REFY ENERGY CONSUMPTION PURCH ELECTRIC POWER TOTAL FUEL REQUIRED OPFRATING COSTS INVESTMENTS 4 SECTION C. LAHOR

63

Table 4.3.4-1

# COMPARISON OF DESULFURIZATION COST

د

| Study                                                                          | Investment<br>(millions of<br>first-quarter<br>1976 \$)* | Increased Gasoline<br>Cost, ¢/gal<br>(first-quarter<br>1976) | Average<br>Gasoline Sulfur<br>Level<br>(Wppm) | Percent of<br>Total Gssoline<br>Desulfurized | Net Energy<br>Requirement,<br>10 <sup>3</sup> FOE b/cd |
|--------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|----------------------------------------------|--------------------------------------------------------|
| SRI/DOT: total United States                                                   | 3,270                                                    | 2.32                                                         | 100                                           | 100                                          | 123 <sup>†</sup>                                       |
| Bonner and Moore/ERDA,<br>United States including California                   |                                                          |                                                              |                                               |                                              |                                                        |
| Primary study                                                                  | 455<br>580                                               | 0.23<br>0.30                                                 | 100<br>50                                     | 60<br>60                                     | 23<br>26                                               |
| Total desulfurization                                                          | 975<br>1,181                                             | 0.37<br>0.50                                                 | 100<br>50                                     | 100                                          | 36<br>52                                               |
| Restricted Cat gasoline splitting<br>(United States excluding California only) | 2,963                                                    | 1,01                                                         | 74                                            | 100                                          | 94.1                                                   |
| NPRA Burvey                                                                    | 4,460                                                    |                                                              | 100<br>50 <sup>‡</sup>                        | 100                                          | 100-200 <sup>†</sup>                                   |
| Pullman Kellogg/EPA study                                                      | 2,520                                                    | 1.98 to 0.83 <sup>9</sup>                                    | 80                                            | 100                                          | 82                                                     |
| ADL/EPA                                                                        | 780<br>1,440<br>2,880<br>4,430                           | 0.49<br>1.23<br>0.86<br>1.81                                 | 100<br>50<br>50                               | 60<br>60<br>100                              | 18<br>68<br>42<br>160                                  |
| Batteile/API study                                                             | 4,450<br>15,580<br>4,570<br>15,930                       |                                                              | 100<br>30<br>30                               | 4 6<br>8 6<br>8 6                            | 82<br>287<br>292                                       |
| Texaco EPA testimony                                                           | 8,440 to 12,060<br>9,650 to 13,270                       | 4.86 to 6.00<br>5.46 to 6.80                                 | 100**<br>50**                                 | 100                                          | 180<br>211                                             |

\* \* All of the cost data have been converted to first-quarter 1976 dollars using the following inflation factora: 1974 dollars, 1.21; January 1974 dollars, 1.24; mid-1974 dollars, 1.17; 1975 dollars, 1.11.

This is the additional energy consumed by the additional facilities, as opposed to the net energy requirement, which includea a credit for increased product yields.

\* Respondents questioned the feasibility of this.

 $^{8}_{\rm The}$  incressed cost increases with decreasing refinery size.

\*\* Texaco referred to the 100 and 50 wppm sulfur level as <u>specifications</u>, not as the average sulfur level of production referred to in the rest of the data.

Source: Reference 20 SRI International

- (2) Option 2: Desulfurize Process Feedstocks
  - (a) Desulfurize regular cat-cracking feed.
  - (b) Desulfurize, demetallize, and saturate asphaltenes in residual oil for cat cracking.
  - (c) Desulfurize, demetallize, and saturate asphaltenes in whole crude oil.

Note that Options 1(a) through 1(c) are not the same as the naphtha pretreatment used in connection with reforming. Although the process schemes for both are the same, the extent of sulfur removal differs: The reformer pretreatment reduces sulfur levels to 1-2 wppm, whereas gasoline hydrotreating reduces it typically to 80-200 wppm.

Gasoline hydrotreating is already in commercial use, and its application has been growing rapidly in the past several years. According to the annual refining capacity survey conducted by <u>Oil and Gas Journal</u>, naphtha desulfurization capacity, in which desulfurization of gasoline stocks is the principal operation, was about 710,000 b/d in January of 1977, but in 1972, it was only 148,000 b/d.

One drawback of hydrotreating is the potential for loss of octane numbers resulting from saturation (hydrogenation) of high-octane components in the feed, such as olefins and aromatics. Such losses are particularly likely with light, cat-cracked gasoline. Therefore, the refiner may be required to increase the reforming capacity to make up the octane losses.

Option 1(d) refers to the use of hydrocracking for desulfurization. Although the process is normally used to convert gas oils into light boiling products, it can be used for desulfurizing high-sulfur gasoline stocks, such as coker naphtha. However, hydrocracking is much more expensive than hydrotreating, and use of hydrocracking solely for gasoline desulfurization is not generally cost-effective. Refiners may choose to use it only when they have excess capacity.

The cat cracker can be used to desulfurize gasoline stock because about 50 percent of feed sulfur is converted to hydrogen sulfide by cracking reactions. Some volume losses due to cracking are unavoidable, but these are partially compensated for by the probable increase in octane rating in the desulfurized gasoline and the ability to use light gases from cracking in alkylation for the production of premium gasoline.

Option 1(f), Merox Treatment, is widely practiced today. The process is basically a deodorizing scheme; the odor-causing sulfur compounds in gasoline, called mercaptans, are extracted or converted into odorless compounds by Merox Treatment. Active mercaptans are extracted by the Merox solution, whereas less active mercaptans are catalytically dimerized to disulfides and remain in the gasoline. Because nonmercaptan sulfur compounds, which account for a large fraction of the total sulfur in gasoline, are unaffected in Merox Treatment, the process is not a primary desulfurization process. Unlike the schemes in Option 1, which feature desulfurization of individual gasoline stocks, Option 2 features desulfurization of catcracker feedstocks. When feedstocks are pretreated, cracked gasoline will be low in sulfur and can be blended directly into low-sulfur gasoline pool. Pretreatment processes are already used commercially, and according to the <u>Oil and Gas Journal</u> annual survey, current cat-cracker feed pretreatment capacity is about 530,000 b/d (in 1972, it was about 300,000 b/d). Desulfurization of feedstocks will not only eliminate the need for downstream desulfurization of cat gasoline, but will also improve cat cracker operation by increasing gasoline yield, decreasing sulfur content of cycle oil and slurry oil, decreasing catalyst consumption, decreasing sulfur emissions, and so on.

#### 5 GENERAL CONCLUSIONS

If consumption of diesel fuel increases, as a proportion of gasoline, it appears that the existing refining industry can achieve roughly a threefold increase in the diesel/gasoline production ratio while reducing costs and improving energy efficiency. Our results, like those of other studies of this issue, suggest that the elimination of gasoline production is not cost- or energy-effective. Desulfurization of gasoline and diesel fuels to very low sulfur contents would require major capital outlays by the refining industry. However, the cost of desulfurization per unit of product is only a few cents per gallon.

Given the conservation premises of this study, the crude oil runs required to meet the projected 1995 requirements for the major fuel products could be less than current levels if demand for other petroleumderived products (e.g., petrochemicals) is reduced as demand for the major fuel products declines. Because reductions in demand for petrochemicals do not appear likely, significant petrochemical production facilities will presumably be integrated with existing refining capacity.

The sharp reduction in residual fuel requirements and the short supply of middle distillates indicated by this scenario could lead to changes in the current residual fuel emphasis in the product mix of the Caribbean export refineries. Like fuel desulfurization, this change would require major capital outlays, but it would probably add only a few cents per gallon to product costs.

#### 6 RECOMMENDATIONS

In a sense, the use of the word "conclusions" in previous sections of this report is not precisely appropriate. The results reported here are based on a complex set of inputs. Although these inputs are mathematically explicit in the model, they reflect numerous assumptions, approximations, and omissions of indirect factors that could alter the outcomes reported. The assumptions, approximations, and indirect factors that could significantly affect the reported results are outlined in the following paragraphs.

- (1) The conservation scenario may reflect realistic possibilities in the transportation sector, but be overly optimistic in estimating the potential for conservation of other petroleum products. Hence, future studies should consider the effects of higher demand levels for other fuel products.
- (2) Similarly, the petrochemical industry, the natural gas liquids industry, and the fuel products portion of the petroleum refining industry may become even more closely integrated in the future. A more explicit treatment of this possibility should be included in future work.
- (3) Demand levels for the major fuel products were forecast separately and input to the model as explicit requirements. It is possible, with an optimizing model, to structure demand as a function of primary requirements, such as vehicle miles of travel, and use the model to determine the optimal product mix where alternatives exist. Future work should explore this option.
- (4) Synthetic fuels and fuels without octane or cetane requirements were not included in this study. By the end of the century, both of these kinds of fuel could become significant sources of energy for the transportation sector. Further study should observe these technological possibilities, especially in post-2000 scenarios.

.

#### 7 REFERENCES

- H. J. Lane, "Development of a Linear Transportation Model for Oil," Stanford Research Institute Report prepared for the Bureau of Land Management (September 1974).
- 2. A. S. Manne, "A Linear Programming Model of the U.S. Petroleum Refining Industry," ECONOMETRICA <u>26</u>:1, 67-106 (January 1958).
- P. L. Rice and U. K. Smith, "ORNL--An Econometric Model of the Petroleum Industry," paper presented at the American Econometric Society Conference, Dallas, Texas (December 1975).
- 4. U.S. Department of Energy, "Monthly Energy Review" (various issues).
- 5. J. Horton, DOT/TSC, written communication to K. Ushiba, SRI International (10 June 1977).
- 6. SRI International, "Fuel and Energy Price Forecasts," prepared for Electric Power Research Institute (June 1977).
- 7. <u>Oil and Gas Journal</u>, p. 98 (28\_March 1977).
- 8. National Petroleum News, Annual Factbook Issue, p. 28 (May 1977).
- 9. F. H. Kant et al., "Effects of Changing the Proportions of Automotive Distillate and Gasoline Produced by Petroleum Refining," EPA-460/3-74-018 (July 1974).
- 10. F. P. Frederick et al., "The Impact of Automotive Fuel Changes on the U.S. Refining Industry," Bonner and Moore Associates, Inc., for Energy Research and Development Administration, Contract No. E(49-18)-2216 (February 1976).
- 11. Stanford Research Institute, <u>Recommendations for a Synthetic Fuels</u> <u>Commercialization Program</u>, Vol. II, "Cost/Benefit Analyses of Alternate Production Levels" (June 1973).
- 12. R. V. Wilson and W. T. Tierney, "Optimization of Vehicle--Fuel--Refinery System," paper presented at the 41st Midyear Meeting of the American Petroleum Institute, Los Angeles, California (May 1976).

- 13. H. A. Shearer and T. O. Wagner, "Economics of Manufacturing Automotive Diesel Fuel," paper presented at the 42nd Midyear Meeting of the American Petroleum Institute, Chicago, Illinois (May 1977).
- 14. Ethyl Corporation, "Diesel Fuel Additives," brochure, PCD417872 (undated).
- 15. E. M. Shelton, <u>Fuel Oils</u>, Bartlesville Energy Research Center, Energy Research and Development Administration (1976).
- E. M. Shelton, <u>Diesel Fuel Oils</u>, Bartlesville Energy Research Center, Energy Research and Development Administration (November 1976).
- 17. E. T. Tregilgas and D. M. Crowley, "Need More Jet Fuel? Hydrotreat," Atlantic Richfield Co., <u>HPPR</u>, pp. 120-123 (May 1969).
- W. L. Nelson, <u>Petroleum Refinery Engineering</u>, 4th edition, McGraw-Hill, New York (1958).
- R. Coates et al., "Desulfurization of Cracked Naphtha with Minimum Octane Loss," paper presented at the National Petroleum Refiners Association meeting, San Antonio, Texas (17 March 1978).
- Bonner and Moore Associates, Inc., <u>Motor Gas Desulfurization Study</u>, for Energy Research and Development Administration, Contract E(34-1)-0041 (December 1976).
- 21. W. F. Hoot, "Production of Low-Sulfur Gasoline," Pullman-Kellogg for U.S. Environmental Protection Agency (July 1974).

# Appendix A

# DESCRIPTION OF REFINERY MODEL

•

#### Appendix A

#### DESCRIPTION OF REFINERY MODEL

#### A.1 General Product and Process Specifications

This appendix provides additional description of the refinery model first mentioned in Section 3.1. A flow sheet of the model is provided in Figure A-1, and a schematic representation of a generalized LP system is presented in Figure A-2. General specifications for products and processes are shown in Tables A-1 through A-4. More specific processes are detailed in later subsections.

#### A.2 Crude Fractionation

Before distillation, crude oil is treated in a desalter to remove brine and solids that are usually present in the form of a suspension or an emulsion. The desalted crude is then heated to 650-670°F and charged to the distillation column for separation into light ends, naphthas, kerosene, gas oil, and topped crude. Distillation occurs at near atmospheric pressure (4-10 psig), and hence the unit is frequently referred to as an atmospheric unit. The model specifications for the process are outlined in Table A-5.

#### A.3 Hydrotreater

Catalytic hydrogen treating, often called hydrotreating, is used to remove sulfur compounds, nitrogen compounds, and other undesirable impurities in petroleum fractions. The process is extremely flexible in dealing with many types of feedstocks and achieving widely varying product qualities. By far the greatest application is in hydrotreatment of reformer feedstocks. Also, applications for desulfurization of middle distillates and heavy fuel oil fractions, improvement of lube oil oxidation stability, and jet fuel smoke point improvement are widespread. Yields for the process are given in Tables A-6, and hydrogen consulption is given in Table A-7.

#### A.4 Catalytic Reforming

Catalytic reforming is a continuous process to upgrade low-octane naphthas to high-octane premium blending stock for gasoline. The process is also used for the production of aromatics for use in petrochemicals. The model inputs for the gasoline reformer are shown in Table A-8; and those for the aromatics reformer are shown in Table A-9.



FIGURE A-1 REFINING AND PETROCHEMICAL LP MODEL



FIGURE A-2 LINEAR PROGRAMMING SYSTEM

# CRUDE OIL YIELDS AND PROPERTIES

CRUDE NAME: \_\_\_\_\_\_ Delta - Ostrica \_\_\_\_\_\_ FIELD, LOCATION \_\_Plaquemine, La.

|                                         | TOTAL  | CRUDE, N | APHTHAS                                                                                                        |            | LLATES  |          |          |          |
|-----------------------------------------|--------|----------|----------------------------------------------------------------------------------------------------------------|------------|---------|----------|----------|----------|
| 9.                                      | Total  | Light    | Light                                                                                                          | Medlum     | Medium  | Heavy    |          | Light Ga |
| CUT NAME                                | Crude  | Gasoline |                                                                                                                | Naphtha    | Nanhtha | Nanhtha_ | Kerosene | 011      |
| TBP Cut Points, "F                      |        | C5/160   | _C5/175                                                                                                        | 160/295    | 175/295 | 295/375  | 375/530  | 530/650  |
| Vield, LVS                              | 100.00 | 3.6      | 4.6                                                                                                            | 9.8        | 8.8     | 7.5      | 19.1     | 15.1     |
| Yield, Wt.\$                            | 100.00 | 2.72     | 3.59                                                                                                           | 8.53       | 7.66    | 6,91     | 18.53    | 15.24    |
| Gravity, "API                           | 33,6   | 86.9     | 80.3                                                                                                           | 58.2       | 58.1    | 47.6     | 38.7     | 32.1     |
| Density, Lbs/8bl                        | 299.8  | 226.6    | 233.6                                                                                                          | 260.9      | 261.1   | 276.3    | 290.8    | 302.5    |
| Specific Gravity                        | 0.8571 | 0.6479   | 0.6682                                                                                                         | 0.7459     | 0.7464  | 0.7901   | 0.8314   | 0.8649   |
| Characterization Factor, UOP K          |        | 12.93    | 12.64                                                                                                          | 11.83      | 11.87   | 11.72    | 11.66    | 11.75    |
| Sulfur Content, Wt.\$                   | 0.356  | 0.001    | 0.002                                                                                                          | 0.011      | 0.012   | 0.027    | 0.061    | 0.171    |
| RVP, psia                               | 3.5    | 10.3     | 9.5                                                                                                            | 2.2        | 2.1     | 0.9      | 0.1      |          |
| RVP Index                               |        | 162.0    | 150.0                                                                                                          | 28.3       | 26.9    | 10.5     | 0.9      |          |
| Research Octane, Clear                  |        | 72.0     | 70.8                                                                                                           |            |         |          |          | I        |
| +0.5 gm Pb/gal                          |        | 78.7     | 78.6                                                                                                           |            |         |          |          |          |
| +1.0 gm Pb/gal                          |        | 83.7     | 82.7                                                                                                           |            | I       | 1        |          | T I      |
| +2.0 gm Pb/gal                          |        | 68.2     | 37.3                                                                                                           |            | 1       | 1        | 1        | 1        |
| +3.17 gm Pb/gal                         |        | 91.1     | 90.2                                                                                                           |            | 1       | 1        |          |          |
| Motor Octane, Clear                     |        | -9.2     | 68.8                                                                                                           |            | 1       | 1        |          |          |
| +0.5 gm Pb/gal                          |        | 76.9     | 76.7                                                                                                           |            | 1       |          | 1        | 1        |
| +1.0 gm Pb/gal                          |        | 31.5     | 1 8C.8                                                                                                         |            |         |          | 1        | 1        |
| +2.0 gm Pb/gai                          |        | 57.0     | 36.0                                                                                                           |            | 1       | 1        |          |          |
| +3.17 gm Pb/gal                         |        | 91.1     | 90.0                                                                                                           |            |         | 1        | 1        |          |
| Total Parattins, LVS                    |        | 100.0    | 38.7                                                                                                           | 33.0       | 43.4    | 41.2     | 1        | 1        |
| Total Naphthenes, LVS                   |        | 2.2      | 3.8                                                                                                            | 46.4       | 47.1    | 43.8     | 1        |          |
| Total Aromatics, LV\$                   |        | 0.0      | 2.5                                                                                                            | 9.7        | 9.5     | 1.15.0   | 22.0     |          |
| Freeze Point, "F                        |        |          | 1                                                                                                              | -105.0     | -105.0  | -89.0    | -43.0    | 1        |
| Freeze Point Index                      |        |          |                                                                                                                | 16.0       | 16.0    | 25.0     | 105.0    |          |
| Pour Point, °F                          | -40.0  |          | †                                                                                                              | 10.0       | 10.00   | 1        | -60.0    | 0.0      |
| Pour Point Index                        |        |          |                                                                                                                |            |         | 1        | 53.0     | 360.0    |
| Smoke Point, mm                         |        |          |                                                                                                                |            |         | 21.7     | 13.6     | 1 20010  |
| Aniline Point, *F                       |        |          |                                                                                                                |            |         | 130.0    | 145.0    | 164.0    |
| Diesel Number                           |        |          |                                                                                                                |            |         | 1 1000   | 1-2-0    | 1 10-10  |
| Cetane Number                           |        |          | <u> </u>                                                                                                       |            |         |          |          |          |
| Cetane Index                            |        |          |                                                                                                                |            |         |          | 47.5     | 55.0     |
| Viscosity, cs ê 122°F                   |        |          |                                                                                                                | 0.75       | 0.77    | 1.03     | 1.75     | 4.1      |
| , cs € 210°F                            |        |          |                                                                                                                |            | and all | - Laine  | 1.12     | - 4.     |
| Viscosity Index @ 122°F                 |        |          |                                                                                                                | 79.0       | 75.0    | 70.0     | 50.0     | 48.0     |
| Nitrogen Content, Wt.\$                 |        |          | <u> </u>                                                                                                       | - / dail   | 19-19-  | /0-0     | 50.0     | 40.0     |
| Nickel Content, wt.                     |        |          | ł                                                                                                              |            |         |          | +        |          |
| Vanadium Content, ppm wt.               |        |          |                                                                                                                |            |         |          | +        | +        |
| ASTM Distillation Temp., °F. IBP        | _      |          |                                                                                                                | 179        | :91     | 1 100    | 1 100    | 617      |
| ASIM JISTILIATION Lemp., 'r, IOP<br>105 |        | 49       | 91<br>109                                                                                                      |            | 204     | 309      | 408      | 567      |
|                                         |        | 113      | 109                                                                                                            | 192<br>208 | 216     | 325      | 439      | 559      |
| 30%<br>50%                              |        |          | the second s |            | 229     | 332      | 459      | 601      |
| 70%                                     |        |          | 130                                                                                                            | 220        | 229     | 337      | 474      | 614      |
|                                         |        | 136      |                                                                                                                | 234        | 261     | 351      | 498      | 634      |
| 90%<br>FP                               |        |          | 171                                                                                                            |            |         |          |          | 656      |
|                                         |        | 173      | 228                                                                                                            | 232        | 290     | 362      | 529      |          |
| VABP, °F                                |        | 128      | 142                                                                                                            | 227        | 235     | 335      | 452      | 590      |
|                                         |        |          |                                                                                                                |            |         |          |          |          |
|                                         |        |          |                                                                                                                |            |         |          |          |          |
|                                         |        |          |                                                                                                                |            |         |          |          |          |
|                                         |        |          |                                                                                                                |            |         |          |          |          |
|                                         |        |          |                                                                                                                |            |         |          |          |          |
|                                         | 1      |          | 1                                                                                                              |            |         |          | 1        |          |

|                                                      | RESID  | UES      |         |       |
|------------------------------------------------------|--------|----------|---------|-------|
|                                                      | Tcoped | Vacuum   | Vacuum  | 1     |
| CUT NAME                                             | Crude  | Cas Cil  | Bottoms |       |
| TBP Cut Point, °F                                    | 650+   | 650/1050 |         | 1     |
| Yield, LV\$                                          | 43.5   | 33.2     | 10.3    |       |
| Yield, Wt.\$                                         | 47.17  | 35.25    | 11.32   | 1     |
| Gravity, "API                                        | 20.7   | 24.0     | 11.1    | I.    |
| Density, Lbs/81                                      | .325.1 | 318.3    | 347.1   | 1     |
| Specific Gravity                                     | 0.9795 | 0.9100   | 0.9923  |       |
| UOP K                                                |        | 11.90    |         | 1     |
| VABP, °F                                             |        | B11.C    |         |       |
| Sulfur Content, Wt.S                                 | 2.669  | 0.533    | 1.070   |       |
| Pour Point, °F                                       | 85_0   | _75.0    | 100.0   | <br>Τ |
| Viscosi⁺y, cs @ 122°F                                | 420.0  | 120.0    | 70.000  |       |
| , cs @ 210°F                                         |        |          |         | <br>I |
| Viscosi v Index @ 122°F                              | 20.5   | .25.0    | 5.0     | 1     |
| Nitrogen Content, Wt.\$                              | 0_139_ | 0.063    | 0.364   | <br>  |
| Nickel Content, ppm Wt.<br>Vanadium Content, ppm Wt. | 4.05   | 0.08     | 15.80   | 1     |
|                                                      | 3.01   | 0.11     | 11.60   | 1     |
| Aniline Point, °F                                    |        | 192_0    |         | <br>  |
| Aromatics, Wt.\$                                     |        |          |         | <br>1 |
| Conradson Carbon, Wt.\$                              | 4.34   | 0.80     | 14-80   |       |
| Asphaltenes, Wt.\$                                   | 1_0    | 0.053    | 3.8     | 1     |
| Refrac. Index @ _ 57 °C                              |        | 1.4894   |         | <br>  |
|                                                      |        |          |         | 1     |
|                                                      |        |          |         | <br>1 |
|                                                      |        |          |         | <br>  |
|                                                      |        |          |         | <br>  |
|                                                      |        |          |         | <br>  |
|                                                      |        |          |         | <br>+ |
|                                                      |        |          |         | <br>  |
|                                                      |        |          |         | <br>  |
|                                                      |        |          |         | <br>1 |

| LIGHT              | 1 Sin C | rude |
|--------------------|---------|------|
| HYDROCARBONS       | hT.     | Vol. |
| Methane            | 0.0     | 0.0  |
| Ethane             | 0.04    | 0.1  |
| Propane            | 0.16    | 0.3  |
| Isobutane          | 0.20    | 0.3  |
| n-Butane           | 0.48    | 0.7  |
| Isopentane         |         | 0.8  |
| n-Pentane          |         | 0.7  |
| Cyclopentane       |         | 0.02 |
| sohexanes          |         | 0.48 |
| n-Hexane           |         | 0.39 |
| Methylcyclopentane |         | 0.39 |
| Benzene            |         | 0.19 |
| Cyclohexane        |         | 0.42 |
| Isoheptanes        |         | 1.30 |
| Normal Heptane     |         | 0.27 |
| C7 Cyclopentanes   |         | 1.02 |
| Methylcyclohexane  |         | 0.55 |
| Toluene            |         | 0.34 |
| Isooctanes         |         | 1.43 |
| Normal Octane      |         | 0.29 |
| Cg Cyclopentanes   | hanne   | 0.69 |
| C8 Cyclohexanes    |         | 0.37 |
| Ethylbenzene       |         | 0.07 |
| Paraxylene         | ++      | 0.09 |
| Metaxylene         |         | 0.14 |
| Orthoxylene        |         | 0.12 |
| Cg Paraffins       |         |      |
| Cg Naphthenes      |         |      |
| Cg Aromatics       |         |      |
|                    |         |      |
|                    |         |      |

#### REFINERY PRODUCTS AND FEEDSTOCKS

Products

C3 LPG C<sub>4</sub> LPG Propylene Propane Butylenes Isobutane Normal butane Benzene Toluene Mixed xylenes  $C_{0}$  aromatics Régular gasoline Premium gasoline Low-lead gasoline Lead-free gasoline Naphtha-type jet fuel (JP-4) Kerosene Kerosene-type jet fuel (Jet A) Diesel fuel No. 2 heating oil High-sulfur fuel oil Low-sulfur fuel oil Ethylene Butadiene Coke (low-sulfur) Coke (high-sulfur)

#### Feedstocks

Louisiana sweet crude West Texas sour crude California heavy crude Alaskan North Slope crude Normal butane Isobutane Natural gasoline Ethane Propane

#### REFINERY MODEL PRODUCT SPECIFICATIONS

#### Gasoline Specification

|           | Density       | Sulfur       | RVP   | TEL     | Va    | porizati<br>(vol%) | on           |       |     |
|-----------|---------------|--------------|-------|---------|-------|--------------------|--------------|-------|-----|
|           | <u>(1b/b)</u> | <u>(wt%)</u> | Index | (G/gal) | 130°F | 235°F              | <u>356°F</u> | R ON* | MON |
| Regular   |               |              |       |         |       |                    |              |       |     |
| Minimum   |               |              | 87.5  | **      | 10    | 50                 | 90           | 94    | 86  |
| Maximum   | 265           | 0.1          | 166.0 | 3.17    | ••    | 70                 |              |       |     |
| Premium   |               |              |       |         |       |                    |              |       |     |
| Minimum   |               |              | 87.5  |         | 10    | 50                 | 90           | 100   | 92  |
| Maximum   | 265           | 0.1          | 166.0 | 3.17    |       | 70                 |              |       |     |
| Low lead  |               |              |       |         |       |                    |              |       |     |
| Minimum   | ••            |              | 87.5  |         | 10    | 50                 | 90           | 92    | 84  |
| Max imum  | 26 5          | 0.1          | 166.0 | 0.5     |       | 70                 |              |       |     |
| Lead-free |               |              |       |         |       |                    |              |       |     |
| Minimum   | ••            |              | 87.5  | 0       | 10    | 50                 | 90           | 91    | 83  |
| Maximum   | 265           | 0.1          | 166.0 | 0       |       | 70                 |              | ••    |     |

#### Jet Fuel and Kerosene Specifications

|          | Density | R VP  | Sul fur | Aromatics | Smoke |       |       | Vapori:<br>(vo) |        |              |       |
|----------|---------|-------|---------|-----------|-------|-------|-------|-----------------|--------|--------------|-------|
|          | (15/5)  | Index | (wt%)   | (vo1%)    | Point | 290°F | 350°F | <u>370° F</u>   | 400° F | <u>450°F</u> | 470°F |
| JP-4     |         |       |         |           |       |       |       |                 |        |              |       |
| Minimum  | 262.5   | 25.5  |         |           |       | 20    |       | 50              |        |              | 90    |
| Maximum  | 280.3   | 40.1  |         | 25.0      |       |       |       |                 | ••     |              |       |
| Kerosene |         |       |         |           |       |       |       |                 |        |              |       |
| Minimum  | 271.1   |       |         |           | 20    |       |       |                 |        |              |       |
| Maximum  | 290.2   |       | 0.3     | 25        |       | ••    | 10    |                 | 50     |              |       |
| Jet A    |         |       |         |           |       |       |       |                 |        |              |       |
| Minimum  |         | ••    |         |           | 25    |       |       |                 | 10     | 50           |       |
| Maximum  | 288.5   |       | 0.3     | 20        |       |       |       |                 |        |              |       |

#### Distillates and Fuel Oil Specifications

|                                           | Density<br>(1b/b) | Sulfur<br>(wt%) | Pour Point<br>Index | Cetane<br>Index | Visc<br><u>Index</u> |        | zation<br>1%)<br>590°F |
|-------------------------------------------|-------------------|-----------------|---------------------|-----------------|----------------------|--------|------------------------|
| Diesel<br>Minimum<br>Maximum              | 297.2             | 0.5             | 410                 | 50<br>          |                      | <br>90 | 90<br>                 |
| No. 2<br>Minimum<br>Maximum               | 306.4             | 0.5             | 615                 | 40              |                      | <br>90 | ••                     |
| No. 6 (low sulfur)<br>Minimum<br>Maximum  | 350               | 1.0             | ••                  | ••              | 19.1                 |        |                        |
| No. 6 (high sulfur)<br>Minimum<br>Maximum | 350               | 3.0             |                     |                 | 19.1                 |        |                        |

|                                 | Density<br>(1b/b) | RVP<br>(psia) |
|---------------------------------|-------------------|---------------|
| C3 LPG<br>Minimum<br>Maximum    | 104.4             | 215.0         |
| C4 LPG<br>Minimum<br>Maximum    | 104.4             | <br>85.0      |
| Refy F.G.<br>Minimum<br>Maximum | 104.4             |               |

#### LPG Specifications

\*Clear (lead-free) octane numbers.

#### PROCESS UNITS IN REFINERY LP MODEL

| Process                                                                                                                                            | Туре                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Crude (atmospheric fractionation)                                                                                                                  | Conventional distillation                                |
| Saturates gas recovery plant                                                                                                                       | Fractionating absorber with debutanizer and depropanizer |
| Vacuum tower                                                                                                                                       | Conventional vacuum distillation                         |
| Fluid catalytic cracker                                                                                                                            | Riser cracking, zeolite catalyst                         |
| Catalytic reformer gasoline manufacture                                                                                                            | Cyclic regeneration, bimetallic catalyst                 |
| Catalytic reformer arómatics manufacture                                                                                                           | Cyclic regeneration, bimetallic catalyst                 |
| Aromatics extraction                                                                                                                               | Sulfolane                                                |
| Aromatics recovery<br>Benzene tower<br>Toluene tower<br>Xylene tower                                                                               | Distillation and clay treat                              |
| Toluene dealkylation                                                                                                                               | Noncatalytic hydrodealkylation                           |
| Treating and sweetening<br>LPG<br>Gasoline<br>Naphtha<br>Kerosene<br>Diesel                                                                        | Merox                                                    |
| Hydrodesulfurization<br>Naphtha (catalytic reformer feed preparation)<br>Kerosene<br>Distillate<br>Vacuum gas oil<br>Residuum hydrodesulfurization | Fixed bed CoMo catalyst                                  |
| Hydrocrackinggas oil                                                                                                                               | 2 stage, fixed bed                                       |
| Alkylation<br>Propylene<br>Butylene                                                                                                                | HF Acid catalyst                                         |
| N-paraffin separation                                                                                                                              | Molecular sieve                                          |
| C <sub>5</sub> /C <sub>6</sub> isomerization                                                                                                       | Fixed bed catalytic                                      |
| Unsaturated gas recovery                                                                                                                           | Same as Satgas plant                                     |
| Hydrogen manufacturesteam reforming<br>Fuel gas<br>Refinery fuel gas<br>Naphtha -                                                                  | High temperature fixed bed                               |
| Olefins manufacture                                                                                                                                | Pyrolysis, cryogenic recovery                            |
| Butadiene extraction                                                                                                                               | Extraction distillation                                  |
| Pyrolysis naphtha hydrotreater                                                                                                                     | 2-stage catalytic                                        |
| Delayed coking                                                                                                                                     |                                                          |

# FRACTIONATION OF LOUISIANA CRUDE (Barrels per Barrel of Feed)

|                 | Atmospheric  | Vacuum        |               |
|-----------------|--------------|---------------|---------------|
| Operating Mode  | Distillation | Distillation  | Gas Recovery  |
| (m. 1 - (h / 1) | 1 000        |               |               |
| Crude (b/d)     | -1.000       |               |               |
| Products (b/d)  |              |               |               |
| Ethane (FOE)    | 0.00046      |               |               |
| Propane         | 0.0030       |               |               |
| I-Butane        | 0.0030       |               | -1.000 (feed) |
| N-Butane        | 0.0070       |               |               |
| C5/160 LSR      | 0.0360       |               |               |
| Naphtha 160/295 | 0.0980       |               |               |
| Heavy naphtha   | 0.0750       |               |               |
| Kerosene        | 0.1910       |               | •             |
| Light gas oil   | 0.1510       |               |               |
| Topped crude    | 0.4350       | -1.000 (feed) |               |
| Vacuum gas oil  |              | 0.7632        |               |
| Vacuum bottoms  |              | 0.2368        |               |
| I-Butane        |              |               | 1.000         |

#### Table A-6

# CATALYTIC HYDROTREATER YIELDS (Barrels per Barrel of Feed)

|                                           |          | Atmospheric | Light Cycle |         |             |
|-------------------------------------------|----------|-------------|-------------|---------|-------------|
|                                           |          | Gas Oil     | Gas Oil     |         | Atmospheric |
| Feedstock                                 | Kerosene | (AGO)       | (LCGO)      | VGO     | Residual    |
|                                           |          |             |             |         |             |
| Hydrogen (FOE)                            | -0.0056  | -0.0076     | -0.0094     | -0.0198 | -0.0208     |
| Hydrogen sulfide (FOE)                    | 0.0002   | 0.0006      | 0.0021      | 0.00363 | 0.0075      |
| Methane (FOE)                             | 0.00004  | 0.00008     | 0.00008     | 0.0025  | 0.0031      |
| Ethane (FOE)                              | 0.00005  | 0.00009     | 0.00009     | 0.0027  | 0.0027      |
| Propane                                   | 0.0001   | 0.0003      | 0.0003      | 0.0069  | 0.0072      |
| Isobutane                                 | 0.0001   | 0.0001      | 0.0001      | 0.0014  | 0.0020      |
| Normal butane                             | 0.0      | 0.0001      | 0.0001      | 0.0026  | 0.0032      |
| C5/375 Hydrotreated (HT)                  |          |             |             |         |             |
| Naphtha                                   |          |             |             | 0.0091  | 0.0346      |
| 375/650 Hydrotreated (HT)                 |          |             |             |         |             |
| Distillate                                |          |             |             | 0.0085  | 0.1131      |
| Desulfurized kerosene                     | 1.0010   |             |             |         |             |
| Desulfurized AGO                          |          | 1.0000      |             |         |             |
| Desulfurized LCGO                         |          | 1.0000      | 1,000       |         |             |
| Desulfurized VGO                          |          |             | 1.000       | 0.980   |             |
| Desulfurized veo<br>Desulfurized residual |          |             |             | 0.900   | 0.8542      |
| Desulturized residual                     |          |             |             |         | 0.0342      |
| Unit Liquid Volume (LV) loss              |          |             |             |         |             |
| (gain)                                    | 0.00411  | 0.00633     | 0.0066      | 0.0025  | -0.0073     |
|                                           |          |             |             |         |             |

HYDROGEN CONSUMPTION IN NAPHTHA HYDROTREATING FOR CATALYTIC REFORMER FEED (FOE Barrels of H<sub>2</sub> per Barrel of Feed)

## Hydrogen Consumption

| Light naphtha       | 0.0028 |
|---------------------|--------|
| Medium naphtha      | 0.0038 |
| Heavy naphtha       | 0.0038 |
| Full-range naphtha  | 0.0038 |
| Cat-cracked naphtha | 0.0154 |
| Coker naphtha       | 0.0154 |

#### Table A-8

GASOLINE REFORMER YIELDS<sup>\*</sup> (Barrels per Barrel of Feed)

|                                                                                                                                                                  | Yields                                                                         |                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------|
| Severity, RON clear                                                                                                                                              | 94 93                                                                          | 3                                                           |
| Hydrogen (FOE)<br>Hydrogen lost to fuel<br>Methane<br>Ethane<br>Propane<br>Isobutane<br>Normal butane<br>94 RON reformate<br>93 RON reformate (heavy<br>naphtha) | 0.0115 0<br>0.0049 0<br>0.0073 0<br>0.0191 0<br>0.0090 0<br>0.0120 0<br>0.8880 | .0359<br>.0090<br>.0074<br>.0130<br>.0304<br>.0123<br>.0158 |
| Unit LV loss (gain)                                                                                                                                              | 0.0023 -0                                                                      | .0109                                                       |
|                                                                                                                                                                  | Severity<br>Range<br><u>RON Clear</u>                                          | Corresponding<br>Gasoline<br>Yield Range<br>(b/b of feed)   |
| Full-range and medium<br>naphtha feeds<br>Heavy naphtha feeds                                                                                                    | 91-103<br>91-103                                                               | 0.908-0.783<br>0.903-0.769                                  |

<sup>\*</sup> Base yields shown are adjusted for N + 2A difference from base.

# AROMATICS REFORMER YIELDS (Barrels per Barrel of Feed)

| Naphtha (160/295°F)    | -1       |
|------------------------|----------|
| Hydrogen (FOE)         | 0.0472   |
| Hydrogen to fuel       | 0.0118   |
| Hydrogen sulfide (FOE) | 0.0003   |
| Methane (FOE)          | 0.0190   |
| Ethane (FOE)           | 0.0332   |
| Propane                | 0.0776   |
| Isobutane              | 0.0277   |
| Normal Butane          | 0.0381   |
| CS/160 reformate       | 0.1064   |
| Raffinate              | 0.1299   |
| Benzene                | 0.0717   |
| Toluene                | 0.1734   |
| Mixed Xylenes          | 0.1584   |
| C9+ aromatics          | 0.1060   |
| Unit LV loss (gain)    | -0.00043 |
| Naphtha HDU feed       | -1       |
| Extraction unit feed   | -0.6394  |
| BTX distillation feed  | -0.5095  |
|                        |          |

#### A.5 Fluid Catalytic Cracker

Fluid catalytic cracking unit, otherwise called FCC or cat cracker, is one of the major processing units in U.S. refineries, with a combined total capacity of more than 4,600,000 b/d. The unit is basically a gasoline producer. By employing a fluidized catalyst system, heavy petroleum fractions are converted into gasoline or lighter products. Unlike the hydrocracker, FCC conversion does not require hydrogen and a high-pressure reactor system. FCC model inputs are shown in Table A-10.

#### A.6 Hydrocracking

Hydrocracking is an efficient, low-temperature catalytic method of converting refractory middle-boiling or residual material to high-octane gasoline, reformer charge stock, jet fuel, and high-grade fuel oil. Unlike reforming, in which hydrogen is produced at the expense of a yield loss, hydrocracking consumes a large amount of hydrogen but results in a liquid yield increase of as much as 25 percent over the feed.

FCC YIELDS (Barrels per Barrel of Fuel)

|                              | Light Gas Oil<br>Base <sup>*</sup> Yield | Heavy Gas Oil<br>Base <sup>*</sup> Yield |
|------------------------------|------------------------------------------|------------------------------------------|
| Atmospheric gas oil          | -1                                       |                                          |
| Vacuum gas oil               |                                          | -1                                       |
| Hydrogen (FOE)               | 0.0009                                   | 0.0010                                   |
| Hydrogen sulfide (FOE)       | 0.0004                                   | 0.0009                                   |
| Methane (FOE)                | 0.0038                                   | 0.0047                                   |
| Ethylene (FOE)               | 0.0033                                   | 0.0039                                   |
| Ethane (FOE)                 | 0.0033                                   | 0.0039                                   |
| Propylene                    | 0.0521                                   | 0.0577                                   |
| Propane                      | 0.0185                                   | 0.0206                                   |
| Butylenes                    | 0.0603                                   | 0.0661                                   |
| Isobutane                    | 0.0588                                   | 0.0634                                   |
| Normal butane                | 0.0163                                   | 0.0177                                   |
| C5/150 CC Naphtha            | 0.1651                                   | 0.1771                                   |
| 150/300 CC Naphtha           | 0.2477                                   | 0.2657                                   |
| 300/430 CC Naphtha           | 0.1376                                   | 0.1476                                   |
| Light cycle oil              | 0.2462                                   | 0.2453                                   |
| Slurry oil                   | 0.0538                                   | 0.0547                                   |
| CC Coke (10 <sup>3</sup> 1b) | 0.01154                                  | 0.0120                                   |
| Unit LV loss (gain)          | -0.0681                                  | -0.1303                                  |

Base yields at 70 percent conversion are corrected for  $\Delta$  conversion in 60 to 90 percent range, feed density, and feed nitrogen content.

Reactions involved in hydrocracking are cracking, hydrogenation, cyclization, and isomerization. The product gasoline cut is rich in saturated cyclic components (naphthenes) and can be reformed to a premium grade blending stock. The model inputs for maximum gasoline inputs are shown in Table A-11; those for distillate production are shown in Table A-12.

#### A.7 Alkylation

High-octane gasoline stock called alkylate is produced in the alkylation reaction between olefins, usually propylene and butylene, and isobutane with sulfuric acid or hydrogen fluoride as catalyst. The total alkylation capacity in the United States is 868,5000 b/d. Of this, about 60 percent is produced in the plants that use sulfuric acid, and the

HYDROCRACKER--MAXIMUM GASOLINE OPERATION (Barrels per Barrel of Feed)

| -1      |                                                                                                   |
|---------|---------------------------------------------------------------------------------------------------|
|         | -1                                                                                                |
| -0.0922 | -0.1251                                                                                           |
| 0.0128  | 0.0128                                                                                            |
| 0.0023  | 0.0027                                                                                            |
| 0.0067  | 0.0068                                                                                            |
| 0.0364  | 0.0370                                                                                            |
| 0.0965  | 0.0920                                                                                            |
| 0.0504  | 0.0480                                                                                            |
| 0.3483  | 0.3340                                                                                            |
| 0.7086  | 0.7911                                                                                            |
| -0.1704 | -0.2013                                                                                           |
|         | -0.0922<br>0.0128<br>0.0006<br>0.0023<br>0.0067<br>0.0364<br>0.0965<br>0.0504<br>0.3483<br>0.7086 |

Table A-12

HYDROCRACKER--DISTILLATE PRODUCTION (Barrels per Barrel of Feed)

|                        | Jet Fuel or<br>Kerosene Operation | Diesel or No. 2<br>Fuel Oil Operation |
|------------------------|-----------------------------------|---------------------------------------|
| Vacuum gas oil         | -1                                | -1                                    |
| Hydrogen (FOE)         | -0.0996                           | -0.0846                               |
| Hydrogen losses (FOE)  | 0.0128                            | 0.0102                                |
| Hydrogen sulfide (FOE) | 0.0020                            | 0.0020                                |
| Methane (FOE)          | 0.0024                            | 0.0021                                |
| Ethane (FOE)           | 0.0059                            | 0.0051                                |
| Propane                | 0.0260                            | 0.0161                                |
| Isobutane              | 0.0479                            | 0.0302                                |
| Normal butane          | 0.0270                            | 0.0261                                |
| C5/180 Hydrocrackate   | 0.1955                            | 0.0873                                |
| 180/300 Hydrocrackate  | 0.3438                            |                                       |
| 180/345 Hydrocrackate  |                                   | 0.2625                                |
| 300/550 Hydrocrackate  | 0.5932                            | •                                     |
| 345/650 Hydrocrackate  |                                   | 0.7564                                |
| Unit LV gain (loss)    | -0.1569                           | -0.1134                               |

remainder in plants that use hydrogen fluoride. Alkylates are highly branched paraffins having clear research octane rating of 93 to 97. Model inputs for alkylation are shown in Table A-13.

#### Table A-13

#### ALKYLATION UNIT (Barrels per Barrel of Feed)

|                         | Propylene<br><u>Alkylation</u> | Butylene<br>Alkylation |
|-------------------------|--------------------------------|------------------------|
| Propylene               | -0.5682                        |                        |
| Butylenes               |                                | -0.5650                |
| Isobutane               | -0.7743                        | -0.6497                |
| C <sub>3</sub> Alkylate | 1.00                           |                        |
| C <sub>4</sub> Alkylate |                                | 1.0                    |
| Unit LV loss (gain)     | 0.3425                         | 0.2147                 |

#### A.8 Isomerization and Molecular Sieve Isoparaffin Separation

An isomerization unit is used to convert normal paraffins into isoparaffins for octane upgrading. This is a catalytic reaction carried out in a hydrogen atmosphere. The feed is heated with recycle hydrogen and charged to reactors loaded with solid catalyst. Reaction conditions are generally at temperatures of 250° to 350°F and pressures between 250 and 400 psig. Chlorine on the catalyst promotes isomerization reactions. A small amount of chlorine in the form of decomposable chloride is continuously added to replace the depleted portion. The model inputs are shown in Tables A-14 and A-15.

#### Table A-14

ISOMERIZATION OPERATION (Barrels per Barrel of Feed)

C5/C6 feed (b/d) -1.00 H<sub>2</sub> consumption (FOE b/d) -0.0097 Products (b/d) Methane (FOE) 0.00095 Ethane (FOE) 0.00167 Propane (FOE) 0.01398 Isomerate 1.000

MOLECULAR SIEVE UNIT (N-PARAFFIN SEPARATION) (Barrels per Barrels of Feed)

| C5/160 Light straight run | -1    |       |
|---------------------------|-------|-------|
| C5/175 Light straight run |       | -1    |
| C5/C6 Normal paraffin     | 0.416 | 0.338 |
| C5/C6 Isomerate           | 0.584 | 0.662 |

#### A.9 Hydrogen Plant

The hydrogen produced from the catalytic reforming operation is often sufficient to replace the hydrogen consumed by the usual naphtha and middistillate hydrotreating. A hydrogen plant becomes necessary when the refinery installs a major hydrogen-consuming unit, such as a hydrocracker or a fuel oil desulfurization unit.

Hydrogen can be produced from natural gas, naphtha, or heavier feedstocks. The heavier the feedstock, the higher the production costs. Model inputs are shown in Table A-16.

#### Table A-16

HYDROGEN PLANT YIELDS (Barrels per Barrel of Feed)

|                              | Fuel Gas | <u>Naphtha</u> |
|------------------------------|----------|----------------|
| Hydrogen (FOE)               | 1.0      | 1.0            |
| Fuel gas (FOE)               | -0.8747  |                |
| Naphtha (10 <sup>3</sup> 1b) |          | -0.299         |
| Unit LV loss (gain)          | -0.1253  | -1             |

#### A.10 Delayed Coker

Delayed coking is used to convert the low-grade pitch materials such as vacuum column bottoms, FCC slurry oil, etc., into lighter liquids and raw coke. The delayed coking capacity in the United States is now about 43,400 short tons of raw coke per day, or about 900,000 b/d as liquid feed. Because a large percentage of sulfur in the feed ends up in coke, the process provides an efficient means of controlling the sulfur level in fuel oils. Raw coke, often called green coke, has numerous uses other than as fuel when it can meet certain specifications. For example, if the sulfur content is less than 1.5 percent, it is calcined and used as electrode in metallurgical applications (primary aluminum production and steel production). Model inputs are shown in Table A-17.

Table A-17

DELAYED COKER YIELDS (Barrels per Barrel of Feed)

. .

| Vac Resid              | -1     |
|------------------------|--------|
| Hydrogen (FOE)         | 0.0023 |
| H <sub>2</sub> S (FOE) | 0.0019 |
| CH <sub>4</sub> (FOE)  | 0.0360 |
| C <sub>2</sub> Ū (FOE) | 0.0032 |
| $C_2S$ (FOE)           | 0.0242 |
| Propylene              | 0.0152 |
| Propane                | 0.0337 |
| Butylene               | 0.0171 |
| I-Butane               | 0.0073 |
| N-Butane               | 0.0167 |
| Coker gasoline         | 0.27   |
| Light coker GO         | 0.28   |
| Heavy coker GO         | 0.14   |
| Raw coke $(b/10^3 1b)$ | 0.1123 |
| Unit LV loss (gain)    | 0.1524 |

#### A.11 Hydrodealkylation

Dealkylation of alkylbenzene (toluene, ethylbenzene, etc.) is an important source of benzene because the demand for benzene as a petrochemical raw material often exceeds the amount recoverable from reformate, pyrolysis gasoline, or other hydrocarbon streams. Dealkylation reaction removes side chains of aromatics molecules and thus produces benzene and gaseous products. Model inputs are shown in Table A-18.

#### A.12 Gasoline Blending Properties

The gasoline blending properties specified for this model are shown in Table A-19.

#### A.13 Distillate Blending

The distillate blending properties assumed for this report are shown in Table A-20.

| TOLUENE  | DEAI | LKYLATI | DN ( | YIELDS |
|----------|------|---------|------|--------|
| (Barrels | per  | Barrel  | of   | Feed)  |

| Operating mode                                                                                      | TDA                                                               |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Feed (b/d)                                                                                          |                                                                   |
| Toluene<br>H <sub>2</sub> consumption (FOE)                                                         | -1.00<br>-0.0753                                                  |
| Product (b/d)                                                                                       |                                                                   |
| H <sub>2</sub> (FOE)<br>Methane (FOE)<br>Ethane (FOE)<br>Propane<br>I-Butane<br>N-Butane<br>Benzene | 0.0050<br>0.2072<br>0.0053<br>0.0072<br>0.0040<br>0.0019<br>0.800 |

. .

# GASOLINE BLENDING PROPERTIES

|                          |       | RESEARCH | OCTANE | NUMBERS  | MOTOR OCTANE NUMBERS |       |       |       |       |          |  |  |
|--------------------------|-------|----------|--------|----------|----------------------|-------|-------|-------|-------|----------|--|--|
| ANTIKNOCK LEVEL G PB/GAL | 0.0   | 0.5      | 1.0    | 2.0      | 3.17                 | 0.0   | 0.5   | 1.0   | 2.0   | 3.17     |  |  |
|                          | J     | К        | L      | <u>M</u> | N                    | 0     | P     |       | R     | <u> </u> |  |  |
| NATURAL GASOLINE         | 66.6  | 74.9     | 79.3   | 84.5     | 88.3                 | 68.7  | 75.7  | 79.5  | 84.1  | 87.6     |  |  |
| ISOBUTANE                | 102.8 | 106.3    | 108.4  | 110.7    | 111.6                | 100.7 | 104.8 | 107.5 | 110.6 | 112.2    |  |  |
| NORMAL BUTANE            | 97.4  | 99.8     | 101.4  | 103.2    | 104.1                | 92.5  | 97.3  | 99.9  | 103.1 | 104.7    |  |  |
| LSR (C5/160) A           | 72.0  | 79.7     | 83.7   | 88.2     | 91.1                 | 68.2  | 76.9  | 81.5  | 87.0  | 91.1     |  |  |
| LSR (C5/160) B           | 72.1  | 77.3     | 80.1   | 84.4     | 88.6                 | 71.5  | 76.7  | 79.6  | 83.3  | 86.4     |  |  |
| LSR (C5/175) A           | 70.8  | 78.6     | 82.7   | 87.3     | 90.2                 | 68.8  | 76.7  | 80.8  | 86.0  | 90.0     |  |  |
| LSR (C5/175) B           | 71.0  | 76.3     | 79.2   | 83.5     | 87.6                 | 70.0  | 75.4  | 78.3  | 82.2  | 85.3     |  |  |
| PROPYLENE ALKYLATE       | 91.0  | 95.0     | 97.2   | 99.8     | 102.0                | 89.0  | 94.5  | 97.4  | 100.9 | 104.0    |  |  |
| BUTYLENE ALKYLATE        | 97.0  | 100.2    | 102.5  | 105.5    | 108.0                | 95.0  | 99.5  | 102.4 | 106.5 | 110.0    |  |  |
| C5/C6 ISOMERATE          | 83.4  | 89.1     | 92.2   | 95.8     | 98.2                 | 80.2  | 87.9  | 91.8  | 96.3  | 99.3     |  |  |
| RAFFINATE                | 62.7  | 72.1     | 77.1   | 82.9     | 87.2                 | 64.1  | 72.5  | 76.9  | 81.7  | 84.4     |  |  |
| C5/180 HYDROCRACKATE     | 81.0  | 86.4     | - 89.2 | 92.6     | 95.0                 | 78.4  | 85.2  | 88.8  | 92.9  | 95.7     |  |  |
| 180/400 HYDROCRACKATE    | 52.0  | 60.4     | 64.9   | 70.3     | 74.0                 | 52.7  | 61.7  | 66.5  | 72.2  | 76.1     |  |  |
| 180/300 HYDROCRACKATE    | 56.0  | 65.3     | 70.3   | 76.0     | 80.0                 | 56.4  | 65.3  | 70.1  | 75.7  | 79.5     |  |  |
| 180/345 HYDROCRACKATE    | 54.0  | 62.8     | 67.6   | 73.1     | 77.0                 | 54.5  | 63.5  | 68.3  | 73.9  | 77.8     |  |  |
| C5/150 CC NAPHTHA        | 94.4  | 97.3     | 99.0   | 101.1    | 103.0                | 83.6  | 87.1  | 89.1  | 91.4  | 93.1     |  |  |
| 150/300 CC NAPHTHA       | 91.6  | 94.1     | 95.5   | 97.2     | 98.4                 | 75.7  | 79.3  | 81.3  | 83.7  | 85.5     |  |  |
| 300/430 CC NAPHTHA       | 86.0  | 88.9     | 90.5   | 92.4     | 93.8                 | 77.4  | 80.0  | 81.4  | 83.2  | 84.5     |  |  |
| COKER GASO C5-400 (A)    | 60.0  | 64.0     | 67.0   | 76.0     | 83.0                 | 51.0  | 55.0  | 62.0  | 68.0  | 72.0     |  |  |
| COKER GASO C5-400 (B)    | 60.0  | 64.0     | 67.0   | 76.0     | 83.0                 | 51.0  | 55.0  | 62.0  | 68.0  | 72.0     |  |  |
| C5/160 REFORMATE         | 86.4  | 91.7     | 94.6   | 97.7     | 99.4                 | 82.9  | 89.7  | 92.9  | 96.9  | 100.0    |  |  |
| BENZENE                  | 108.8 | 111.9    | 113.8  | 115.9    | 116.9                | 93.3  | 97.3  | 99.5  | 102.5 | 104.8    |  |  |
| TOLUENE                  | 114.1 | 115.9    | 117.1  | 118.8    | 120.4                | 99.0  | 102.8 | 105.4 | 108.2 | 109.3    |  |  |
| MIXED XYLENES            | 111.6 | 112.2    | 112.6  | 113.0    | 113.4                | 107.2 | 108.8 | 109.8 | 111.1 | 112.1    |  |  |
| C9+ AROMATICS            | 108.7 | 110.2    | 110.8  | 111.7    | 112.7                | 92.9  | 93.2  | 93.7  | 94.5  | 95.0     |  |  |
| PYROLYSIS C5 S           | 93.0  | 94.7     | 95.7   | 96.9     | 97.8                 | 76.3  | 78.0  | 79.0  | 80.3  | 81.2     |  |  |
| PYROLYSIS GASOLINE       | 100.7 | 101.8    | 102.5  | 103.4    | 104.1                | 90.0  | 91.5  | 92.4  | 93.5  | 94.3     |  |  |
| PYROLYSIS RAFFINATE      | 62.7  | 72.1     | 77.1   | 82.9     | 87.2                 | 64.1  | 72.5  | 76.9  | 81.7  | 84.4     |  |  |
| C5/375 VHT NAPHTHA       | 52.0  | 60.4     | 64.9   | 70.3     | 74.0                 | 52.7  | 61.7  | 66.5  | 72.2  | 76.1     |  |  |
| C5/375 RHT NAPHTHA       | 52.0  | 60.4     | 64.9   | 70.3     | 74.0                 | 52.7  | 61.7  | 66.5  | 72.2  | 76.1     |  |  |
| 91 RON REFORMATE         | 91.0  | 94.2     | 96.0   | 98.1     | 99.6                 | 81.9  | 85.4  | 87.3  | 98.6  | 91.3     |  |  |
| 94 RON REFORMATE         | 94.0  | 96.6     | 98.1   | 99.8     | 101.3                | 83.9  | 87.1  | 88.9  | 91.1  | 92.7     |  |  |
| 97 RON REFORMATE         | 97.0  | 98.9     | 100.0  | 101.7    | 103.0                | 85.9  | 88.9  | 90.6  | 92.6  | 94.1     |  |  |
| 100 RON REFORMATE        | 100.0 | 101.5    | 102.5  | 103.7    | 104.7                | 87.8  | 90.6  | 92.2  | 94.1  | 95.5     |  |  |
| 103 RON REFORMATE        | 103.0 | 104.1    | 104.8  | 105.6    | 106.3                | 89.8  | 92.4  | 93.8  | 95.5  | 96.8     |  |  |
| 91 RON REFORMATE (HN)    | 91.1  | 93.1     | 94.3   | 95.7     | 96.7                 | 84.0  | 86.2  | 87.4  | 89.0  | 90.1     |  |  |
| 93 RON REFORMATE (HN)    | 93.1  | 94.9     | 96.0   | 97.3     | 98.2                 | 85.8  | 87.8  | 89.0  | 90.4  | 91.4     |  |  |
| 95 RON REFORMATE (HN)    | 94.9  | 96.6     | 97.5   | 98.7     | 99.5                 | 87.6  | 89.4  | 90.4  | 91.7  | 92.6     |  |  |
| 100 RON REFORMATE (HN)   | 100.0 | 100.9    | 101.5  | 102.2    | 102.8                | 91.6  | 92.8  | 93.4  | 94.3  | 94.9     |  |  |
| 103 RON REFORMATE (HN    | 103.0 | 104.1    | 104.8  | 105.6    | 106.3                | 94.4  | 95.2  | 95.7  | 96.3  | 96.7     |  |  |

,

# Table A-19 (Concluded)

|                        |   | GASO. |          |   |    | ROX       | TEL         | DENSITY | SULFUR      | RVP       | RVP        |          | _        |         | TEDA        |          |
|------------------------|---|-------|----------|---|----|-----------|-------------|---------|-------------|-----------|------------|----------|----------|---------|-------------|----------|
|                        | - | PO    | -        |   | GT | EAT<br>NT | G /GAL<br>Z | LBS/BBL | WT PCT<br>B | PSIA<br>C | INDEX<br>D | 130<br>E | 158      | 235     | 356         | 365      |
|                        | A | B     | <u>C</u> | D | 01 | <u>M1</u> |             | A       |             |           |            |          | <u> </u> | G       | <u>_H</u> _ | <u> </u> |
| NATURAL GASOLINE       | 1 | 1     | 1        | 1 |    |           |             | 230.6   | 0.017       | 13.9      | 231.0      | 56       | 76       | 95      | 100         | 100      |
| ISOBUTANE              | 1 | 1     | 1        | 1 |    |           |             | 197.0   | 0.0         | 72.0      | 1450.0     | 100      | 100      | 100     | 100         | 100      |
| NORMAL BUTANE          | 1 | 1     | 1        | 1 |    |           |             | 204.4   | 0.0         | 10.3      | 162.4      | 62       | 92       | 100     | 100         | 100      |
| LSR (C5/160) A         | 1 | 1     | 1        | 1 | 1  |           |             | 226.6   | 0.001       | 52.0      | 1120.0     | 100      | 100      | 100     | 100         | 100      |
| LSR (C5/160) B         | 1 | 1     | 1        | 1 | 1  |           |             | 226.9   | 0.042       | 9.6       | 149.8      | 50       | 80       | 100     | 100         | 100      |
| LSR (C5/175) A         | 1 | 1     | 1        | 1 | 1  |           |             | 233.7   | 0.002       | 12.2      | 197.8      | 66       | 92       | 100     | 100         | 100      |
| LSR (C5/175) B         | 1 | 1     | 1        | 1 | 1  |           |             | 236.1   | 0.050       | 11.2      | 178.8      | 50       | 80       | 100     | 100         | 100      |
| PROPYLENE ALKYLATE     | 1 | 1     | 1        | 1 |    |           |             | 250.3   | 0.0         | 4.7       | 58.5       | 3        | 8        | 79      | 98          | 99       |
| BUTYLENE ALKYLATE      | 1 | 1     | 1        | 1 |    |           |             | 248.4   | 0.0         | 4.9       | 66.4       | 2        | 6        | 88      | 99          | 100      |
| C5/C6 ISOMERATE        | 1 | 1     | 1        | 1 |    |           |             | 228.5   | 0.001       | 14.2      | 236.6      | 72       | 100      | 100     | 100         | 100      |
| RAFFINATE              | 1 | 1     | 1        | 1 |    |           |             | 251.0   | 0.001       | 4.2       | 58.5       | 0        | 7        | 49      | 92          | 94       |
| C5/180 HYDROCRACKATE   | 1 | 1     | 1        | 1 | 1  |           |             | 231.4   | 0.0005      | 13.0      | 213.0      | 50       | 90       | 100     | 100         | 100      |
| 180/400 HYDROCRACKATE  |   | 1     |          |   |    | 1         |             | 270.4   | 0.001       | 1.0       | 11.8       | 0        | 0        | 10      | 86          | 90       |
| 180/300 HYDROCRACKATE  | 1 |       |          |   |    | 1         |             | 261.3   | 0.001       | 1.4       | 17.1       | 0        | 0        | 27      | 100         | 100      |
| 180/345 HYDROCRACKATE  | 1 |       |          |   |    | 1         |             | 264.0   | 0.001       | 1.2       | 14.4       | 0        | 0        | 14      | 100         | 100      |
| C5/150 CC NAPHTHA      | 1 | 1     | 1        | 1 |    |           |             | 226.8   | 0.01        | 18.9      | 330.9      | 85       | 95       | 100     | 100         | 100      |
| 150/300 CC NAPHTHA     | 1 | 1     | 1        | 1 |    |           |             | 263.8   | 0.025       | 3.9       | 53.8       | 0        | 8        | 72      | 100         | 100      |
| FCC HVY NAPH           | 1 | 1     | 1        | 1 |    |           |             | 294.6   | 0.075       | 0.2       | 2.0        | 0        | 0        | 0       | 31          | 44       |
| COKER GASO C5-400 (A)  | 1 | 1     | 1        | 1 | 1  |           |             | 263.0   | 0.27        | 4.0       | 55.0       | 0        | ĩ        | 60      | 98          | 99       |
| COKER GASO C5-400 (B)  | 1 | 1     | 1        | 1 | 1  |           |             | 263.0   | 0.60        | 4.0       | 55.0       | 0        | 1        | 60      | 98          | 99       |
| C5/160 REFORMATE       | 1 | 1     | 1        | 1 |    |           |             | 232.7   | 0.0         | 13.0      | 213.0      | 62       | 91       | 100     | 100         | 100      |
| BENZENE                | 1 | 1     | 1        | 1 |    |           |             | 309.3   | 0.0005      | 3.2       | 43.1       | 0        | 0        | 100     | 100         | 100      |
| TOLUENE                | 1 | 1     | 1        | 1 |    |           |             | 303.8   | 0.0005      | 1.3       | 15.7       | ŏ        | ŏ        | 100     | 100         | 100      |
| MIXED XYLENES          | 1 | 1     | 1        | 1 |    |           |             | 304.8   | 0.0005      | 0.4       | 4.2        | ŏ        | ŏ        | 0       | 100         | 100      |
| C9+ AROMATICS          | 1 | 1     | 1        | 1 |    |           |             | 308.4   | 0.001       | 0.2       | 2.0        | ŏ        | ŏ        | õ       | 30          | 75       |
| PYROLYSIS C5 S         | 1 | 1     | 1        | 1 |    |           |             | 241.4   | 0.0         | 15.6      | 262.8      | 85       | 95       | 100     | 100         | 100      |
| PYROLYSIS GASOLINE     |   | -     | •        | • |    |           |             | 291.0   | 0.009       | 2.0       | 25.5       | 0        | 2        | 62      | 98          | 99       |
| PYROLYSIS RAFFINATE    |   | 1     |          |   |    |           |             | 251.8   | 0.0         | 4.7       | 66.4       | ő        | 7        | 49      | 92          | 99       |
| C5/375 VHT NAPHTHA     |   | 1     |          |   |    | 1         |             | 269.7   | 0.01        | 1.0       | 11.8       | õ        | 2        | 23      | 97          | 99       |
| C5/375 RHT NAPHTHA     | 1 | 1     |          |   |    | i         |             | 269.7   | 0.01        | 1.0       | 11.8       | 0        | 2        | 23      | 97          | 99       |
| 91 RON REFORMATE       | i | i     | 1        | 1 |    | •         |             | 273.9   | 0.01        | 3.0       | 40.1       | 0        | 5        | 43      | 97          | 99       |
| 94 RON REFORMATE       | i | 1     | î        | i |    |           |             | 276.0   | 0.0         | 3.2       | 43.1       | 0        | 6        | 43      | 92          | 94       |
| 97 RON REFORMATE       | 1 | 1     | 1        | 1 |    |           |             | 278.2   | 0.0         | 3.4       | 45.1       | 1        | 7        | 42      | 92          | 94       |
| 100 RON REFORMATE      | 1 | 1     | ī        | 1 |    |           |             | 281.4   | 0.0         | 3.4       | 40.1       | 2        | 8        | 43      | 92          | 93<br>93 |
|                        | 1 | 1     | 1        | 1 |    |           |             | 285.8   | 0.0         | 3.9       |            | -        | -        | -       |             |          |
| 103 RON REFORMATE      | 1 | 1     | 1        | 1 |    |           |             | 286.6   | 0.0         |           | 53.8       | 3        | 10       | 43<br>7 | 92          | 93       |
| 91 RON REFORMATE (HN)  | 1 | 1     | 1        | 1 |    |           |             |         |             | 0.8       | 9.2        | 0        | 1        |         | 59          | 71       |
| 93 RON REFORMATE (HN)  |   | 1     | 1        | 1 |    |           |             | 287.6   | 0.0         | 1.0       | 11.8       | 0        | 2        | 8       | 58          | 70       |
| 95 RON REFORMATE (HN)  | 1 |       |          | _ |    |           |             | 289.1   | 0.0         | 1.1       | 13.1       | 0        | 3        | 9       | 57          | 69       |
| 100 RON REFORMATE (HN) | 1 | 1     | 1        | 1 |    |           |             | 281.4   | 0.0         | 1.3       | 15.7       | 1        | 4        | 12      | 49          | 61       |
| 103 RON REFORMATE (HN) | 1 | 1     | 1        | 1 |    |           |             | 285.8   | 0.0         | 1.0       | 11.8       | 0        | 1        | 6       | 40          | 55       |

### DISTILLATE BLENDING PROPERTIES

|                        |                | Lv Pct                                   |          |       |          | -      |       | Smoke    |          |             |
|------------------------|----------------|------------------------------------------|----------|-------|----------|--------|-------|----------|----------|-------------|
|                        |                | Density Sulfur Rvp<br>Lbs/bbl Wt Pct Ps: |          | Rvp   | Aro-     |        | Point | Pour     |          | Point       |
|                        | -              |                                          | Psia     | Index |          | -      | Index | Deg F    | Index    | MM          |
|                        | <u> </u>       | B                                        | <u> </u> | D     | <u> </u> | F      | G     | <u> </u> | <u> </u> |             |
| LSR (C5/160) A         | 226.6          | 0.001                                    | 10.3     | 162.4 | 0.0      |        |       |          |          |             |
| LSR (C5/175) A         | 233.6          | 0.002                                    | 9.6      | 149.8 | 2.5      |        |       |          |          |             |
| NAPHTHA (160/295) A    | 260.9          | 0.011                                    | 2.2      | 28.3  | 9.7      | -105.0 | 16.0  |          |          |             |
| NAPHTHA (175/295) A    | 261.1          | 0.012                                    | 2.1      | 26.9  | 9.5      | -105.0 | 16.0  |          |          |             |
| HEAVY NAPHTHA A        | 276.3          | 0.027                                    | 0.9      | 10.5  | 16.0     | -88.0  | 25.0  |          |          | 21.7        |
| KEROSENE A             | 290.8          | 0.061                                    | 0.1      | 0.9   | 22.0     |        | 105.0 | -60.0    | 63.0     | 18.6        |
| LT GAS OIL A           | 302.5          | 0.171                                    |          | - • • |          |        |       | 0.0      | 360.0    |             |
| REDUCED CRUDE A        | 325.1          | 0,669                                    |          |       |          |        |       | 85.0     |          |             |
| LRS (C5/160) B         | 226.9          | 0.042                                    | 12.2     | 197.8 | 0.0      |        |       |          |          |             |
| LRS (C5/175) B         | 236.1          | 0.050                                    | 11.2     | 178.8 | 2.7      |        |       |          |          |             |
| NAPHTHA (160/295) B    | 260.8          | 0.152                                    | 3.1      | 41.6  | 12.6     | -105.0 | 16.0  |          |          |             |
| NAPHTHA (175/295) B    | 261.0          | 0.163                                    | 2.5      | 32.7  | 13.0     | -105.0 | 16.0  |          |          |             |
| HEAVY NAPHTHA B        | 279.1          | 0.420                                    | 0.9      | 10.5  | 21.8     | -93.0  | 21.5  |          |          | 27.4        |
| KEROSENE B             | 289.3          | 0.832                                    | 0.1      | 0.9   | 25.0     |        | 126.0 | -37.0    | 126.0    | 19.2        |
| LT GAS OIL B           | 303.3          | 1.345                                    | 0.1      | 0.7   | 23.0     | - 37.0 | 120.0 | 23.0     | 665.0    | 17.6        |
| REDUCED CRUDE B        | 328.6          | 2.175                                    |          |       |          |        |       | 23.0     | 000.0    |             |
| VACUUM GAS OIL A       | 318.3          | 0.533                                    |          |       |          |        |       | 75.0     |          |             |
| VACUUM RESID A         |                |                                          |          |       |          |        |       | 100.0    |          |             |
|                        | 347.1<br>319.5 | 1.070<br>1.774                           |          |       |          |        |       | 92.0     |          |             |
| VACUUM GAS OIL B       |                | 3,000                                    |          |       |          |        |       | 92.0     |          |             |
| VACUUM RESID B         | 351.5          |                                          | 0.0      | 10.5  | 14.0     |        | 25 0  |          |          | <b>15</b> 7 |
| HVY NAPH A VIA KHT     | 276.3          | 0.003                                    | 0.9      | 10.5  | 16.0     | -88.0  | 25.0  | 60.0     | 62.0     | 25.7        |
| KEROSENE A VIA KHT     | 290.8          | 0.006                                    | 0.1      | 0.9   | 22.0     |        | 105.0 | -60.0    | 63.0     | 22.6        |
| HVY NAPH B VIA KHT     | 278.4          | 0.042                                    | 0.9      | 10.5  | 21.8     | -93.0  | 21.5  | 27 0     | 126.0    | 31.4        |
| KEROSENE B VIA KHT     | 287.7          | 0.083                                    | 0.1      | 0.9   | 25.0     | -37.0  |       | -37.0    | 126.0    | 23.2        |
| FESULF FCC HVY NAPH    | 290.0          | 0.01                                     | 1.0      | 12.0  | 32.0     | -98.0  | 19.0  | -80,0    | 30.0     | 22.0        |
| DESULF LGO (A)         | 298.8          | 0.017                                    |          |       |          |        |       | 0.0      |          |             |
| DESULF LGO (B) .       | 296.1          | 0.135                                    |          |       |          |        |       | 23.0     | 665.0    |             |
| DESULF LCGO (A) VIA GH | 304.3          | 0.065                                    |          |       |          |        |       | -23.0    | 190.0    |             |
| DESULF LCGO (B) VIA GH | 302.4          | 0.19                                     |          |       |          |        |       | -23.0    | 190.0    |             |
| C5/375 HT NAPHTHA      | 269.7          | 0.01                                     | 1.0      | 11.8  | 22.0     |        |       |          |          |             |
| 375/650 HT DISTILLATE  | 295.5          | 0.02                                     |          |       |          |        |       | -20.0    | 206.0    |             |
| DESULF VGO (B)         | 309.6          | 0.20                                     |          |       |          |        |       | 95.0     | 3800.0   |             |
| DESULF HCGO (A) VIA VH | 314.9          | 0.11                                     |          |       |          |        |       | 35.0     | 900.0    |             |
| DESULF HCGO (B) VIA VH | 311.0          | 0.38                                     |          |       |          |        |       | 35.0     | 900.0    |             |
| C5/375 HT NAPHTHA      | 269.7          | 0.01                                     | 1.0      | 11.8  | 22.0     |        |       |          |          |             |
| 375/650 HT DISTILLATE  | 295.5          | 0.02                                     |          |       |          |        |       | -20.0    | 206.0    |             |
| DESULFURIZED RESID B   | 324.6          | 0.30                                     |          |       |          |        |       | 60.0     | 1660.0   |             |
| RAFFINATE              | 251.0          | 0.001                                    | 4.2      | 58.5  | 8.5      |        |       |          |          |             |
| FCC HVY NAPH 300-430   | 294.6          | 0.075                                    | 0.20     | 2.0   | 40.0     | -98.0  | 19.0  | -80.0    | 30.0     | 18.0        |
| LIGHT CYCLE OIL        | 337.9          | 1.615                                    |          |       |          |        |       |          |          |             |
| SLURRY OIL             | 382.2          | 2.77                                     |          |       |          |        |       |          |          |             |
| C5/180 HYDROCRACKATE   | 231.4          | 0.0005                                   |          | 213.0 | 0.0      |        |       |          |          |             |
| 180/400 HYDROCRACKATE  | 270.5          | 0.001                                    | 1.0      | 11.8  | 8.0      |        |       |          |          |             |
| 180/300 HYDROCRACKATE  | 261.3          | 0.001                                    | 14       | 17.1  | 5.0      |        |       |          |          |             |
| 180/345 HYDROCRACKATE  | 264.0          | 0.001                                    | : 2      | 14.4  | 5.0      |        |       |          |          |             |
| 300/550 HYDROCRACKATE  | 284.5          | 0.004                                    |          |       | 8.0      | -60.0  | 62.5  | -60.0    | 62.5     | 30.0        |
| 345/650 HYDROCRACKATE  | 289.1          | 0.01                                     |          |       | 10.0     | -50.0  | 86.0  | -50.0    | 86.0     |             |
| COKER GASO C5-400      | 263            | 0.26                                     | 10       | 160   | 13       |        |       |          |          |             |
| LCG0 400-650           | 308.0          | 0.65                                     |          |       |          |        |       | -20.0    | 206.0    |             |
| HCGO 650-950 -         | 319.0          | 1.10                                     |          |       |          |        |       | 40.0     | 1000.0   |             |
| COKER GASO C5-400      | 263            | 0.6                                      | 10       | 160   | 13       |        |       |          |          |             |
| LCG0 400-650           | 308.0          | 1.89                                     |          |       |          |        |       | -20.0    | 206.0    |             |
| HCGO 650-950           | 319.0          | 3.78                                     |          |       |          |        |       | 40.0     | 1000.0   |             |
| C5/160 REFORMATE       | 232.7          | 0.0                                      | 13.0     | 213.0 | 2.5      |        |       |          |          |             |
| PYROLYSIS FUEL OIL     | 315.0          | 0.1                                      |          |       |          |        |       | -25.0    | 180.0    |             |
| PYROLYSIS PITCH        | 350.0          | 1.5                                      |          |       |          |        |       |          |          |             |
|                        |                |                                          |          |       |          |        |       |          |          |             |

# Table A-20 (Concluded)

|                                                | Cetane Diesel at 122 F |              |          | 2 F      | LV Pct Evaporated at Temp T (Deg F) |          |          |           |           |           |            |            |            |  |  |  |
|------------------------------------------------|------------------------|--------------|----------|----------|-------------------------------------|----------|----------|-----------|-----------|-----------|------------|------------|------------|--|--|--|
|                                                | Index                  | Index        | CS       | Index    | 290                                 | 350      | 370      | 400       | 450       | 470       | 540        | 590        | 625        |  |  |  |
|                                                | <u>_K</u>              | L            | <u>M</u> | <u>N</u> | 0                                   | <u>P</u> | <u>_</u> | R         | <u> </u>  | T         | <u> </u>   | <u>v</u>   | W          |  |  |  |
| LSR (C5/160) A                                 |                        |              |          |          | 100                                 | 100      | 100      | 100       | 100       | 100       | 100        | 100        | 100        |  |  |  |
| LSR (C5/175) A                                 |                        |              |          |          | 100                                 | 100      | 100      | 100       | 100       | 100       | 100        | 100        | 100        |  |  |  |
| NAPHTHA (160/295) A                            |                        |              | 0.75     | 79.0     | 100                                 | 100      | 100      | 100       | 100       | 100       | 100        | 100        | 100        |  |  |  |
| NAPHTHA (175/295) A                            |                        |              | 0.77     | 78.0     | 100                                 | 100      | 100      | 100       | 100       | 100       | 100        | 100        | 100        |  |  |  |
| HEAVY NAPHTHA A                                |                        |              | 1.08     | 70.0     | 0                                   | 90       | 100      | 100       | 100       | 100       | 100        | 100        | 100        |  |  |  |
| KEROSENE A                                     | 47.5                   | 56.1         | 1.75     | 60.0     | 0                                   | 0        | 0        | 0         | 50        | 70        | 100        | 100        | 100        |  |  |  |
| LT GAS OIL A                                   | 55.0                   | 52.6         | 4.1      | 48.0     | 0                                   | 0        | 0        | 0         | 0         | 0         | 0          | 30         | 80         |  |  |  |
| REDUCED CRUDE A                                |                        |              | 420.0    | 20.5     | 0                                   | 0        | 0        | 0         | 0         | 0         | 0          | 0          | 0          |  |  |  |
| LSR (C5/160) B                                 |                        |              | •        |          | 100                                 | 100      | 100      | 100       | 100       | 100       | 100        | 100        | 100        |  |  |  |
| LSR (C5/175) B                                 |                        |              |          |          | 100                                 | 100      | 100      | 100       | 100       | 100       | 100        | 100        | 100        |  |  |  |
| NAPHTHA (160/295) B                            |                        |              |          |          | 100                                 | 100      | 100      | 100       | 100       | 100       | 100        | 100        | 100        |  |  |  |
| NAPHTHA (175/295) B                            |                        |              |          |          | 100                                 | 100      | 100      | 100       | 100       | 100       | 100        | 100        | 100        |  |  |  |
| HEAVY NAPHTHA B                                |                        |              | 0.95     | 73.0     | 0                                   | 90       | 100      | 100       | 100       | 100       | 100        | 100        | 100        |  |  |  |
| KEROSENE B                                     | 48.5                   | - 54.2       | 1.5      | 63.0     | 0                                   | 0        | 0        | 0         | 50        | 70        | 100        | 100        | 100        |  |  |  |
| LT GAS OIL B                                   | 53.5                   | 49.5         | 3.7      | 49.5     | 0                                   | 0        | 0        | 0         | 0         | 0         | 0          | 30         | 80         |  |  |  |
| REDUCED CRUDE B                                |                        |              | 440.0    | 20.3     | 0                                   | 0        | 0        | 0         | 0         | 0         | 0          | 0          | 0          |  |  |  |
| VACUUM GAS OIL A                               |                        |              | 120.0    | 25.0     | 0                                   | 0        | 0        | 0         | 0         | 0         | 0          | 0          | 0          |  |  |  |
| VACUUM RESID A                                 |                        |              |          | 6.0      | 0                                   | 0        | 0        | 0         | 0         | 0         | 0          | 0          | 0          |  |  |  |
| VACUUM GAS OIL B                               |                        |              | 100.0    | 25.9     | 0                                   | 0        | 0        | 0         | 0         | 0         | 0          | 0          | 0          |  |  |  |
| VACUUM RESID B                                 |                        |              |          | 6.0      | 0                                   | 0        | 0        | 0         | 0         | 0         | 0          | 0          | 0          |  |  |  |
| HVY NAPH A VIA KHT                             |                        | 54.3         | 1.08     | 70.0     | 0                                   | 90       | 100      | 100       | 100       | 100       | 100        | 100        | 100        |  |  |  |
| KEROSENE A VIA KHT                             | 47.5                   | 56.1         | 1.75     | 60.0     | 0                                   | 0        | 0        | 0         | 50        | 70        | 100        | 100        | 100        |  |  |  |
| HVY NAPH B VIA KHT                             | (0 f                   | <i>c</i> / 0 | 0.95     | 73.0     | 0                                   | 90       | 100      | 100       | 100       | 100       | 100        | 100        | 100        |  |  |  |
| KEROSENE B VIA KHT                             | 48.5<br>33             | 54.2         | 1.5      | 63.0     | 0                                   | 0<br>30  | 0<br>49  | 0<br>88   | 50<br>100 | 70<br>100 | 100<br>100 | 100<br>100 | 100<br>100 |  |  |  |
| DESULF FCC HVY NAPH<br>LT GAS OIL A VIA GHT    | 55.0                   | 52.6         | 4.1      | 48.0     | 0                                   | 0        | 47       | 0         | 100       | 100       | 100        | 30         | 80         |  |  |  |
| LT GAS OIL A VIA GHT                           | 53.5                   | 49.5         | 3.7      | 49.5     | 0                                   | 0        | 0        | 0         | 0         | 0         | 0          | 30         | 80         |  |  |  |
| LCGO (DESULFURIZED)                            |                        | 47.5         | 1.8      | 60.0     | ŏ                                   | ŏ        | ő        | ő         | o         | ŏ         | ŏ          | 0          | 0          |  |  |  |
| LCGO (DESULFURIZED)                            |                        |              | 1.8      | 60.0     | ő                                   | ŏ        | 0-       | ŏ         | ŏ         | ŏ         | ŏ          | ŏ          | ŏ          |  |  |  |
| C5/375 HT NAPHTHA                              |                        |              |          |          | 60                                  | 95       | 100      | 100       | 100       | 100       | 100        | 100        | 100        |  |  |  |
| 375/650 HT DISTILLATE                          | 48.5                   | 46.2         | 1.5      | 63.0     | 0                                   | 0        | 0        | 0         | 10        | 25        | 85         | 100        | 100        |  |  |  |
| VGO B VIA HT                                   |                        |              | 26.0     | 32.9     | 0                                   | 0        | 0        | 0         | 0         | 0         | 0          | 0          | 0          |  |  |  |
| HCGO (DESULFURIZED)                            |                        |              | 100.0    | 26.0     | 0                                   | 0        | 0        | 0         | 0         | 0         | 0          | 0          | 0          |  |  |  |
| HCGO (DESULFURIZED)                            |                        |              | 100.0    | 26.0     | 0                                   | 0        | 0        | 0         | 0         | 0         | 0          | 0          | 0          |  |  |  |
| C5/375 HT NAPHTHA                              |                        |              |          |          | 60                                  | 95       | 100      | 100       | 100       | 100       | 100        | 100        | 100        |  |  |  |
| 375/650 HT DISTILLATE                          | 48.5                   | 46.2         | 1.5      | 63.0     | 0                                   | 0        | 0        | 0         | 10        | 25        | 85         | 100        | 100        |  |  |  |
| DESULFURIZED RESID B                           |                        |              | 150.0    | 24.2     | 0                                   | 0        | 0        | 0         | 0         | 0         | 0          | 0          | 0          |  |  |  |
| RAFFINATE                                      |                        |              |          |          | 74                                  | 100      | 100      | 100       | 100       | 100       | 100        | 100        | 100        |  |  |  |
| FCC HVY NAPH 300-430                           | 32                     |              |          |          | 5                                   | 29       | 47       | 85        | 100       | 100       | 100        | 100        | 100        |  |  |  |
| LIGHT CYCLE OIL                                |                        |              | 3.0      | 52.0     | 0                                   | 0        | 0        | 0         | 0         | 7         | 62         | 90         | 100        |  |  |  |
| SLURRY OIL                                     |                        |              | 50.0     | 29.3     | 0                                   | 0        | 0        | 0         | 0         | 0         | 0          | 0          | 0          |  |  |  |
| C5/180 HYDROCRACKATE                           |                        |              |          |          | 100                                 | 100      | 100      | 100       | 100       | 100       | 100        | 100        | 100        |  |  |  |
| 180/400 HYDROCRACKATE                          |                        |              |          |          | 50                                  | 84       | 91       | 100       | 100       | 100       | 100        | 100        | 100        |  |  |  |
| 180/300 HYDROCRACKATE                          |                        |              |          |          | 97                                  | 100      | 100      | 100       | 100       | 100       | 100        | 100        | 100        |  |  |  |
| 180/345 HYDROCRACKATE                          | 50.0                   |              |          | (1.0     | 70                                  | 100      | 100      | 100       | 100       | 100       | 100        | 100        | 100        |  |  |  |
| 300/550 HYDROCRACKATE<br>345/650 HYDROCRACKATE | 50.0                   | 61.6         | 1.5      | 63.0     | 0                                   | 16       | 33       | 48        | 67        | 74        | 96         | 100        | 100        |  |  |  |
| COKER GASO C5-400                              | 56.0                   | 63.5         | 2.1      | 57.0     | 0<br>50                             | 2<br>75  | 6<br>90  | 12<br>100 | 28        | 36<br>100 | 66<br>100  | 85<br>100  | 100<br>100 |  |  |  |
| LCC0 400-650                                   | 42.5                   | 40.0         | 1.8      | 60.0     | 0                                   | 0        | 90       | 100       | 100<br>25 | 50        | 85         | 100        | 100        |  |  |  |
| HCGO 650-950                                   | ~2.5                   | 40.0         | 100.0    | 26.0     | 0                                   | ő        | 0        | 0         | .0        | 0         | .0         | 0          | 0          |  |  |  |
| COKER GASO C5-400                              |                        |              | 200.0    | 20.0     | 50                                  | 75       | 90       | 100       | 100       | 100       |            | . 100      | 100        |  |  |  |
| LCG0 400-650                                   | 42.5                   | 40.0         | 1.8      | 60.0     | 0                                   | 0.       | 0        | 10        | 25        | 50        | 85         | 100        | 100        |  |  |  |
| NCGO 650-950                                   |                        |              | 100.0    | 26.0     | ŏ                                   | ŏ        | ŏ        | 0         | õ         | 0         | 0          | 0          | 0          |  |  |  |
| C5/160 REFORMATE                               |                        |              |          |          | 100                                 | 100      | 100      | 100       | 100       | 100       | 100        | 100        | 100        |  |  |  |
| PYROLYSIS FUEL OIL                             | 25.5                   | 30.0         | 6.5      | 42.6     | 0                                   | 8        | 12       | 22        | 40        | 50        | 74         | 89         | 97         |  |  |  |
| PYROLYSIS PITCH                                |                        |              |          | 5.0      | 0                                   | 0        | 0        | 0         | 0         | 0         | 0          | 0          | 0          |  |  |  |
|                                                |                        |              |          |          |                                     |          |          |           |           |           |            |            |            |  |  |  |

.

# Appendix B

# REFINING INDUSTRY MODEL

#### Appendix B

## REFINING INDUSTRY MODEL

This appendix is a supplement to Section 3.2.2. Included are:

- A brief description of the model
- A list of tables generated by the FORTRAN report program
- The naming conventions for the equations and variables
- A complete listing of the refining industry model (RIM) by equation order.

#### B.1 Model Description

The RIM is a linear programming (LP) mathematical representation of the refining and bulk transportation sectors of the U.S. petroleum industry. The geographic aggregation of the model is by the five Petroleum Administration for Defense (PAD) districts and one foreign sector. The refining industry in each district is represented by a large and a small refinery type, each having three operating modes (base, low, and high conversion) on each of two basic crude oil types (high- and low-sulfur). Additional crude oils included are the heavy, high-sulfur crude used for District V (West Coast) refining, and Alaskan North Slope crude for PAD districts III and V. Twenty-two types of refinery products are included.

The model is coded in the Mathematical Programming System (MPS) format, which is compatible with many LP mathematical systems. The associated report generating program is written in FORTRAN and is, in part, specific to the Control Data 6000 series computer and to the APEX III LP system.

A step-by-step description of the technique for application of the RIM is included in Appendix C, which describes model validation.

For an optimal solution of the model, the results are reported in the following sets of output tables:

- (1) Analysis of production and movements between districts and foreign sector for each product
- (2) Refinery capacity utilization by refinery types (high-sulfur, low-sulfur, West Coast), refinery size classes, and PAD districts

- (3) Analysis of production and movements of all products from other districts and foreign sector for each district
- (4) Utility summary by type and district
- (5) Utility consumption by refinery types, sizes, and PAD districts for each utility
- (6) Investment summary by refinery types, sizes, and districts for future investment options to be added.

#### B.2 Refining Industry Model Naming Conventions

## B.2.1 Equations

(1) Refining section

#### XXYYYZ

```
XX = PAD District No. (extra digit for future subdistrict)
```

```
YYY = Product Code (see Table B-1)
```

- Z = P for production
  - D for distribution
  - R for utility requirement

## Example:

105CAP = PAD 1 production of diesel

Others:

ØJBF = Overall objective function

 $XX \phi BJ =$  Subobjective function in District XX

XXLRG = Sum large refinery capacity in District XX

XXSML = Ditto small refinery

### (2) Transportation section

.

XXPCAPYY = Pipeline capacity from PADXX to YY XXMCAPYY = Ditto marine capacity XXPCOST = Sums DIST XX pipeline cost based on total volume XXMCOST = Ditto marine.

# Table B-1

## INDUSTRY MODEL NOMENCLATURE CODE

| The Refineries |                                  |
|----------------|----------------------------------|
| L              | Large refinery                   |
| М              | Medium refinery                  |
| S              | Small refinery                   |
| The Crudes     | ·                                |
| CA             | Sweet crude                      |
| CB             | Sour crude                       |
| CC             | California crude                 |
| CD             | Alaskan crude                    |
| The Cases      | ,                                |
| BA             | Base conv                        |
| HC             | High conv                        |
| LC             | Low conv                         |
| MD ·           | Max dist                         |
|                |                                  |
| The Products   |                                  |
| C3P            | C3 LPG                           |
| C4P            | C4 LPG                           |
| NAP            | Naphtha                          |
| 4AA            | Regular gasoline                 |
| 4BA            | Premium gasoline                 |
| 4CA            | Low-lead gasoline                |
| 4DA            | Lead-free gasoline               |
| 5AA<br>5BB     | JP-4 jet fuel                    |
| 5BB<br>5CA     | Jet A jet fuel                   |
| 5CB            | Diesel (No. 1)<br>No. 2 fuel oil |
| 5CC            | Diesel (No. 2)                   |
| 5DA            | High sulfur No. 6                |
| 5DB            | Low sulfur No. 6                 |
| VGO            | Vacuum gas oil                   |
| VRD            | Vac residue                      |
| CKA            | Coke (low sulfur)                |
| CKB            | Coke (high sulfur)               |
| CKC            | Coke (California crude)          |
| CKD            | Coke (Alaskan crude)             |
| 1A6            | Benzene                          |
| 1A7            | Toluene                          |
| 1A8            | Mixed xylenes                    |
| 1A9            | $C_9$ + aromatics                |
| NC4            | Normal butanes                   |
| IC4            | Isobutanes                       |
| NGF            | Natural gasoline                 |
| MIS            | Miscellaneous products           |
| KWH            | Purchased electric power         |
| BTU            | Net fuel required                |
| LAB            | Labor                            |
| OPC            | Operating costs                  |
| INV            | Investments                      |

B.2.2 Variable Names

```
(1) Products
    XXYYYZ
      XX = PAD District
     YYY = Product code
       Z = Disposition code: blank = sum of DISTXX production
           C = Dist XX demand
(2) Crudes
    XXCYIN = Sum of crude of type N to Dist XX
        XX = PAD District
         Y = A Sweet crude
             B Sour crude
             C California heavy crude
             D Alaskan North Slope crude
    Other inputs
    XXYYYY = Sum of input YYYY to Dist XX
      YYYY = NGFN = Nat gasoline
             TNC4 = n-Butane
             TIC4 = i-Butane
(3) Refinery types
    XXCYZZZ
        XX = Dist. No.
         Y = A Sweet crude
              B Sour crude
             C California heavy crude
             D Alaskan North Slope crude
       ZZZ = LBA = Large, Base
             LLC = Large, Low Conversion
             LHC = Large, High Conversion
              S - - = Ditto for small refinery
             M-- = Ditto for medium refinery
    XXTLRG = Total large refinery capacity in district XX
    XXTSML = Ditto small refinery
```

(4) Incremental refinery processes XXDLHCY = Hydrocracking XX = District No. DLHC = Diesel Hydrocracking Y = 1, Shift existing HC capacity from maximum gasoline operation to maximum distillate operation Y = 2, New HC capacity for distillate production XXDLHTI = Hydrotreating No. 2 to diesel fuel cetane specification XXDSHTY = Hydrodesulfurization of motor fuel Y = A, HDS light gasoline and FCC feed for 100 ppm S, maximum Y = C, HDS diesel fuel to 200 ppm S, maximum XXZPREM = Option to shift premium gasoline to unleaded with credit for TEL saved XX5CXX = Option to shift marginal No. 2 fuel oil to No. 1 diesel pool by use of cetane-improving additive XX5BBX = Option to blend incremental Jet A fuel out of No. 1 diesel and No. 2 fuel oil Inter-PAD transfers, by product (5)XXYYYZZK XX = PAD Dist source of product YYY = Product codeZZ = PAD Dist destination of product K = P = pipelineM = marineTotal transfers, by transport mode (6) XXTPIPYY = TOTAL volume of product moved from Dist XX to Dist YY by pipeline XXTMARYY = Ditto marine (7) Sub-cost function totals XXØBJT = Total cost of refining and transportation in District XX, M\$/CD

|             |                   |                                                                                                                             | 168000 4 00000000°1                                                                                                                                                                                                         | -6.90000000 P 101NC4<br>006010000 P 10LA8<br>692000000 P 105CXX | -1.00000000 P 10CALBA<br>1.000000000 P 10LR6N | 1.00000000 L 10TSML            | -1.00000000 P 10CALLC                       | -1.00000000 P 10CBLHC                 | 010000000 P 10C8LHC<br>010000000 P 10C858A | 006000000 P 10CBLMC<br>006000000 P 10CA58A            | 003100000 P 10CALBA<br>002500000 P 10CASLC | .027400000 P 10CALBA<br>.014500000 P 10CASHC | .008600000 P 10CALBA<br>.000100000 P 10CASHC  | -1.00000000 P 10NAP                    | •146000000 P 10CALBA<br>•030400000 P 10CASHC                       |
|-------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------|--------------------------------|---------------------------------------------|---------------------------------------|--------------------------------------------|-------------------------------------------------------|--------------------------------------------|----------------------------------------------|-----------------------------------------------|----------------------------------------|--------------------------------------------------------------------|
|             | S )               | I VARIABLE<br>Vakiable                                                                                                      | P 30084T                                                                                                                                                                                                                    | P 10NGFN<br>P 10BTU<br>X 102PREM<br>P 10TMCST                   | P 10CBLMC<br>L 10TLR6                         | P 10CASLC                      | P 10CALHC<br>P 10CASLC                      | P 1008LLC                             | P 10CBLLC<br>P 10CALLC                     | P 10CBLLC<br>P 10CALLC<br>P 10DSHTA                   | P 10CBLLC<br>P 10CASHC                     | P 10CBLHC<br>P 10CA5BA<br>P 10C3P            | P 10CBLHC<br>P 10CASBA<br>P 10C4P             | P 10CALLC                              | P LOCBLHC                                                          |
| N G         | ÉFFÉCTIVE VECTOR! | B 1 9 I VALENT<br>1 1 I NTEGER V                                                                                            | 1.000000000                                                                                                                                                                                                                 | -8.30000000<br>-13.74300000<br>.300300000<br>-1.000300000       | -1.000000000                                  | -1-00000000                    | -1.00030000                                 | s 000000000 • 1 -                     | 01000000                                   | - • 00600000 5<br>- • 006000000 5<br>- • 0014000000 5 | 006300000                                  | 4 C00001000*1-                               | •000100000<br>•0001000000<br>•1-0000000000000 | • 003400000                            | 1 000000560*                                                       |
| 1 1 2 1 1   | SELECTION FOR S   | UDUNO(S)<br>4 BOUNO(S)<br>5ET MEMBER<br>5ET MEMBER                                                                          | P 2008JT<br>P F008JT                                                                                                                                                                                                        | P 10C81N<br>P 10KWM<br>P 101NV<br>P 101PCST                     | P 10CBLLC<br>P 10CALLC                        | P LOCASHC                      | P 10CALBA<br>P 10CASHC                      | P 30CBLBA                             | P 10CBLBA<br>P 10CBLBA<br>P 10CALHC        | P 10CBLBA<br>P 10CALHC<br>P 10CASLC                   | P 10CBLBA<br>P 10CASBA                     | P 10CBLLC<br>P 10CBLLC<br>L 100LHC2          | P 10CBLLC<br>P 10CBLLC<br>L 100LHC2           | P LUCALHC                              | P 10CBLLC                                                          |
| EQUALION    | TYPES ( SEE       | PLUS VARIABLE WITH BDUNO(S)<br>Minus Variable With BDUNO(S)<br>Variable IS Sus-1 set member<br>Vakiable IS Sus-2 set member | 1.00000000                                                                                                                                                                                                                  | -9.466120000  <br>023000000  <br>958900000  <br>-1.096000000    | -1.00000000                                   | -1.30000000                    | -1.00000000 - 1-                            | -1.0000000                            | 010000000<br>010000000<br>010000000        | - • 006000000<br>• • • • • • • • • • • • • • • • •    | - 00250000                                 | .030440000 1<br>.027400000 1<br>.027400000   | . JUOECCOOD  <br>.006600000  <br>0356460000   | .003404000                             | 04990000 I                                                         |
| * * * * * * | TO CULUMN         |                                                                                                                             | 1 L D D J L D D J L D D J L D D J L D D D J L D D J L D D J L D D J L D D J L D D J L D D J L D D J L D D J L D D J L D D J L D D J L D D J L D D J L D D J L D D J L D D J L D D J L D D D J L D D D J L D D D J L D D D D | 10084T<br>101104<br>10006<br>10084T                             | 10CBL 6A<br>10CAL HC                          | I U C A S B A<br>105 M L N     | 10CAIN<br>10CAIN                            | 10CBIN                                | LGNGFN<br>LCCALBA<br>LOCASHC               | 10TNC 4<br>16Cal ba<br>16Cashc                        | 107164<br>106all6<br>1005hta               | 1JCBLBA<br>1GCALHC<br>1JCASLC                | 1 CCBL AA<br>1 CCAL HC<br>1 J CASLC           | 1 CC AL BA                             | TUCBLOA                                                            |
| •           | Ke¥               | FIXEG VARIAHLE<br>PLUS VARIABLE<br>MINUS VARIABLE<br>FRE VARIABLE                                                           | 1.00000000 P                                                                                                                                                                                                                | -9.4550444464 4<br>-7.3000000 8<br>-1.0000000 8<br>-1.0000000 8 | -1.00000000 P<br>-1.00000000 P                | -1.coooccoo                    | 1.00000000 -<br>-1.000000000 -              | 1 . CL UJ JCL OD                      | 1.0000000 P<br>01000000 P<br>01000000 P    | 1.000000000 P<br>006000000 P<br>006000000 P           | 1.000000400 P<br>002305 P<br>0073665339 P  | 4 000004510°<br>4 000004510°                 | 4 00030010.0<br>4 00030010.0<br>4 00030010.0  | . CL 34 v Juco P                       | • 2340 ucou P                                                      |
| NAME = NAME |                   | Х Ф Щ Г<br>4 9 9 9<br>П У Д Г                                                                                               | FK L<br>- LNF<br>+ LNF                                                                                                                                                                                                      | 50<br>0.303009000<br>0.0030000000                               | Eu 3<br>0,00000000<br>0,00000000              | k9<br>6.06000006<br>6.36000006 | E Q 00000000<br>0. UCOULJJC<br>0. 000000000 | ές 6<br>υ. 300ι ερέες<br>0. 300ύ03000 | E4 7<br>C.DCJCCJOCC<br>0.0003000CC         | EQ 8<br>0.0303030060<br>0.060600                      | EQ 9<br>0.003000000<br>0.003303030         | FQ 1C<br>C.000000000<br>0.0600000            | <ul> <li>Ε 4</li> <li>3.3030303000</li> </ul> | Fu 12<br>6. Júú 30300<br>J. Jú 0000000 | 5<br>5<br>5<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 |
| MAP NA      |                   |                                                                                                                             | 08.1F<br>RPS LJ:<br>RPS UP1                                                                                                                                                                                                 | 1008J<br>RHS LUI<br>RHS LUI                                     | 101.86<br>RMS 101<br>RMS UP1                  | 1054L<br>RHS LOI<br>RHS UPI    | 10CA1D<br>RHS LU:<br>RHS UP:                | 100.810<br>RHS LU:<br>RHS UP:         | 10NGFD<br>RHS LJI<br>RHS UPI               | 10NC4D<br>RHS L31<br>RHS UP1                          | 101040<br>RHS LUI<br>RHS UPI               | 10C3PP<br>RHS LD:<br>RHS UP1                 | 100 4 P P<br>R H S L D I<br>R H S U P I       | JONAPP<br>KHS LJI<br>RHS LPI           | 13484P                                                             |

ł

.

B.3 Model Listing MAP NAME =

| 1.15        |                                                              |                                         |                                                                                            |                                       |                                                                                             |                                                 |                                                    |                                                      |                                        |                                         |                                        |                                         |                                               |                                    |                                               |
|-------------|--------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|------------------------------------------------------|----------------------------------------|-----------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------------|------------------------------------|-----------------------------------------------|
| A 11 L V    | CALBA<br>CASHC                                               | OCALBA<br>OCASHC<br>04CA                | 10CAL 8A<br>10CASHC<br>1040A                                                               | 404                                   | ALBA                                                                                        | ALBA                                            | 10CAL8A<br>10CASHC<br>10CASHC                      | 10CALBA<br>10CASHC<br>105C8                          | CALBA<br>Cashc                         | CAL BA<br>CA SHC                        | ALBA<br>ASMC<br>08                     | AL BA<br>ASHC                           | KA                                            | 8                                  | CALBA                                         |
| e e         | 101                                                          |                                         |                                                                                            | 10                                    | 10CAL                                                                                       | 1004                                            |                                                    |                                                      | 10                                     | 100                                     | 10 CAL<br>10 CAL                       | 10 CA                                   | 1001                                          | 1001                               | 100/                                          |
|             | 0000                                                         | 4 4 4<br>0 0 0<br>0 0 0                 | 000                                                                                        | 00 6                                  | 4 00                                                                                        | 4 00                                            | 4 4 4<br>0 0 0 0                                   | 4 4 4<br>0 0 0<br>0 0 0                              | 4 4<br>0 0 0                           | e 00                                    | 444                                    | 4 0 0                                   | 00 6                                          | 9                                  | 9 O                                           |
| × 41.       | 000000000000000000000000000000000000000                      | •07700000<br>•091300000                 | 026000000<br>0913060000<br>000000000                                                       | 000000000                             | 000000000                                                                                   | 32000000                                        | • 09700000<br>• 15000000<br>• 00000000             | •195000000<br>•155000000<br>1•0000000000             | 2000000                                | 06100000                                | 05266000                               | 17000000<br>5000000                     | 0000000                                       | 0000                               | 2000                                          |
|             | 0000<br>6160<br>6160                                         | 077000000000000000000000000000000000000 | 0560                                                                                       |                                       | 0100                                                                                        | 00                                              | 0970                                               | 1950                                                 | 101                                    | 0610                                    | 0526<br>0700                           | 037U<br>0350                            | 0000                                          | 00000                              | 0014                                          |
|             |                                                              | 7                                       | • • •                                                                                      | 1.                                    | • •                                                                                         | • •                                             | ent-                                               | ••••<br>•••<br>•                                     | • •                                    | • •                                     |                                        | • •                                     | - 1-                                          |                                    | •                                             |
| · · · ·     |                                                              |                                         |                                                                                            |                                       |                                                                                             |                                                 | ø                                                  |                                                      |                                        |                                         |                                        |                                         |                                               |                                    |                                               |
| 4           | CBLHC<br>CASBA<br>OLHC2                                      | 0C8LHC<br>CCA5BA<br>00LHC2              | OCBLHC<br>OCASBA<br>IOOLHC2                                                                | N C                                   | OCBL HC                                                                                     | CBLHC<br>CASBA<br>588X                          | 0C8LHC<br>0C8S8A<br>00LHC2<br>0588X                | BLHC<br>ASBA<br>Shta                                 | BLHC<br>ASBA                           | BL HC<br>AS BA                          | LOCBLHC<br>LOCASBA<br>LOCASBA          | IL HC                                   | ALLC                                          | 1 HC                               | IC HC                                         |
|             | 10CA                                                         | 1008L1<br>100LH                         | 1000                                                                                       | 1040                                  | 100                                                                                         | 100                                             | 1000                                               | 1000                                                 | 1001                                   | 1001                                    | 1000<br>1000                           | 10CBI                                   | 100/                                          | luce                               | 1008                                          |
| 144 No. 144 |                                                              | 0.00                                    | 6 6 J                                                                                      | 9 0                                   | 9 0                                                                                         | 000                                             | 6636.<br>0000                                      | 444<br>000                                           | 6 6<br>0 0                             | e e                                     |                                        | 4 4<br>0 0                              | e<br>0                                        | 0                                  | о<br>Р                                        |
|             | 0000                                                         | 160400000<br>949700000<br>156300000     | 150700000<br>042030000<br>150700000                                                        | 000000000                             | 000000000000000000000000000000000000000                                                     | )32000000000000000000000000000000000000         | 50,0000<br>5000000<br>74000000                     | 00000                                                | 0000                                   | 000000                                  |                                        | 00000                                   | 0000                                          | 0000                               | 0000                                          |
| -           | 151                                                          | 1604<br>0493<br>1563                    | 1 5 0 3                                                                                    | 0000                                  | 0045<br>0100                                                                                | 0320000                                         | 050)<br>1500<br>9740<br>6000                       | 1750                                                 | 0120                                   | 0393                                    | • 0390<br>• 0700                       | 0404                                    | 0036                                          | 06420                              | 0014                                          |
|             |                                                              | ••••                                    | •••                                                                                        | 1.                                    | • •                                                                                         | •••                                             | j • • •<br>                                        | •••                                                  | • •                                    | • •                                     | • • •                                  | 0.0                                     | •                                             | •                                  | •                                             |
|             |                                                              |                                         |                                                                                            |                                       |                                                                                             |                                                 |                                                    |                                                      |                                        |                                         |                                        |                                         |                                               |                                    |                                               |
|             | ¢ CBLLC<br>ocallc<br>odanci                                  | CCBLLC<br>DCALLC                        | CBLLC<br>CALLC<br>CALLC                                                                    | <b>A</b> A                            | ALLC<br>VLLC                                                                                | 0CBLLC<br>0CALLC<br>0588                        | HCI                                                | 0C8LLC<br>0CALLC<br>00LH11<br>0588X                  | 1110                                   | OCBLLC<br>OCALLC<br>J5DA                | HC1<br>HC1                             | 1110                                    | ALHC                                          | 1110                               | TTC                                           |
|             | 1001                                                         | 1001                                    | 1CCBLL<br>10CALL<br>10CALL                                                                 | 1901                                  | 10CBLL<br>10CBLL<br>10CALL                                                                  | 10CH<br>10C/<br>105                             | 10CBLLC<br>10CBLLC<br>10CALLC<br>100LMC1<br>105CXX | 10C6<br>10C/<br>10C/                                 | 10C0LL(<br>10C0LL(<br>10VGO            | 10C8<br>10CA<br>1350                    | 1008440<br>1008440<br>100440           | ICCBLLC<br>ICCALLC<br>IOVRO             | 100                                           | 1008                               | 1006                                          |
|             | 300                                                          | 0 0 0 0                                 | 666 \                                                                                      | ۹<br>0                                | 636<br>000                                                                                  | 6 6 6                                           | ****                                               | 4 <b>4 4</b> 4                                       | 000                                    | 2 2 Q                                   | 4 4 4<br>0 0 0                         | 6 6 6<br>0 0 0                          | 4                                             | ن<br>ت                             | به<br>د                                       |
|             | 149799634<br>138300000                                       | 14970000<br>3630000<br>5000000          | 149700000<br>36300000<br>56040000                                                          | 0                                     | 0000                                                                                        | 000000000000000000000000000000000000000         | 216500000<br>146000000<br>235000000                | 0000                                                 | 0000                                   | 000000000000000000000000000000000000000 | 3900000<br>3900000<br>5600000          | 000                                     | 0000                                          | 000                                | ວິບຸບຸດຄ                                      |
|             | 1447<br>1383<br>3060                                         | 1497<br>1363<br>1500                    | 1497<br>1363<br>1560                                                                       | 000000                                | 00450000<br>00700000<br>0000000                                                             | 020000000000000000000000000000000000000         | 2105<br>1460<br>2350<br>0000                       | 1270000<br>19:1000<br>0003000<br>4066000             | .012000000<br>.012000000<br>.000000000 | 03900000<br>06116400                    | 0390<br>0390<br>4580                   | 0019330<br>01119300<br>00000100         | <b>30360</b>                                  | 9045                               | 2013                                          |
|             | •••                                                          |                                         | • • •                                                                                      | 1.                                    |                                                                                             |                                                 | •••••<br>•••                                       | 1104                                                 | 1                                      |                                         | • • •<br>•                             |                                         | •                                             | •                                  | •                                             |
| 14. AL      |                                                              |                                         |                                                                                            |                                       |                                                                                             |                                                 |                                                    |                                                      |                                        |                                         |                                        |                                         |                                               |                                    |                                               |
|             | UC 3L BA<br>UC AL MC<br>UC ASL C                             | CCBLBA<br>UCALHC<br>OCASLC              | 10CBL BA<br>10CALHC<br>10CASLC<br>10ZPREM                                                  | B A<br>G A S                          | IUCBL 84<br>IUCALHC<br>IUCASLC                                                              | 10C8L8A<br>10CALHC<br>10CASLC                   | 10CBL 8A<br>10CALHC<br>10CASLC<br>10CASLC          | 10581.84<br>10581.84<br>10581.6<br>105681.5          | LOCBL BA<br>LOCALHC<br>LOCASLC         | 10086884<br>1008686<br>1008686          | 10C8L8A<br>10C8L8A<br>10CA5LC          | IOC BL BA<br>I OC BL BA<br>I UCAS LC    | AL UA                                         | HL D.A                             | ὑ ℓ ӥ Α<br>∠ 'n                               |
|             | 1 J C 3 L 8<br>1 J C A L M<br>1 J C A S L                    | 1004                                    | 10C8<br>10C8<br>10C8                                                                       | 1010                                  | 10CA<br>10CA                                                                                | 10C8<br>10C/                                    | 10C8<br>10C8<br>10C8                               | 10C8<br>10C8<br>10C/                                 | 10C6<br>10C/                           | 10C8<br>10C/<br>10C/                    | 10C8<br>10C/<br>10C/                   | 10C81<br>10C81<br>10CA                  | 1967                                          | 1 . C                              | 1015<br>1016                                  |
|             | 100                                                          | 774                                     | 6665×                                                                                      | ه. ه.<br>ت ت                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 4 4 4<br>0 7 0<br>0 7 0                         | 0 0 0 0 0<br>0 0 0 0 0                             | 0000<br>0000<br>0000                                 | 6 6 6<br>0 0 0 0<br>0 0 0              | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | 2000<br>2000                           | 8 3 8<br>3 J 0<br>J J 0                 | а<br>0                                        | 5                                  | 0u P<br>J u P                                 |
|             | 5555<br>5600<br>3600                                         | 0000                                    | 6000<br>60000<br>60000<br>60000                                                            | 0000                                  | 0000<br>0000<br>0000                                                                        | 0000                                            | 00000                                              | 000000000000000000000000000000000000000              | 00000                                  | 0000                                    | 0000                                   | 20000<br>21 včC<br>20000                | Ù 360 C J G                                   | 545660                             | 202                                           |
|             | • 1 450 55 4 4 7<br>• 1 452 5 6 4 0 0<br>• 1 9 4 5 3 6 0 0 0 | .146.000<br>.1442060<br>.0845000        | . C 6 8 3 4 0 C 3<br>• 1 4 • 2 C C 3 0<br>• ~ • • • • • • 0 0 0 0<br>• ~ • • • • 0 0 0 0 0 | 1.0000000                             | .0070000<br>                                                                                | <ul> <li></li></ul>                             | .0630000<br>.6970000<br>.170000                    | .177100000<br>.195366464<br>.178000360<br>.178000360 | .012000000<br>.012000000<br>.153004036 | .039300000<br>.061300000<br>.07000000   | .039000000<br>.039000000<br>.170000000 | .0562040<br>.1573440<br>.6352060        | <b>6</b> 036                                  | • <del>د ر چ</del> ر               | 00001000<br>                                  |
|             | • • •                                                        | • • •                                   |                                                                                            |                                       | • • •                                                                                       | • • •                                           |                                                    |                                                      | 0 0 0                                  | • • •                                   |                                        |                                         | •                                             | ٠                                  | ĩ                                             |
| )           | 2000                                                         | 15                                      | 16000                                                                                      | 17                                    | 000                                                                                         | 6.000                                           | 0000                                               | 21000                                                | 22<br>00<br>0<br>0<br>0<br>0           | 500<br>000<br>000                       | 24<br>000<br>000                       | 500000000000000000000000000000000000000 | 200<br>900<br>900                             | 59 27<br>0.00000000<br>0.00000000  | сы<br>V = V = V = V = V = V = V = V = V = V = |
|             | 10,000                                                       | 00000                                   | 0000                                                                                       | 0000                                  | 0000                                                                                        | 0000                                            | 0000                                               | 0000                                                 | 0000                                   | 00000                                   | 0000                                   | 0000                                    | 0000<br>0100                                  | 00 PU<br>1200                      |                                               |
|             | 0.000000000000000000000000000000000000                       | 6 0 15<br>0. 00000000<br>0. 30000000    | E0 16<br>0.00000000<br>0.3333300000                                                        | Eq 17<br>0.0000000000<br>C.C000000000 | E0 16<br>0.600000000<br>0.600000000                                                         | ÉU 19<br>3.300000000000000000000000000000000000 | E0 20<br>C.00000000<br>0.6000000                   | €0<br>0.000303060<br>0.000000000                     | ξ0 22<br>4.303000000<br>0.303000000    | E0 500000000000000000000000000000000000 | €0 24<br>3.660560000<br>0.000€00000    | EQ 25<br>C.JECJ273EC<br>O.ÙECOOGO6C     | 50<br>0,0000000000<br>0,000000000000000000000 | 5. 50<br>5. 50<br>5. 60            | יניעי<br>גנע<br>יני                           |
|             |                                                              |                                         |                                                                                            |                                       |                                                                                             |                                                 |                                                    |                                                      |                                        |                                         |                                        |                                         |                                               |                                    |                                               |
|             | 14.44P<br>KH5 LJ8<br>RH5 UP8                                 | 14642<br>Rhs Lua<br>Rhs UP              | 14 UAP<br>R 1-5 LJ 1<br>R 1-5 UP 1                                                         | JSGASP<br>RHS LD:<br>RHS UP:          | 101                                                                                         | 584P<br>RHS LJ:<br>RHS UP:                      | 105CAP<br>RHS LU:<br>RHS UP:                       | ISCAP<br>RHS LJ1<br>RHS UP1                          | V GUP<br>R H S L U I<br>R H S UP I     | 150AP<br>R H5 L31<br>R H5 6P1           | 15088<br>RHS LO:<br>RHS UP:            | V КDР<br>К Н5 Ц 31<br>К Н5 UP 8         | 100 KAP<br>KFS LJ:<br>RHS LP:                 | Ск9Р<br>R Н 5 L J 8<br>A H 5 L V 8 | 101207<br>875 L]1<br>875 L21                  |
|             | 104 444<br>K 115<br>R 115                                    | 2                                       | 104 UAP<br>R + 5<br>R + 5                                                                  | 1056A<br>RH5<br>RH5                   | 05 AAP<br>RHS L(<br>RHS UI                                                                  | 10584P<br>R H Š<br>R H S                        | 05CA<br>RHS<br>RHS                                 | 105Cd<br>RHS<br>- RHS                                | 10V GUP<br>RHS<br>RHS                  | 1050AP<br>RHS<br>RHS                    | 105 DB<br>2 H S<br>2 H S               | 10V RDP<br>R H5<br>6 H5                 | P H H H                                       | 100 K9P<br>RF5<br>RF5              | 101 A<br>7 H L                                |
|             | -                                                            | T                                       | 1                                                                                          | 1                                     | 1(                                                                                          | 1                                               | -                                                  | -                                                    | <b></b> .                              | 1                                       |                                        | 7                                       | -                                             | -                                  |                                               |

| P LOCALBA                           | P 10CALBA<br>P 10CASHC                                                                    | P 10CALBA<br>P 10CASHC<br>P 100SHTA                              | P LOCALBA<br>P LOCASHC<br>P LOOSHTC                                                | P 10CALBA<br>P 10CASHC<br>P 10DLHT1                           | P 10CALBA<br>P 10CASHC<br>P 10DSHTA            | P LOCALBA<br>P LOCASHC<br>P LOCASHC                                | ANIOT 4                                        | P 10C3P02M<br>P 10C3P04P<br>P 20C3P01P<br>P 50C3P01P<br>P 50C3P01M<br>L 10C3PC             | P 10C4P02N<br>P 10C4P04P<br>P 20C4P01P<br>P 50C4P01P<br>P 50C4P01N<br>L 10C4PC               | P 10NAP02M<br>P 10NAP049<br>P 20NAP019<br>P 20NAP019<br>P 20NAP019<br>P 10NAPC                         | P 1048402M<br>P 1048404P<br>P 2048401P<br>P 5048401P<br>P 5048401M<br>P 10484C                                      | P 1044402M<br>P 1044404P<br>P 2644401P |
|-------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| •000110000                          | 0000005600°                                                                               | 3.442000000<br>2.147000000<br>1.05000000                         | .05070000<br>.03140000<br>.00800000                                                | • 057170000<br>• 035500000<br>• 025000000                     | 5.00000000<br>5.000000000<br>6.600000000       | .147600000<br>.072300000<br>.012500000                             | -1.0000000                                     | 1.00000000<br>1.00000000<br>-1.00000000<br>-1.00000000<br>1.000000000<br>1.0000000000      | 1.00000000<br>1.00000000<br>-1.00000000<br>-1.00000000<br>1.000000000                        | 1.000000000<br>1.000000000<br>1.000000000<br>1.000000000<br>1.000000000<br>1.000000000<br>1.0000000000 | 1.000000000<br>1.000000000<br>1.00000000<br>1.00000000                                                              | 1.00000000<br>1.000000000              |
| P 10CBLHC                           | P 10CBLHC<br>P 10CASBA                                                                    | P 10CBLMC<br>P 10CA5BA<br>P 100LHT1                              | P 10CBLMC<br>P 10CA56A<br>P 100SM1A                                                | P 10CBLHC<br>P 10CBLHC<br>L 10DLHC2<br>P 10ENE                | P 10CBLHC<br>P 10CASBA<br>P 10DLHT1            | P 10CBLMC<br>P 10CASBA<br>L 100LMC2<br>P 100PC                     | Р 105МLИ<br>Р 105Мнтт                          | P 10C3P0FP<br>P 10C3P03P<br>P 20C3P01M<br>P 40C3P01P<br>P 40C3P01P                         | P 10C4P0FP<br>P 10C4P03P<br>P 20C4P01M<br>P 40C4P01P<br>P f6C4P01P                           | P 10NAP0FP<br>P 10NAP03P<br>P 20NAP03M<br>P 40NAP01P<br>P 40NAP01P                                     | P 104840FP<br>P 1048463P<br>P 2048461M<br>P 4648461M<br>P 4648401F                                                  | P 104440FP<br>F 1044403P               |
| • 00010000                          | • 000000000<br>• 0085 00000                                                               | 4.147100000 1<br>2.106303000 1<br>.068000000 1                   | .054440000<br>.030803000<br>.01630000                                              | •062240000<br>•034800000<br>-•055000000<br>-1•000000000       | 5.000000000000000000000000000000000000         | .136400000<br>.072300000<br>557300000<br>-1.0000000000             | •510100000                                     | 1.000000000<br>1.000000000<br>-1.00000000<br>-1.00000000<br>-1.00000000                    | 1.000300000<br>1.000300000<br>-1.000300000<br>-1.000300000<br>-1.0003000000<br>1.00030000000 | 1.000000000<br>1.0000000000<br>1.0000000000<br>1.00000000                                              | 1.000360000<br>1.0003050300<br>1.000000000<br>1.000000000<br>1.1.000000000                                          | 1 00000:(000 • 1                       |
| P LUCBLLC                           | P 10CBLLC<br>P 10CALLC<br>P 10M1S                                                         | P LUCBLLC<br>P LCCALLC<br>P LCCALLC<br>P LCALHCL<br>P LOKWH      | 10CBLLC<br>10CALLC<br>10DLHC2                                                      | P 10CBLLC<br>P 10CBLLC<br>P 10DLHC1<br>P 10DSHTC              | P 10CB44C<br>P 10CA46C<br>P 10014C1<br>P 101A8 | P 10CBLLC<br>P 10CALLC<br>P 10DLHC1<br>P 10DSHTC                   | L LODLHC2<br>P LOLRGN                          | P 10C3P0FM<br>P 10C3P05M<br>P 10C3P05P<br>P 30C3P01P<br>P 50C3P01P                         | P 1004P6FM<br>P 1004P05M<br>P 1004P05M<br>P 3004P01P<br>P 3004P01P                           | 10NAP0FM<br>1.5NAP43M<br>1.5NAP43M<br>1.3NAP45P<br>30NAP01P<br>F0NAP61M                                | 104840FM<br>14488403M<br>10488403M<br>104886037<br>504886037<br>F04886017                                           | 104446FM<br>1044413M                   |
| • JULY25000 F                       | • 002760633<br>• 002465966<br>• 1 • 00000466                                              | 3.92840000 F<br>3.356206000 F<br>33.16000000 F<br>-1.00000000 F  | .050050000 P<br>.05000000 P<br>055000000 L                                         | .05743U00D P<br>.056450000 F<br>.520003300 F                  |                                                | 0500000000000000000000000000000000000                              | .100000000 L                                   | 4 00000000000<br>4 00000000<br>4 000000000<br>1 0000000000<br>1 0000000000<br>1 0000000000 | 1.000000000<br>1.00000000<br>1.0000000<br>1.00000000                                         | 1.00000000 P<br>1.000000000 P<br>1.000000000 P<br>1.000000000 P<br>-1.000000000 P                      | 1.000000000<br>1.000000000<br>1.000000000<br>1.000000000<br>1.000000000<br>1.000000000<br>1.000000000<br>1.00000000 | 1.306060330 P                          |
| LUCBL BA<br>Lulad                   | 10CBLBA<br>1úcalmc<br>1úcaslc                                                             | 1008684<br>1008684<br>1008660<br>1008470<br>1008470              | 1008688<br>1008646<br>1J00866<br>100870                                            | 1008464<br>100846<br>100846<br>1008478                        | 10CBLBA<br>16CALHC<br>10CASLC<br>10DSHTC       | 1 UC BL BA<br>1 UC BL BA<br>1 UC AL HC<br>1 UC ASL C<br>1 UD SH TA | 100LHC1<br>100SHTC<br>10NP1PJ2                 | 16639<br>16639629<br>16639659<br>30639659<br>30639618                                      | 1004P<br>1004P<br>1004P<br>2004P<br>01M<br>3004P<br>01M<br>3004P<br>01P                      | 1 CNAP<br>1 CNAP C<br>1 CNAP C<br>1 CNAP C 2<br>3 ONAP C 4<br>7 UNAP C 4<br>8                          | 10444<br>1046427<br>1046427<br>1046427<br>3044424<br>9044424                                                        | 10444<br>1.428-22                      |
| .000000000 P                        | <ul> <li>COSOCOLOUS</li> <li>COSOCOLOUS</li> <li>COSOCOLOUS</li> <li>COSOCOLOS</li> </ul> | 4.630306000 P<br>3.541566600 P<br>2.645306000 P<br>3.120006000 P | 9 000554230<br>9 00050050<br>9 00000000<br>1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | .054400000 P<br>.0558460000 P<br>.033750000 P<br>.016000000 P | 5.000000000000000000000000000000000000         | .16600003 P<br>.022300000 P<br>.012300000 P                        | 3.800306005 P<br>1.134306300 P<br>2.06000604 P | -1.00000000 P<br>1.0000000 P<br>1.00000000 P<br>1.00000000 P<br>-1.00000000 P              | -1.000000000<br>-1.000000000<br>-1.00000000<br>-1.00000000<br>-1.00000000<br>-1.00000000     | 4 00000000.1-<br>4 000000000.1<br>4 000000000.1<br>4 000000000.1-<br>4 0000000000.1-                   |                                                                                                                     |                                        |
| 50<br>0000000000000<br>0.0000000000 | ÉC 31<br>0.00000000<br>0.00000000                                                         | £9<br>0.0100000<br>0.0000000<br>0.00000000000                    | E 33<br>C. C(3000000<br>C. O230(130(L                                              | E 4<br>0.00300000<br>0.00000000                               | έ<br>6.000403000<br>0.00000000                 | FQ<br>0.0000000000000                                              | E 4 37<br>0,00000,00<br>0,0000000              | E 0 38<br>0.0000000000000000                                                               | EQ<br>0. JUJC VJJCO<br>0. UCODODOGU                                                          | 56<br>0. 40 0. 12 0. 40<br>0. 00 0. 12 0. 00 0. 00<br>0. 00 0. 00 0. 00 0. 00                          | ла 41<br>Сабеостоска<br>саобра 2000                                                                                 |                                        |
| Jularp<br>Krs Lue<br>Rrs Lue        | I LONISP<br>RHS LUI<br>RHS UPI                                                            | JOKWAR<br>RHS LU<br>RHS UP:                                      | " - 108 TUR<br>RHS LU:<br>RHS UP:                                                  | 10ther<br>RHS LO<br>RHS UP                                    | IOLABR<br>RHS LUI<br>RHS UPI                   | LUCPCR<br>RHS LU:<br>RHS UP                                        | LUIAVR<br>Rhs LO:<br>Rhs Ur:                   | 1003P0<br>RM5 101<br>RM5 UP1                                                               | 1004PD<br>645 101<br>845 101                                                                 | 10NAPD<br>RF- 101<br>RH- U/1                                                                           | 104643<br>RPS LU:<br>RPS U-1                                                                                        | LUNAND<br>RF LI:                       |

| 104CAD<br>RHS LUI<br>RHS UPI  | × 0<br>0.003€∪00€0<br>0.0€3⊌0300€        |                                                                                                   |                                                                                                                                        | 1.000000000<br>1.000000000<br>1.000000000<br>1.00000000                                                                                                           | 10464034<br>10464034<br>30466401P<br>F04661A                         | -1.000300000<br>-1.00030300000<br>-1.00030300000                                          | 1 10464034<br>2 10464034<br>8 40464014<br>8 40464018<br>9 f0464018               |                                                                                         | P 104CA04P<br>P 204CA04P<br>P 204CA01P<br>P 104CA01P                             |
|-------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| - 1046AD<br>RHS LUI<br>RHS UV | F9<br>0.0000000<br>6.0000000<br>6.000000 | -1.00000000 P<br>1.00000000 P<br>1.0000000 P<br>1.0000000 P<br>-1.0000000 P<br>-1.0000000 P       | 10404<br>10404<br>13404<br>24404<br>14<br>30404<br>19<br>4<br>4<br>4<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14 | 1.300000000 P<br>1.300000000 P<br>1.3000000000 P<br>-1.000000000 P<br>-1.000000000 P                                                                              | 104040FM<br>1040403M<br>1040465P<br>3040465P<br>3040461P<br>F340401P | 1.000000000<br>1.000000000<br>1.0000000000<br>1.00000000                                  | P 1040ACFP<br>P 1040A03P<br>P 2040A01M<br>P 4040A01P<br>P 4040A01P               | 1.0000000000<br>1.0000000000<br>1.0000000000                                            | P 1040402M<br>P 1040404P<br>P 2040401P<br>P 5040401P<br>P 5040401M<br>P 10404C   |
| 1056A50<br>RHS LJ:<br>RHS UP: | EQ 45<br>0.000000000                     | -1.00000000 P 1                                                                                   | LO4AAC<br>LOTGASC                                                                                                                      | -1.0000000 P                                                                                                                                                      | 1048AC                                                               | -1.000000000                                                                              | P 104CAC                                                                         | -1.00000000                                                                             | P 104DAC                                                                         |
| 105AAO<br>RHS L30<br>RHS UP 1 | E4<br>0.360030000<br>0.600060000         | -1.00000000 P<br>1.00000000 P<br>1.00000000 P<br>-1.00000000 P<br>-1.00000000 P                   | 10544<br>1054402P<br>1054405A<br>3054405H<br>                                                                                          | 1.000000000 P<br>1.000000000 P<br>1.000000000 P<br>1.000000000 P<br>-1.000000000 P                                                                                | 165440FM<br>1054403M<br>1054463P<br>3054463P<br>3054401P<br>F054401P | 1.000000000<br>1.000000000<br>-1.000000000<br>-1.000000000<br>-1.00000000<br>-1.000000000 | P 105AA0FP<br>P 105AA03P<br>P 205AA01M<br>P 405AA01P<br>P 405AA01P               | 1.000000000<br>1.000000000<br>-1.000000000<br>1.0000000000                              | P 105AA02M<br>P 105AA04P<br>P 205AA01P<br>P 505AA01M<br>P 505AA01M<br>L 105AAC   |
| 105880<br>RHS 10:<br>RHS UP:  | E4 47<br>0.000000000<br>0.00000000       | -1.00000000 P<br>1.00000000 P<br>1.00000000 P<br>1.00000000 P<br>-1.00000000 P                    | 10588058<br>10588058<br>10588058<br>30588018<br>50588018                                                                               | 1.000000000 P<br>1.000000000 P<br>1.0000000000 P<br>1.000000000 P                                                                                                 | 105880FM<br>1058803M<br>1058803M<br>1058805P<br>3058861P<br>F058861A | 1.000300000<br>1.000300000<br>-1.000300000<br>-1.000300000                                | 7 10588037<br>7 10588037<br>7 20588037<br>7 20588017<br>7 40588017<br>7 40588017 | 1.000000000<br>1.000000000<br>1.000000000<br>1.000000000<br>1.000000000<br>1.0000000000 | P 1058802M<br>P 1058804P<br>P 2058801P<br>P 5058801M<br>P 5058801M<br>E 1058801M |
| 105CAD<br>RHS LUI<br>RHS UP:  | E 9 45<br>0.003030000<br>0.003020000     | -1.00000000 P<br>1.000000000 P<br>1.000000000 P<br>-1.000000000 P<br>1.00000000 P<br>1.00000000 P | 105CA<br>105CAU2P<br>105CAU2P<br>305CAU1M<br>505CAU1M<br>105CCC                                                                        | 1.00000000<br>1.000000000<br>1.000000000<br>1.000000000<br>1.000000000<br>1.000000000<br>1.000000000<br>1.000000000<br>1.000000000<br>1.000000000<br>1.0000000000 | 105CA0F H<br>105CA03 H<br>105CAC3 P<br>305CAU1 P<br>F05CA01 R        | 1.000000000<br>1.000000000<br>-1.000000000<br>-1.00000000<br>-1.00000000                  | P 105CA0FP<br>P 105CA03P<br>P 205CA01M<br>P 405CA01P<br>P F05CA01P               | 1.000000000<br>1.000000000<br>-1.000000000<br>1.000000000<br>1.00000000                 | P 105CA02M<br>P 105CA04P<br>P 205CA01P<br>P 505CA01M<br>L 105CAC                 |
| 10201 NI 10201                | 6E 49<br>0.00000000<br>+ INF             | - 12000000                                                                                        | luscac                                                                                                                                 | 1 0000900001                                                                                                                                                      | 202501                                                               |                                                                                           |                                                                                  |                                                                                         |                                                                                  |
| 105C80<br>RHS LU:<br>RHS U?:  | E9<br>0.330000000<br>0.230000000         | -1. (((000 P<br>1. (                                                                              | 16568<br>16568229<br>16568354<br>10568354<br>20568544<br>5056844                                                                       | 1.00000000 P<br>1.0000000 P<br>1.00000000 P<br>1.000000000 P<br>-1.000000000 P                                                                                    | 105080FM<br>1050803M<br>1050803M<br>3050805P<br>3050801P<br>F050801M | 1.000000000<br>1.000000000<br>-1.0000000000<br>-1.0000000000                              | P 105C80F#<br>P 105C803P<br>P 205C801M<br>P 405C801P<br>P 405C801P               | 1.000000000<br>1.0000000000<br>-1.0000000000<br>-1.0000000000                           | P 105C802M<br>P 105C804P<br>P 205C801P<br>P 505C801M<br>P 505C801M<br>L 105C8C   |
| 10V600<br>RHS LU:<br>RHS UP:  | E4 51<br>0.0000000000000                 | -1. (UJ300000 P                                                                                   | lovgo<br>Lovguújm -                                                                                                                    | 1.00000000 P<br>-1.000000016 P                                                                                                                                    | 10VGDCFN<br>20VGDCIN                                                 | 1.000000000 - 1-                                                                          | P 10VG002M<br>P 30VG001M                                                         | 1.000000000                                                                             | P 1046003M                                                                       |
| 1050AD<br>645 L31<br>845 UP1  | EQ 52<br>0.00000000<br>6.0000000         | -1.000000000000000000000000000000000000                                                           | 1050A<br>1050a 65M<br>F&&0aulm                                                                                                         | 1.000000000 P<br>-1.000000000 P<br>1.0000000000000 P                                                                                                              | 1050A0FM<br>2050A01M<br>1050AC                                       | 1.000000000 - 1-                                                                          | P 1050A02M<br>P 3050A01M                                                         | 1.000000000                                                                             | P 1050403M                                                                       |
| 10508D<br>RHS 130<br>RHS UP:  | EG 33<br>0.00300000                      | -1.00000000 P<br>1.00000000 P                                                                     | 10508<br>1050805M<br>60508017M                                                                                                         | 1.000000000 P<br>-1.000000000 P<br>1.000000000 L                                                                                                                  | 105080FM<br>20508L1M<br>10508C                                       | 1.000000000<br>1.000000000                                                                | P 1050802M<br>P 3050801M                                                         | 1.000000000 f                                                                           | P 1050803M                                                                       |
| LOVRDU<br>RMS LUE<br>RMS UPE  | E 6 54<br>6.003000066<br>0.0000000       | -1.0000000                                                                                        | luvko                                                                                                                                  | 1.00000000                                                                                                                                                        | luvroc                                                               |                                                                                           |                                                                                  |                                                                                         |                                                                                  |
| 10C KAD                       | т,<br>С)<br>Т                            | 4 00 000000 1-                                                                                    | 100kp                                                                                                                                  | 1.00000000                                                                                                                                                        | J. (KAC                                                              |                                                                                           |                                                                                  |                                                                                         |                                                                                  |

|                                   |                                           |                               |                                           |                                         | -6.900000000 P 20TNC4<br>005780000 P 20LA8<br>092000000 P 205CXX                                | 1.00000000 L 2015ML                           | -1.000000000 P 20CALBA<br>1.000000000 P 20LRGN   | -1.00000000 <i>p</i> 20CBLMC       | 018500000 P 20CBLHC<br>021400000 P 20CASBA                         | -1.00000000 P 20CALLC                            | 013270000 P 20CBLHC<br>014800000 P 20CASBA                         | 013270600 \$ 20CBLHC<br>014800060 \$ 20CAS8A                       | •024806000 P 20CALBA<br>•023000000 P 20CASHC                         | .005900000 P 20CAL8A<br>.005900000 P 20CASHC                                                        | .01090000 P 20CALBA                                                                                             |
|-----------------------------------|-------------------------------------------|-------------------------------|-------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------|------------------------------------|--------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                                   |                                           |                               |                                           |                                         | -8.300300000 P 20NGFN<br>-8.520300000 P 20BTU<br>.300300000 X 202PREM<br>-1.000300000 P 20THCST | -1.00000000 P 20CASLC                         | -1.000030000 P 20788 MC<br>1.000300000 L 207886  | -1.00000000 P 20CBLLC              | 018500000 P 20C&LLC<br>018500000 P 20CALLC                         | -1.000000000 P 26CALHC<br>-1.000000000 P 26CASLC | 013300000 P 20C8LLC<br>013300000 P 20CALLC<br>001400000 P 20DSHTA  | 013300000 P 20CBLLC<br>013300000 P 20CALLC<br>607030000 P 20DAHTA  | •024400000 P 20C8LHC<br>•314703000 P 20CASBA<br>-1.000303000 P 20C3P | .005390000 P 2068LHC<br>.004303330 P 20648<br>-1.36033030 P 2064P                                   | CHINDDE & COULTINUS"                                                                                            |
| 1.000000000 P 10CK8C              | 1.000000006 P 10146C                      | 1.000000000 P 101A7C          | 1.406400006 P 101A8C                      | 1.006000000 P 10MISC                    | -9.400000000 P 20CBIN<br>01700000 P 20KWH<br>958900000 P 20INV<br>-1.000000000 P 20IPCST        | -1.00000000 P 20CASHC                         | -1.000000000 P 2008LLC<br>-1.00000000 P 200ALLC  | -1.000000000 P 20CBLBA             | 018500300 P 2008L8A<br>018500300 P 200ALHC<br>020100000 P 200ASLC  | -1.000000006 P 20CALBA<br>-1.00000006 P 20CASHC  | 013300030 P 200818A<br>013300003 P 200ALHC<br>0113300000 P 200ALHC | 013366600 P 2008184<br>013360636 P 2004146<br>0139090900 P 2004146 | -J2440UU30 P 2008110<br>-024400030 L 200A110<br>-027100030 L 2001402 | <ul> <li>CU44CN03C P 20CBLLC</li> <li>JU537LUJUC P 20CALLC</li> <li>O3552LUGUC L 200LHC2</li> </ul> | 116302 o 11000                                                                                                  |
| -1.111006441 P 13CKB              | -1.CC0300000 F 161A6                      | -1.60000000 P 101A7           | -1.tcuJOucju P luia8                      | -1. UCUJOCCOO P 10MIS                   | 1.000000000000000000000000000000000000                                                          | -1.606006060 P 206A58A<br>1.60000000 P 205MLN | -1.000000000 P 20C818A<br>-1.600306040 P 20CA1HC | 1.000000000 P 20081N               | 1.666306300 P 20N6FN<br>618806000 P 20CALBA<br>021906300 P 20CASHC | 1.00000000 L 20CAIN<br>-1.00000000 P 20CASBA     | 1.465350000 P 2JIN64<br>613500600 P 206ALBA<br>014600000 P 206ASMC | 1.00000000 P 20TIC4<br>13000000 P 20Calba<br>014800000 P 20CaSHC   | .624400000 P 200818A<br>.624400000 P 200ALMC<br>.016940110 P 200ASLC |                                                                                                     | the second se |
| ⊭ 6<br>0.660660060<br>0.660660060 | Fc 50,00000000000000000000000000000000000 | 54<br>0.00000000<br>0.0000000 | Eq 29000000000000000000000000000000000000 | EQ.000000000000000000000000000000000000 | ε9<br>6.00000000<br>0.00000000                                                                  | EQ 62<br>0.000000000<br>0.00000000            | E 4 63<br>0.340,100000<br>0.000600000            | 54<br>0.0000000<br>0.00000000<br>0 | E 4 65<br>0.00000000<br>0.00000000                                 | E4 66<br>0. 000000000000000000000000000000000    | EQ 67<br>6.00000000<br>0.00000000                                  | EQ 68<br>0.64006346<br>0.64006360                                  | 80 64<br>0.0000000<br>0.0000000                                      | t - 76<br>τ. Γιδεί 1-τ.<br>Ο. υσθοούσιο                                                             | 11 v.                                                                                                           |
| LUCK60<br>RHS LJI<br>RHS UPI      | 101A6D<br>RHS LUI<br>RHS UPI              | 101A70<br>RHS 14:<br>RHS UP:  | IOLAND<br>RHS LQ1<br>RHS UP1              | 10HISO<br>RHS LOF                       | 2008J<br>RHS LUI<br>RHS UPI                                                                     | RHS UP                                        | 20LRG<br>RHS LUI<br>RHS UPI                      | 296810<br>RMS L04<br>RMS UP4       | RHS LDI<br>RHS LDI<br>RHS UPI                                      | ZOCATO<br>RHS LD:<br>RHS UP:                     | ZONC40<br>RMS LD1<br>RMS UP1                                       | 201640<br>RH5 LJ1<br>RH5 UP1                                       | 266324<br>RFS LJI<br>RHS UPI                                         | 2004PP<br>8 h3 13<br>8 h3 623                                                                       | 244.44Z                                                                                                         |

| .000970000 P 20CALBA                         | .600710000 P 20CALBA                         | .024600000 \$ 20CAL8A<br>.615100000 \$ 20CASHC                       | 4.080000000 P 20CALBA<br>2.700000000 P 20CASHC<br>1.05000000 P 20DSHTA                         | .056210000 P 20CALBA<br>.048750000 P 20CASHC<br>.008000000 P 2005HTC                         | .063900000 P 20CALBA<br>.053900000 P 20CASHC<br>.025000000 P 200LHT1                       | 5.000000000 P 20CAL8A<br>5.000000000 P 20CASHC<br>.600000000 P 20DSHTA                       | .145800000 P 20CALBA<br>.120000000 P 20CASHC<br>.012500000 P 20DLHT1                          | -400000000 P 2005HTA<br>-1.00000000 P 20INV                               | 1.000000000 P 20C3P0FM<br>1.000000000 P 20C3P0FM<br>1.000000000 P 20C3P05P<br>-1.000000000 P 20C3P02M<br>-1.000000000 P 50C3P02M | 1.000000000 P 2004P0FM<br>1.000000000 P 2004P03M<br>1.000000000 P 2004P03P<br>-1.000000000 P 2004P03P<br>-1.000000000 P 5004P02M | 1.000000000 P 20NAP0FM<br>1.000000000 P 20NAP03M<br>1.0000000000 P 20NAP05P<br>-1.000000000 P 20NAP05P<br>-1.00000000 P 20NAP02M | 1.00000000 P 2048A0FM<br>1.00000000 P 2048A03M<br>1.000000000 P 2048A05P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20CBL HC                                     | 2 0CBLHC                                     | P 20CBLHC<br>P 20CASBA                                               | P 20C0LHC<br>P 20C058A<br>P 200LHT1                                                            | P 20CBLHC<br>P 20CASBA<br>P 2005HTA                                                          | P 20CBLHC<br>P 2UCASBA<br>L 20DLHC2<br>P 2CENE                                             | P 20CBLHC<br>P 20CASBA<br>P 20DLHT1                                                          | P 20CBLMC<br>P 20CBLMC<br>L 200LMC2<br>P 200PC                                                | P 260LMT1<br>P 205MLN                                                     | P 10C3P02P<br>P 20C3P01P<br>P 20C3P05M<br>P 40C3P02P<br>P 40C3P02P                                                               | P 10C4P02P<br>P 20C4P01P<br>r 20C4P05M<br>P 40C4P05M<br>P 40C4P02P                                                               | P 10NAP02P<br>P 20NAP61P<br>P 20NAP65M<br>P 20NAP65M<br>P 40NAP62P                                                               | P 1048462P<br>P 2048461P<br>P 2648405M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| • 0003 60000 •                               | • 00010000                                   | .01400000 F                                                          | 4.650000000<br>2.6293000000<br>068300000                                                       | 00000000<br>0000000<br>0000000<br>0000000<br>000000                                          | 00000000000000000000000000000000000000                                                     | 5.000000000<br>5.000000000<br>5.500000000                                                    | .185700000                                                                                    | • • • • • • • • • • • • • • • • • • •                                     | -1.000000000<br>1.00000000<br>1.00000000<br>1.00000000                                                                           | 00000 (000 °T-<br>00000 0000 °T-<br>00000 0000 °T-                                                                               | 00000000000000000000000000000000000000                                                                                           | 000960000°1<br>000960000°1<br>00000000°1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 20CBLLC                                      | 2008110                                      | 20CBLLC<br>20CALLC<br>20MIS                                          | 20CBLLC<br>20CALLC<br>20CALLC<br>20DLHC1<br>20KUH                                              | 20C8LLC<br>20CALLC<br>20DLHC2                                                                | 20CBLLC<br>20CALLC<br>20DLHC1<br>20DSHTC                                                   | 20CBLLC<br>20CALLC<br>20DLHC1<br>20LAB                                                       | 20CBLLC<br>20CALLC<br>20DLHC1<br>20DSHTC                                                      | 20DLHC2<br>2GLRGN<br>20NPIP03                                             | 10C3P02M<br>20C3P01M<br>20C3P04P<br>30C3P02P<br>F0C3P02P                                                                         | 1004002M<br>2004002M<br>2004004P<br>2004004P<br>2004002P<br>6004002M                                                             | IONAPC2N<br>20NAPPC1N<br>20NAPPC4P<br>20NAPC2P<br>FONAPC23                                                                       | 2 1048AU2M<br>2 2648AU1M<br>4 2048A64P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| . 0000960000 P                               | 4 001920C00 *                                | .014000000 P<br>.014006030 P<br>-1.00000000 P                        | 4.24000000 P<br>3.79000000 P<br>33.16000000 P<br>33.16000000 P                                 | .058460000 P<br>.055060000 P<br>055060000 P                                                  | .066400000 P<br>.363300000 P<br>.5200000 P<br>.5200000 P                                   | 4 00000000°1-<br>4 00000000°1-<br>4 00000000°1-                                              | .14500000 P<br>.140100000 P<br>038200000 P                                                    | .10(000000 P<br>4.000000000 P<br>1.400000000 P                            | -1.00000000 P<br>1.00000000 P<br>1.00000000 P<br>-1.000000000 P<br>-1.00000000 P                                                 | -1.00000000 P                                                                                                                    | -1.00466000 P<br>1.9060000 P<br>1.0060000 P<br>-1.0060000 P                                                                      | -1.Jutt6J0J0 7<br>1.Jutt6J0J0 7<br>1.Jutt6000000 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| .600366030 P 2008684<br>-1.600366030 P 201A7 | .uc1926030 P 2uCBLBA<br>-1.ccovcu303 P 201A8 | .614300000 P 2008LBA<br>.027200000 P 200ALHC<br>.612330304 P 200ALKC | 4.470394030 P 2008LBA<br>3.98630030 P 2004LHC<br>2.677200030 P 2004SLC<br>3.12030033 P 2005HTC | .058460000 P 2008L8A<br>.058550000 P 200ALHC<br>.u46190000 P 200ALHC<br>-1.00006000 P 200ATU | .00090000 P 2008L8A<br>.00590000 P 200ALHC<br>.0051220000 P 200ASLC<br>.01800000 P 2005HTa | 5.600000000 P 2008L&A<br>5.60000000 P 2004LHC<br>5.0000000 P 200ALHC<br>6.00000000 P 2005HTC | .164.900.000 P 2008L8A<br>.166400000 P 200ALHC<br>.v93806000 P 200ASLC<br>.013306000 P 200ATA | 3.8000.00000 P 200LMC1<br>1.134060000 P 200SHTC<br>1.200000666 P 20NP1P01 | -1.000000000 P 2003P<br>1.000000000 P 2003P6FP<br>1.000000000 P 2003P65P<br>-1.00000000 P 3003P02M<br>-1.00000000 P 3003P02M     | -1.(LU200030 P 2004P<br>1.(LU200000 P 2004P LFP<br>1.00000000 P 2004P03P<br>-1.00000000 P 2004P03P<br>-1.0000000 P 3004P02M      | -1                                                                                                                               | -1.(1.0.00000 P 2048A<br>1.00000003 P 2046Aurp<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ες<br>0.00000000<br>0.100000 -               | 64<br>0.00000000<br>0.00000000               | E0 5000000<br>6.00000000<br>0.00000000                               | E0 91<br>6.00000000<br>0.0600000                                                               | E4 92<br>0.000000000<br>0.00000000                                                           | E0 5300000000000000000000000000000000000                                                   | E 6<br>0, J 30003003<br>0, UC3v03060                                                         | E 4 95<br>0.043063660<br>0.00000064                                                           | E9<br>0.000000000<br>0.303000000                                          | - 1000000000000000000000000000000000000                                                                                          | 60000000000000000000000000000000000000                                                                                           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                            | <ul> <li>40</li> <li>400</li> <li>400</li></ul> |
| 201A7P<br>RHS L01<br>RHS U21                 | ZOLAAP<br>RHS LU:<br>RHS UP:                 | ZONISP<br>RHS LQ:<br>RHS UP:                                         | ZOKNHR<br>RHS LQS<br>RHS UPS                                                                   | 208TUR<br>RHS LOI<br>RHS UP:                                                                 | ZOENER<br>RHS LU:<br>RHS UP:                                                               | 20LABR<br>RMS LU:<br>RMS UP:                                                                 | 200PCR<br>RHS LU:<br>RhS UP:                                                                  | ZUINVR<br>RHS LO:<br>RHS UP:                                              | 20C3PD<br>RHS LJ:<br>RHS UP:                                                                                                     | 2664PD<br>RH5 LJ1<br>RH5 UP1                                                                                                     | ZONAPO<br>RFS LJI<br>RAS UPI                                                                                                     | 2048AJ<br>445 LU<br>445 LU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| 1                                                                                                                |                                                                      |                                                                            |                                                                                       |                                                |                                                                               |                                                                      |                                                                            |                              |                                                                                                 |                                   |                                            | 1                              |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------|--------------------------------|
|                                                                                                                  | 204440FH<br>2044403N<br>2044405P<br>5044405P<br>2044402N<br>2044402N | 204CA0FN<br>204CA0FN<br>204CA05P<br>204CA02N<br>204CA02N<br>204CAC         | 2040A0FN<br>2040A03N<br>2040A03P<br>2040A03P<br>5040A02N<br>2040AC                    | 2040AC                                         | 205440FN<br>2054403N<br>2054403N<br>5054405P<br>5054402N<br>2054402N          | 205880FM<br>2058803M<br>2058803P<br>2058805P<br>5058802M<br>2058802M | 2050A0FM<br>2050A05M<br>2050A05M<br>2050A05P<br>5050A02M<br>2050A02M       |                              | 2050806M<br>2050803M<br>2050805P<br>5050802M<br>2050802M<br>2050802M                            | 20 V6 001 M<br>20 V6 0C           | 2050A01N<br>F05DA02M                       | 2050801M<br>F050802N           |
| 1                                                                                                                | 00000                                                                | 00000                                                                      | 00000                                                                                 | •                                              |                                                                               | 00000                                                                | 6666J                                                                      |                              | 00000                                                                                           | <b>6</b> 6                        | <b></b>                                    | 6 6<br>0 0                     |
| and the second | 1.000000000<br>1.000000000<br>1.000000000<br>-1.0000000000           | 1.00000000<br>1.000000000<br>1.000000000<br>1.00000000                     | 1.000000000<br>1.000000000<br>1.0000000000<br>-1.0000000000                           | -1-00000000                                    | 1.00000000<br>1.000000000<br>-1.000000000<br>-1.0000000000                    | 1.00000000<br>1.000000000<br>1.000000000<br>-1.0000000000            | 1.000000000<br>1.000000000<br>1.000000000<br>-1.000000000<br>-1.0000000000 |                              | 1.00000000<br>1.00000000<br>1.00000000<br>-1.000000000<br>-1.0000000000                         | 1.00000000                        | 1.000000000<br>-1.000000000                | 1.00000000                     |
|                                                                                                                  | 0. 0. E 0. 0.                                                        | e e z e e                                                                  | *****                                                                                 |                                                |                                                                               |                                                                      |                                                                            |                              |                                                                                                 | 22                                | 22                                         | 2 2                            |
| The American and and                                                                                             | 1044402P<br>2644401P<br>2044405M<br>4044405M<br>4044402P<br>F044402P | 104CA02P<br>204CA01P<br>204CA01P<br>404CA05M<br>F04CA02P                   | 1040AC2P<br>2040A01P<br>2040A05M<br>4040A02P<br>F040A02P                              | 204640                                         | 1054402P<br>2054461P<br>2054461P<br>2054405M<br>4054402P<br>F054402P          | 1058802P<br>2058801P<br>2058805M<br>4058802P<br>F058802P             | 105CA02<br>205CA01<br>205CA01<br>405CA02<br>F05CA02                        |                              | 105C802P<br>205C801P<br>205C805M<br>405C802P<br>F05C802P                                        | 26V6D0FM<br>30V6D02M              | 2050A0F<br>3050A02                         | 205080FN<br>3050802M           |
| 1                                                                                                                |                                                                      | 00000                                                                      | 00000                                                                                 | 6                                              | 66666                                                                         | 66666                                                                |                                                                            |                              | 00000                                                                                           | 66                                | 6 C                                        | 6 G<br>0 O                     |
|                                                                                                                  | -1.000000000<br>1.0000000000<br>1.00000000000<br>-1.0000000000       | -1.000000000<br>1.000000000<br>1.000000000<br>-1.0000000000                | -1.000000000<br>1.000000000000<br>1.0000000000                                        | -1 • 00000000                                  | -1.000000000<br>1.0000000000<br>1.00000000000<br>-1.0000000000                | -1.00000000<br>1.000000000<br>1.000000000<br>-1.0000000000           | -1.000000000<br>1.000000000<br>1.000000000<br>-1.000000000                 |                              | -1 °300300000<br>1 °600300030<br>1 °600303030<br>1 °600303030<br>1 °600300000<br>-1 °0003000000 | 1.00000303000                     | 1.000000000                                | 1.90000000                     |
| 2                                                                                                                | EEGGE                                                                | EELLE                                                                      | TELLI                                                                                 |                                                | TTLLT                                                                         | EIGGE                                                                | EEGGE                                                                      |                              |                                                                                                 |                                   | εε                                         | ετ                             |
|                                                                                                                  | 1044402<br>2044401<br>2044401<br>3044402<br>1044402                  | 104CAU21<br>204CAU11<br>204CAC4<br>304CA026<br>FU4CA026                    | 1040A02M<br>2040A02M<br>2040A34P<br>3040A02P<br>F040A02P                              | 2048AC                                         | 1054402M<br>2054401M<br>2054404P<br>3054402P<br>6054402P                      | 1058802M<br>2058801M<br>2058804P<br>3058804P<br>3058802P<br>F058802P | 105CA02M<br>205CA61M<br>205CA04P<br>305CA04P<br>705CA02P                   | 20505                        | 105C802M<br>205C8L1M<br>205C8C4P<br>305C802P<br>F05C802P                                        | 10 V 6002 I<br>2 0 V 6005 I       | 1050AC21<br>2050A051                       | 1050802M<br>2650805M           |
|                                                                                                                  | ~ ~ ~ ~ ~                                                            | ****                                                                       |                                                                                       | <b>e</b>                                       |                                                                               |                                                                      |                                                                            |                              |                                                                                                 | ቆ ቆ                               | ቆ ቆ                                        | a. e.                          |
|                                                                                                                  | -1.000000000<br>1.000000000<br>1.0000000000<br>-1.0000000000         | -1.0000000<br>1.00000000<br>1.000000000<br>-1.0000000000                   | 00000000000000000000000000000000000000                                                | -1.000000 - 1-                                 | 00000000000000000000000000000000000000                                        | 00000000000000000000000000000000000000                               | -1.00000000<br>1.00000000<br>1.000000000<br>1.00000000                     | 1.00000600                   | -1.00000000<br>1.00000000<br>1.00000000<br>-1.000000000                                         | -1.000000000                      | -1.000000000                               | -1.306060004<br>1.00000004     |
|                                                                                                                  |                                                                      |                                                                            |                                                                                       |                                                |                                                                               |                                                                      |                                                                            |                              |                                                                                                 |                                   |                                            | 27                             |
| a second a second as                                                                                             | 20444<br>20444.FP<br>2044403P<br>3044402P<br>5044402P                | 20464<br>20464<br>20464039<br>20464039<br>304664039<br>50464029            | 2040A<br>2040Aufp<br>2040Au3p<br>3040Au3p<br>5040Au2p                                 | 2044AC<br>2016ASC                              | 20544<br>205446FP<br>2054403P<br>3054403P<br>5054402M                         | 205880FP<br>205880FP<br>2058863P<br>3058863P<br>30588628             | 205CA<br>205CA<br>205CA03P<br>305CA02P<br>505CA02P<br>205CC02P             | 205CAC                       | 26568<br>205686FP<br>20568628<br>36568028<br>36568028                                           | 2~VGU<br>2~VGUU3M                 | 2050A<br>2050A03M<br>2050AC                | 20508634<br>23508634<br>205086 |
|                                                                                                                  | 42444                                                                |                                                                            | *****                                                                                 | <b>∞</b> ×                                     | * * * * *                                                                     |                                                                      |                                                                            | L<br>O                       | 79796                                                                                           | 4 4                               | 4 4 J                                      |                                |
|                                                                                                                  | -1.((uucoor<br>1.0000000<br>1.0000000<br>-1.00000000<br>-1.00000000  | -1.010000000<br>1.010000000<br>1.000000000<br>1.000000000<br>-1.0000000000 | -1.600300000<br>1.600300000<br>1.00000000<br>1.00000033<br>-1.00000033<br>-1.16030033 | -1.00000000<br>1.000000000                     | -1.660300000<br>1.6003060000<br>1.6003060000<br>-1.6003060000<br>-1.000060300 | -1.000000000<br>1.000000000<br>1.000000000<br>-1.0000000000          | -1.00000000<br>1.000000000<br>1.000000000<br>-1.0000000000                 | 7500JuUJ0                    | -1.00606003<br>1.00006653<br>1.00006650<br>1.000066600<br>-1.000066000                          | -1.00000000<br>1.00000000         | -1.000000000<br>1.000000000<br>1.000000000 | -1.600066000<br>1.600066000    |
|                                                                                                                  | 10.00                                                                | 000                                                                        | 500                                                                                   | * 0 0                                          | \$200                                                                         | 2000                                                                 | 000                                                                        | 1 Ú8<br>A C C                | 6330                                                                                            | 110<br>010<br>010                 | 1000                                       | 112                            |
|                                                                                                                  | 101 0000000000000000000000000000000000                               | 20 1 22<br>C. 33390900<br>0.009000000                                      | 60<br>0,000000000<br>0,000000000                                                      | EG 104<br>0.0000000000000000000000000000000000 | E 0 105<br>0.030000000<br>0.000000000                                         | E9 146<br>0.003000000<br>0.00000000                                  | E0 107<br>0.00000000<br>0.00000000                                         | GE 108<br>0.00000000<br>+1NF | E9 169<br>6.003000000<br>0.00000000                                                             | 50<br>0,0000000000<br>0,000000000 | E9 111<br>6.033009060<br>0.00300000        | <pre></pre>                    |
|                                                                                                                  | 111                                                                  | 101                                                                        | 101                                                                                   | 101<br>UP1                                     | 101                                                                           | L 0 1<br>UP 1                                                        | 101                                                                        | H<br>LOI<br>UPI              | 1.31                                                                                            | 0<br>101<br>012                   | 101                                        | 101                            |
|                                                                                                                  | 204 AAD<br>Ch 2 AA<br>Ch 2 AA<br>KHS U2                              | 2046A0<br>RHS LUI<br>RHS UP1                                               | 2040A0<br>RHS LD:<br>RHS UP:                                                          | 2056AS0<br>RHS L(<br>RHS U                     | 205 A A O<br>RHS LO<br>RHS UP                                                 | 205880<br>RAS LOI<br>RAS UPI                                         | 205CA0<br>RHS LOI<br>RHS UPI                                               | 205DLIM<br>RHS LI<br>RHS UI  | 205C80<br>RHS L]:<br>RHS UP:                                                                    | 20V600<br>RHS L<br>AHS U          | 2050A0<br>RHS LD1<br>RHS UP1               | 205080<br>RHS LU:<br>RHS LP:   |

|                                                 |                                                  |                                     |                                      |                              |                                    | -8.30000000 P 30N6FW<br>-9.720000000 P 30BTU<br>.300000000 X 30JPREM<br>-1.000000000 P 30TNCST | -1.00000000 P 30CALBA<br>1.00000000 L 30TLR6                             | -1.00000000 P 30CBHBA                            | 1.00000000 L 3015ML                          | -1.000000000 P 30CAMHC<br>-1.00000000 P 30CASBA                            | -1.066060000 P 30CBMHC                                 |                                        | 025000000 P 30CAMC<br>025000000 P 30CBL9A<br>025000000 P 30CBL9A<br>028100000 P 30CALMC                         | .01080000 P 3008MBA<br>015300000 P 3008LHC |
|-------------------------------------------------|--------------------------------------------------|-------------------------------------|--------------------------------------|------------------------------|------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------|
|                                                 |                                                  |                                     |                                      |                              |                                    | -9.000000000 P 30CDIN<br>01000000 P 30KHH<br>958900000 P 30KHV<br>-1.000000000 P 30FCST        | -1.000000000 P 3008LHC<br>-1.000000000 P 3000LBA                         | -1.000000000 P 30CAMHC<br>1.000000000 L 30THED   | -1.00000000 P 30CASLC                        | -1.000000000 P 30CAMLC<br>-1.000000000 P 30CALLC                           | -1.000000000 P 30CBMLC<br>-1.000000000 P 30CBLHC       |                                        | 025303300 P 30CAMLC<br>025909000 P 30C8MHC<br>025900000 P 30CALBA<br>029300000 P 30CASBA                        | 001520090 P 30CAMHC<br>                    |
| 1.006006030 P 20CKAC                            | 1.JOC0000J0 P 20CKBC                             | 1.00000000 P 201A6C                 | 1.000000000 P 201A7C                 | 1.000600000 P 201A6C         | 1.300000000 P 20MISC               | -9.000000000 P 30CBIN<br>-7.300000000 P 300PC<br>-1.000000000 P 300PC                          | -1.000000000 P 30CBLLC<br>-1.00000000 P 30CALLC                          | -1.000000000 P 30CAMLC<br>-1.00000000 P 30C8MHC  | -1.000000000 P 30CASHC                       | -1.000000000 P 30CAMBA<br>-1.000000000 P 30CALHC<br>-1.000000000 P 30CASLC | -1.000000000 P 30CBHBA<br>-1.000000006 P 30CBHBA       | -1.00000000 P 3000LBA                  | 025000000 P 30CAMBA<br>025000000 P 30CBMLC<br>225000000 P 30CBMLC<br>314000000 P 30CDLBA                        | ]Alstudep P 35CAMBA<br>]Isteesad P 36CALP4 |
| -1.CUUJ003CG P 2CCKA                            | -1.CCUJOLOCO P 20CK8                             | -1.00030000 P 20146                 | -1.0000603000 P 241A7                | -1.0000000 P 20148           | -1.660300000 P 26AIS               | -9.250000000 L 30CAIN<br>-6.900006000 P 30INC4<br>066370000 P 30LAB<br>09200000 P 305CXX       | -1.000000000 P 30C8L8A<br>-1.000000000 P 30CALHC<br>1.000000000 P 30LR6N | -1.605000001 P 3008MLC<br>-1.000300001 P 3008MLC | -1.60000000 P 3004584<br>1.00000600 P 305MLN | 1.60000000 L 30CAIN<br>-1.00000000 P 30CALBA<br>-1.00000000 P 30CASHC      | 1.00000000 P 300616A<br>-1.00000000 P 300816A          | 1.000000 P 30001N                      | 1.40340404 P 30NGFN<br>025334004 P 3008MBA<br>0253304034 P 3006LLC<br>025304034 P 3006LLC<br>023440446 P 300ALC | Leventeran P 307804<br>                    |
| 20114<br>14<br>14<br>14<br>14<br>14<br>14<br>14 | 64 115<br>6.000000000000000000000000000000000000 | EU 116<br>0.00000000<br>0.000000000 | EQ 117<br>0.000003060<br>0.000600660 | E0 118<br>0.0600000000       | EQ 119<br>0.000000000<br>0.0000000 | EQ 120<br>0.000000000<br>0.000000000                                                           | 64 121<br>0.00000000000000000                                            | EQ 122<br>C.000000066<br>O.C00000000             | EQ 123<br>0.00000000<br>0.00000000           | EQ 124<br>0.000000060<br>ú.JCJ06J3CJ                                       | έα 125<br>υ. <b>ύ</b> ξυξουβάς<br><b>C. 0000000</b> 00 | έα 126<br>α. σύρυσοπος<br>৫. συρτοστος | 72 127<br>6.000013010<br>3.03100010                                                                             | ей. 128<br>• • и 13 с • 13 с С             |
| 20CMAD<br>RMS LUI<br>RMS UPI                    | ZUCK40<br>RHS LJ:<br>RHS UP:                     | ZUIA60<br>RHS LU:<br>RHS UP:        | * - 201470<br>RHS LJ3<br>RHS UP:     | ZOLAND<br>RMS LOS<br>RMS UPS | ZONISD<br>RMS LOI<br>RMS UPI       | ANS LUS                                                                                        | 30LRG<br>RHS LD:<br>RHS UP:                                              | 304 ED<br>RMS LU:<br>RMS UP:                     | 305 ML<br>RHS LUI<br>RHS UPI                 | 3JCALD<br>RHS LOS<br>RHS UPS                                               | 30C81D<br>RHS LU:<br>RHS UP:                           | 30C D L U<br>R H S L U<br>R H S U Z    | BONGFD<br>RHS LUI<br>RHS LUI                                                                                    | 30NC40<br>643 L31                          |

| 007906000 P 30CANHC<br>010006000 P 30C8L8A<br>061100000 P 30CALHC<br>005100000 P 30CASHC                          | .008300000 P 30C8M8A<br>.008300000 P 30C8LLC<br>.008300000 P 30CALLC<br>.010700000 P 30CALLC                                                                              | .002500000 P 3008M8A<br>.002500000 P 3008LLC<br>.002500000 P 300ALC<br>.00300000 P 300ALC                                                                   | .008800000 P 30C8M8A<br>.013200000 P 30C8LLC<br>.008800000 P 30CALLC<br>.0088000000 P 30CALLC                     | <ul> <li>159000000 P 30C8M8A</li> <li>043000000 P 30CALLC</li> <li>041000000 P 30CALLC</li> <li>035400000 P 30CASLC</li> </ul>                                  | <ul> <li>211900000 P 3008M8A</li> <li>129000000 P 3008LLC</li> <li>123000000 P 300ALLC</li> <li>106300000 P 300ALC</li> </ul>                                    | .055000000 P 30C8MBA<br>.129000000 P 30CALLC<br>.123000000 P 30CALLC<br>.106300000 P 30CALLC                                                                     | .061000000 P 30CBMBA<br>.129000000 P 30CBLLC<br>.123000000 P 30CALLC<br>.106300000 P 30CALLC<br>.106300000 P 30CASLC                                             | 1.600006000 P 3040A                       | <ul> <li>013000000 P 3008M8A</li> <li>013000000 P 3008LLC</li> <li>012900000 P 300ALLC</li> <li>012900000 P 300ALLC</li> </ul> | .063000000 P 30C8M8A<br>.063006000 P 30C8LLC<br>.063006000 P 30CALLC                                                   |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 010000000 P 30CAMLC<br>010000000 P 30CBMHC<br>005200000 P 30CALBA<br>007500000 P 30CALBA                          | .008300000 P 30CAMHC<br>.008300000 P 30C6L8A<br>.006300000 P 30CALHC<br>.010200000 P 30CASHC                                                                              | .002500000 P 30CAMMC<br>.002500000 P 30CALBA<br>.002500000 P 30CALMC<br>.002900000 P 30CASMC                                                                | .008900000 P 30CAMHC<br>.008300000 P 30C8L8A<br>.008800000 P 30CALHC<br>.007900000 P 30CASHC                      | <ul> <li>.037200000 P 30CAMHC</li> <li>.159007000 P 30CBL8A</li> <li>.049200000 P 30CALHC</li> <li>.036900000 P 30CASHC</li> <li>-1.00000000 P 3048A</li> </ul> | <ul> <li>.111500000 P 30CAMHC</li> <li>.256700000 P 30CALBA</li> <li>.147500000 P 30CALHC</li> <li>.117000000 P 30CASHC</li> <li>-1.00030000 P 304AA</li> </ul>  | <ul> <li>.111500000 P 30CAMHC</li> <li>.061000000 P 30CBL8A</li> <li>.147600000 P 30CALHC</li> <li>.117300000 P 30CASHC</li> <li>-1.000000000 P 304CA</li> </ul> | <ul> <li>.141500000 P 30CAMHC</li> <li>.061000000 P 30CBL8A</li> <li>.177300000 P 30CALHC</li> <li>.17330000 P 30CASHC</li> <li>-1.000303000 P 304DA</li> </ul>  | 1.000303000 P 304CA                       | .0139900000 P 30CAMMC<br>.019900000 P 30CALBA<br>.013300000 P 30CALMC<br>.012490000 P 30CASMC                                  | .0733700000 P 30CAMHC<br>.063300303 P 30C6L8A<br>.163300303 P 30CALHC                                                  |
| 01(J000006 P 30(AMBA<br>01(000000 P 30(BMLC<br>016000006 P 30(BLLC<br>0064610000 P 30(DLBA<br>064610000 P 3000LBA | <ul> <li>• 008300000 P 30CAMLC</li> <li>• 3065300000 P 30C8MHC</li> <li>• 008300000 P 30CALBA</li> <li>• 016700000 P 30CASBA</li> <li>- 1.• 0000000000 P 30C3P</li> </ul> | <ul> <li>002500000 P 3UCAMLC</li> <li>602500000 P 30CAMAC</li> <li>003000000 P 30CALBA</li> <li>003000000 P 30CASBA</li> <li>1.000000000 P 30C4P</li> </ul> | .0068000000 P 30CAMLC<br>.008800000 P 30C8MMC<br>.008800000 P 30CALBA<br>.308200000 P 30CALBA                     | <ul> <li>035300000 P 30CANLC</li> <li>048700000 P 30C8MHC</li> <li>159000000 P 30CALBA</li> <li>098000000 P 30CASBA</li> <li>-40C0C0000 L 30DLMC2</li> </ul>    | <ul> <li>.105000000 P 30CAMLC</li> <li>.146100000 P 30C8MHC</li> <li>.2111000000 P 30CALBA</li> <li>.150000000 P 30CASBA</li> <li>300000000 L 300LMC2</li> </ul> | <ul> <li>.10500000 P 30CAMLC</li> <li>.1561000000 P 30CBMHC</li> <li>.0610000000 P 30CALBA</li> <li>.362000000 P 30CASBA</li> <li>150000000 L 30DLMC2</li> </ul> | <ul> <li>.105006000 P 30CAMLC</li> <li>.176800000 P 30C8MHC</li> <li>.061000000 P 30CAL8A</li> <li>.0410C0000 P 30CAS8A</li> <li>.15(C00000 L 30DLHC2</li> </ul> | 1.J0000000 P 304AA                        | .313406030 P 30CAMLC<br>.013466000 P 3468MHC<br>.31496045 0 P 30CALBA<br>.312400000 P 30CASBA                                  | •165u60000 P 30CAMLC<br>•Jo3n6uuud P 3u6BMHC<br>• 1715??)、 P **falfa                                                   |
| 1                                                                                                                 | <ul> <li>OUGAUUOU P 30CAMBA</li> <li>UCUB30COUO P 30CBMLC</li> <li>OCB3CUOCO P 30CBLMC</li> <li>Uloj00000 P 30CDLBA</li> <li>Ulou0000 P 30CDLBA</li> </ul>                | <ul> <li>CC25UGUU0 P 30CAMBA</li> <li>002200000 P 30CBMLC</li> <li>00250CG00 P 30CBLMC</li> <li>010000000 P 30CDLBA</li> <li>02350UCU1 L 30DLMC2</li> </ul> | «VOBBOCOVO P 3CCAMBA<br>«L1320VUVO P 3VCBMLC<br>«O06BGGGOG P 3VCBLMC<br>«LC96UGGG P 30CDLBA<br>«UC0VGUG P 30CDLBA | <ul> <li> <ul> <li></li></ul></li></ul>                                                                                                                         | <ul> <li>16400000 P 30CAMBA</li> <li>116906400 P 30CBMLC</li> <li>161300660 P 30CBLMC</li> <li>11400000 P 30CDLBA</li> <li>30000000 P 30LMCI</li> </ul>          | <ul> <li>C55000000 P 30C4M8A</li> <li>116920000 P 30C8MLC</li> <li>161300000 P 30C8LMC</li> <li>c6240000 P 30C6LBA</li> <li>-150000000 P 30DLMC1</li> </ul>      | .037J0CJUO P 30CAMBA<br>.1175U0003 P 30CBMLC<br>.19950U033 P 30CBLMC<br>.054L00U000 P 30CBLMC<br>.054L00U000 P 30CULBA                                           | 1.00000000 P 3048A<br>-1.0000100 P 3076AS | •019900000 P 30CAMBA<br>•19900000 P 30CAMEC<br>•13900000 P 30CALME<br>•022400000 P 30CDL48<br>•1.000000 P 3000L48              | <ul> <li>«C71)CCUUC F 30CAMBA</li> <li>«L033)?CUUC F 30CBMLC</li> <li>«L033)?CUUC F 30CBMLC</li> <li>«L134)</li> </ul> |
| 4 921 0.0<br>0.00000000000000000000000000000000                                                                   | E 130<br>0.00000000<br>0.00000000                                                                                                                                         | Eu 131<br>0.000000000<br>0.00000000                                                                                                                         | E 0 132<br>0.00000000<br>0.00000000                                                                               | E0 133<br>0.00000000<br>0.00000000                                                                                                                              | E0 134<br>C.00000000<br>0.003000000                                                                                                                              | E 135<br>6.00300000<br>0.00000000                                                                                                                                | EU 136<br>0.00000000<br>0.00000000                                                                                                                               | 640 137 1<br>0.00000000 -1<br>0.00000000  | ຣັດ 138<br>ວູ⊷ດແບ້ງວິດອີດ<br>ວູຍບັບບັດດີດວ່າ<br>−1                                                                             | +C 134                                                                                                                 |
| 301 C4U<br>RHS L-J4<br>RHS UP1                                                                                    | 30C 3PP<br>RhS LJ 1<br>RHS UP 1                                                                                                                                           | 30C 4PP<br>RHS LOI<br>RHS UPI                                                                                                                               | 30NAPP<br>Kms Lùi<br>Rms UPi                                                                                      | 304 BAP<br>AHS LOS<br>RHS UPS                                                                                                                                   | 304 AAP<br>RHS LOI<br>RHS UP:                                                                                                                                    | 304CAP<br>RHS LOI<br>RMS UPI                                                                                                                                     | 3040AP<br>RHS LJ:<br>RHS UP:                                                                                                                                     | 3056ASP<br>RHS LUI<br>RHS UPI             | 305 AAP<br>RHS LU1<br>RHS UV1                                                                                                  | 309444<br>K F S L - 13<br>K F S C - 13                                                                                 |

| <ul> <li>065000000 P 30CBMBA</li> <li>245900000 P 30CALLC</li> <li>295500000 P 30CALLC</li> <li>234200000 P 305CA</li> </ul>                                                             | •120000000 P 3068M8A<br>•120000000 P 3068LLC<br>•120000000 P 306ALLC<br>•131100000 P 305ALC<br>-1.000000000 P 305CXX                                                                     | • U7100000 P 3068M8A<br>• 020000000 F 3068LLC<br>• 020000000 P 306ALLC<br>-1.00000000 P 30V60                                  | .028000000 P 30CBNBA<br>.028000000 P 30CBLLC<br>.028000000 P 30CALLC<br>.049200000 P 30CALLC                      | .042000000 P 30CBMBA<br>.028000000 P 30CBLLC<br>.028000000 P 30CALLC<br>.049200000 P 30CALLC                         | .022000000 P 30CBMBA<br>.022000000 P 30CBLLC<br>.0140000000 P 30CALLC<br>.065600000 P 30CALLC                       | •003000000 P 30CALBA<br>•003100000 P 30CASMC                                             | .000000000 P 30CKBA<br>-1.00000000 P 30CKB   | •006100000 P 30C8M8A<br>•002500000 P 30C8LLC<br>•002400000 P 30CALLC                          | .006900000 P 30CBMBA<br>.0058000000 P 30CBLLC<br>.005700000 P 30CALLC                                              | .008700000 P 3068M3A<br>.007100000 P 3068LLC<br>.005200000 P 306ALLC                                                               | .025700000 P 30C6M6A<br>.014300000 P 30C458A                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| <ul> <li>11600000 P 30CAMHC</li> <li>065000007 P 30CBLGA</li> <li>098000000 P 30CALHC</li> <li>109100000 P 30CASHC</li> <li>1.000000000 P 30DLHTI</li> </ul>                             | •160070000 P 30CANHC<br>•1533070000 P 30CALHC<br>•180070000 P 30CALHC<br>•202500000 P 30CASHC<br>-1.000700000 P 30CASHC                                                                  | .062000000 P 366AMHC<br>.02000000 P 3068L8A<br>.020100000 P 306ALHC<br>.022100000 P 306ALHC                                    | •043000000 P 30CAMHC<br>•028000000 P 30CBLBA<br>•028000000 P 30CALHC<br>•047200000 P 30CASHC                      | -042300000 P 30CANHC<br>-028000000 P 30CEL8A<br>-028390000 P 30CEL8A<br>-047200000 P 30CALHC<br>-1.000000000 P 305D8 | .014030000 P 30CANHC<br>.022000000 P 30CALAC<br>.014300000 P 30CALAC<br>.063000000 P 30CASHC                        | .002300000 P 30CANHC<br>.003209000 P 30CASBA                                             | .002900000 P 30C048A                         | .005900000 P 30CANHC<br>.002400000 P 30C8L8A<br>.002400000 P 30C8L8A                          | .005700000 P 30CANHC<br>.005700000 P 30C8L8A<br>.005700000 P 30C8LHC                                               | .005700000 P 305AMHC<br>.006900000 P 3058LBA<br>.005200000 P 305ALHC                                                               | .030100000 P 30CAMHC<br>.021100000 P 30CALBA<br>-1.7.1.1.010 P 30FIS |
| <ul> <li>259900000 P 30CAMLC</li> <li>365500000 P 30CANMC</li> <li>3980600000 P 30CALBA</li> <li>109100000 P 30CALBA</li> <li>974000000 L 30DLMC2</li> <li>60600000 L 30DLMC2</li> </ul> | <ul> <li>188600000 P 30CAMLC</li> <li>120000000 P 30C8MHC</li> <li>180000000 P 30CAL8A</li> <li>202500000 P 30CAS8A</li> <li>005000000 P 300SMTA</li> </ul>                              | <ul> <li>026000000 P 30CAMLC</li> <li>086760000 P 30CBMHC</li> <li>026000000 P 30CALBA</li> <li>027000000 P 30CASHC</li> </ul> | .028000000 P 30CAMLC<br>.026000000 P 30CBMHC<br>.028000000 P 30CALBA<br>.070600000 P 30CASBA                      | .028000000 P 30CAMLC<br>.048000000 P 30CBMHC<br>.028000000 P 30CAL8A<br>.070600000 P 30CAL8A<br>.022000000 P 30CAS8A | .01400000 P 30CAMLC<br>.022006000 P 30CBMHC<br>.014600600 P 30CALBA<br>.065600600 P 30CASBA                         | <pre>     •002300000 P 30CAMLC     •0047C00000 P 30CALLC     -1.000000000 P 30CKA </pre> | .002900000 P 30C8MLC<br>.036000000 P 30C8LHC | •005900000 P 30CAMLC<br>•005905000 P 30CBMHC<br>•002400000 P 30CALBA<br>-1.0000505050 P 301A6 | .006900000 P 30CAMLC<br>.006900000 P 30CAMLC<br>.005700000 P 30CALBA<br>-1.006600000 P 301A7                       | .006706000 P 30CAMLC<br>.108700000 P 30CAMLC<br>.00526600 P 30CALBA<br>-1.00000000 P 301AB                                         | .021700000 P 30CAMLC<br>.023400030 P 30CBL6A<br>.11470.555 B 30CBL6A |
| <ul> <li>CGULLUUJ P BUCANBA</li> <li>19850CCUU P BCCBMLC</li> <li>UESDODUUC P BUCBLMC</li> <li>UESDULUUD P BUCBLMC</li> <li>2350LUUUD P BUCHCLB</li> <li>LEUUUUCC P BUCSCX</li> </ul>    | <ul> <li>JUGOUUCCU P 30CAMBA</li> <li>J2000CGUU P 30CBMLC</li> <li>L54700000 P 30CBLMC</li> <li>C55200000 P 30C0LBA</li> <li>OU0000000 P 30DLMTL</li> <li>-400000000 P 305BMX</li> </ul> | .63.400000 P 30CAMBA<br>.663000000 P 30CBMLU<br>.620000000 P 30CBLHC<br>.628160000 P 30CASBA                                   | .64300000 P 30CAMBA<br>.028060000 P 30CBMLC<br>.026000600 P 30CBLHC<br>.072860660 P 30C0LBA<br>.100000000 P 3050A | .05200000 P 30CAMBA<br>.04800000 P 30CBMLC<br>.028000300 P 30CBLMC<br>.U728000000 P 30CDLBA<br>455000000 P 300LMCL   | .621400000 P 30CAMBA<br>.622000000 P 30CBMLC<br>.022000000 P 30CBLHC<br>.626000000 P 30CDLBA<br>-1.00000000 P 30VRD | •002300000 P 30CAMBA<br>«094700000 P 30CALHC<br>•003200000 P 30CASLC                     | .602900000 P 3008M8A<br>.606460666 P 3008LLC | •0059006U3 P 3UCAMBA<br>•00790000 P 300BMLC<br>•6029060U P 300BLMC<br>•001370000 P 300DLBA    | <ul> <li>• 6 U &amp; 9 C &amp; M &amp; A &amp; A</li></ul> | <ul> <li>•UJ870UUG0 P 30CAMBA</li> <li>•U1340(500 P 30CBHLC</li> <li>•U52250500 P 30CBLHC</li> <li>•C03505000 P 30C0LBA</li> </ul> |                                                                      |
| 6.303063060                                                                                                                                                                              | EQ. 141<br>0.0000000                                                                                                                                                                     | EQ 142<br>0.000000000                                                                                                          | EQ 143<br>0.00000000<br>0.0000000                                                                                 | EQ 144<br>0.0000000000                                                                                               | EQ 145<br>0.00000000<br>0.000000000                                                                                 | E0 140<br>0.000000000                                                                    | EU 147<br>0.0003000000                       | 60000000000000000000000000000000000000                                                        | 6.000000000000000000000000000000000000                                                                             | E4 150<br>6.000000000                                                                                                              | EQ 151<br>0.000000000                                                |
| 305CAP<br>RH5 LU1<br>RH5 UP1                                                                                                                                                             | 305C8P<br>RHS LO1<br>RHS UP1                                                                                                                                                             | 30VGOP<br>RHS LU:<br>RHS UP:                                                                                                   | 3050AP<br>RFS LU:<br>RHS UP:                                                                                      | 30508P<br>RHS LO1<br>RHS LO1                                                                                         | 304RDP<br>RHS LU:<br>RHS UP:                                                                                        | 30CHAP<br>RHS LOI<br>RHS UP:                                                             | 300 KBP<br>RHS LU1<br>RHS UP1                | BOLA6P<br>RHS LD1<br>RHS UP.                                                                  | 301A7P<br>RHS LO:<br>RHS UP:                                                                                       | 301A3P<br>RMS LU:<br>RMS UP:                                                                                                       | 30415P<br>RMS 101<br>PHS UP1                                         |

| 30CBMBA<br>30CBLLC<br>30CALLC<br>30CALLC<br>30CASLC<br>300SMTC                                                            | 30C8M8A<br>30C6LLC<br>30CALLC<br>30CALLC<br>30CASLC<br>30BTU                                                           | 30CBMBA<br>30CBLLC<br>30CALLC<br>30CALLC<br>30CASLC<br>300SMTA                                | 30C8M8A<br>30C8LLC<br>30CALLC<br>30CALLC<br>30CALLC<br>30LA8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30CBMBA<br>30CBLLC<br>30CALLC<br>30DLHC1<br>30DSHTC                                                                | 300SHTA<br>30INV                                | 20C3PU3M<br>30C3P01M<br>30C3P04P<br>50C3P03M<br>30C3PC3M                             | 20C4P03N<br>30C4P01N<br>30C4P04P<br>50C4P03N<br>30C4P03N                                    | 20NAP03N<br>30NAP01N<br>30NAP04P<br>50NAP04P<br>30NAP03N<br>30NAPC                 | 2048403M<br>3048401M<br>3048404P<br>5048404P<br>5048403M<br>3048403M                        | 2048403M<br>3048401M<br>3048404P                   |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------|
| 3.370700000 P<br>4.156700000 P<br>3.805600000 P<br>2.483000000 P<br>3.12000000 P<br>3.12000000 P                          | .056660000 P<br>.056190000 P<br>.059050000 P<br>.012890000 P                                                           | • 05700000 P<br>• 06400000 P<br>• 066150000 P<br>• 066150000 P<br>• 01800000 P                | 4 000000000 4<br>2 000000000 4<br>2 0000000000 4<br>3 00000000000 1<br>1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>138200000 P</li> <li>093800000 P</li> <li>118400000 P</li> <li>038200000 P</li> <li>00600000 P</li> </ul> | • 400000000 •                                   | -1.000000000 P<br>1.000000000 P<br>1.000000000 P<br>-1.000000000 P<br>-1.000000000 P | -1.000000000000000000000000000000000000                                                     | -1.000000000 P<br>1.000000000 P<br>1.000000000 P<br>1.000000000 P<br>1.000000000 P | -1.000000000 P<br>1.000000000 P<br>1.000000000 P<br>1.00000000 P<br>1.00000000 P            | -1.000000000 P<br>1.000000000 P<br>1.000000000 P   |
| P 30CANHC<br>P 30CALBA<br>P 30CALHC<br>P 30CALHC<br>P 30CASHC<br>P 30DSHTA                                                | P 30CAMHC<br>P 30CBLBA<br>P 30CALHC<br>P 30CALHC<br>P 30CASHC<br>P 30DSHTC                                             | P 30CANHC<br>P 30CBLBA<br>P 30CALHC<br>P 30CALHC<br>P 30CANT1<br>P 300LHT1                    | P 30CAMHC<br>P 30CBL8A<br>P 30CALBA<br>P 30CALHC<br>P 30CASLC<br>P 300SMTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P 30CAMHC<br>P 30CBLBA<br>- 30CALHC<br>P 30CALHC<br>P 30CASLC<br>P 30D5MTA                                         | P 305MLN<br>1 305MLN                            | P 10C3P03P<br>P 30C3P0FP<br>P 30C3P02P<br>P 40C3P03P<br>P 40C3P03P                   | P 10C4PC3P<br>P 30C4P0FP<br>P 30C4P02P<br>P 40C4P03P<br>P 40C4P03P<br>P F0C4P03P            | P 10%AP03P<br>P 30%AP05P<br>P 30%AP02P<br>P 46%AP03P<br>P 46%AP03P                 | P 1648403P<br>P 304840FP<br>P 3048462P<br>P 4648462P<br>P 4648403P<br>P 5048403P            | F 104AAU3P<br>P 304AAU5P<br>P 304AA05P             |
| 3.215400000<br>4.334500000<br>3.903050000<br>2.435170000<br>1.05005000                                                    | 0000080000<br>000010000<br>000010000<br>000000000                                                                      | • 065010000<br>• 069320000<br>• 070446000<br>• 070446000<br>• 025000000                       | 5.000300000<br>5.000300000<br>5.000300000<br>5.000300000<br>5.000300000<br>5.000300000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • 07500000<br>• 162100000<br>• 104200000<br>• 111700000<br>• 013000300                                             | .510000000                                      | -1.0000000000<br>1.000000000<br>1.0000000000<br>1.00000000                           | -1.000000000<br>1.0000000000<br>1.0000000000<br>-1.0000000000                               | 00000000001<br>00000000001<br>00000000001<br>000000                                | 000000000.1-<br>0000000000.1<br>0000000000.1-<br>0000000000                                 | - 1.0003040000<br>- 1.0003040000<br>- 1.0003040000 |
| 30CAMLC<br>30CBMHC<br>30CBLBA<br>30CALBA<br>30CALBA<br>300LHT1                                                            | 34CAMLC<br>30CBMHC<br>30CALBA<br>30CALBA<br>30CASBA<br>300SMTA                                                         | 30CAMLC<br>30CBMMC<br>30CALBA<br>30CALBA<br>30CASBA<br>30DLMC2<br>30ENE                       | 30CAMLC<br>30CAMLC<br>30CALBA<br>30CASHC<br>30CASHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30CAMLC<br>30CBMMC<br>30CALBA<br>30CASHC<br>30DLMT1                                                                | 300LHC2<br>30LRGN<br>30NPLP02                   | 10C3PU3M<br>30C3PU3M<br>30C3PU2M<br>30C3PU2M<br>50C3PU5P<br>FUC3P03M                 | 1 6 6 4 P 6 3 M<br>3 6 6 4 P 6 5 M<br>3 6 6 4 P 0 5 M<br>3 0 6 4 P 6 5 P<br>7 0 6 4 P 6 3 M | 1 C MAP C 3 M<br>3 O MAP C F M<br>3 O MAP C 2 M<br>3 O MAP C 2 M<br>7 O MAP C 3 M  | 1 C 4 B A O 3 M<br>3 O 4 B A U F M<br>3 O 4 B A U Z M<br>3 O 4 B A U Z M<br>7 C 4 B A U Z M | 1048863M<br>3648465M<br>77447                      |
| 3.16360000 P<br>3.412500000 P<br>3.432700000 P<br>2.4839700000 P<br>2.483000000 P                                         | .056960000 P<br>.057300000 P<br>.060560000 P<br>.042896000 P<br>.01600000 P                                            | .062910000 P<br>.063700000 P<br>.067785006 P<br>.047560000 P<br>355006000 P<br>-1.000060000 P | 5 - 00000000<br>5 - 000000000<br>5 - 00000000<br>5 - 00000000<br>5 - 00000000<br>5 - 00000000<br>5 - 000000000<br>5 - 00000000<br>5 - 000000000<br>5 - 000000000<br>5 - 00000000<br>5 - 00000000<br>5 - 00000000<br>5 - 000000000<br>5 - 000000000<br>5 - 000000000<br>5 - 00000000<br>5 - 0000000<br>5 - 000000000<br>5 - 00000000<br>5 - 0000000000<br>5 - 000000000<br>5 - 00000000000000000000000000000000000 | .09660000 P<br>.108560000 P<br>.138660000 P<br>.11290000 P<br>.012500000 P                                         | .100000000 L<br>4.0000000000 P<br>1.700000000 P | -1.00000000 P<br>1.000000000 P<br>1.000000000 P<br>1.0000000000 P<br>-1.000000000 P  | -1.00000000 P<br>1.000000000 P<br>1.000000000 P<br>1.0000000000 P                           | -1.00000000 P<br>1.000000000 P<br>1.000000000 P<br>1.000000000 P<br>-1.000000000 P | -1.300000000 P<br>1.300000000 P<br>1.30000000 P<br>1.30000000 P                             | -1.00000000 P<br>1.0000000 P                       |
| 30C8H6A<br>30C8HLC<br>30C8LHC<br>30C0L8A<br>30C0L8A<br>30C0L6L<br>30KWH                                                   | 30CAMBA<br>30CBMLC<br>30CBLHC<br>30CDLbA<br>30CDLbA                                                                    | 30CAMBA<br>30CAMBA<br>30CBLMC<br>30C0LBA<br>30OLHC1<br>300SHTC                                | 30CANBA<br>30CUNLC<br>30CULLC<br>30CASBA<br>30CASBA<br>30DLHT1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30CAHBA<br>30CAHBA<br>30CBLHC<br>30CBLHC<br>30CASBA<br>30DLHC2<br>30DPC                                            | 300LHC1<br>3605HTC<br>30NPIP01                  | 30C3P<br>2UC3P61P<br>30C3P61P<br>30C3P61P<br>50C3P05M                                | 30049039<br>20049039<br>30049038<br>30049038                                                | 3JNAP<br>20NAPC3P<br>3UNAPU1P<br>3UNAPU1P<br>00NAP03P                              | 30484<br>20484039<br>20484012<br>30484012<br>50484012                                       | 304AA<br>244AAU3P                                  |
| a.2000000<br>a.299100000<br>4.599100000<br>6.439000000<br>7.439000000<br>1.0000000<br>1.0000000<br>1.0000000<br>1.0000000 | . C > 6 + 40 + 00 P<br>. C + 5 + 0 + 00 C P<br>. 0 6 31 0 C - 00 J<br>. C 7 2 2 + 1 + 0 C 9<br>C 7 2 2 + 1 + 0 C 9<br> | <pre>Pair Pair Pair Pair Pair Pair Pair Pair</pre>                                            | 5.000000000<br>5.00000000000000<br>5.000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <pre>.101300460 P .070566000 P .121306000 P .111760000 P .125706000 P .1.000000000 P</pre>                         | 3.80000000 P<br>1.134000000 P<br>2.70000000 P   |                                                                                      | -1.60000404 P<br>-1.60636030 P<br>1.0003060360 P<br>1.000500000 P<br>-1.603060000 P         |                                                                                    |                                                                                             | -1.((())()<br>-1.((())()<br>-1.                    |
| 0. E0<br>0. C005CC05C<br>0. 003 103 056                                                                                   | EQ 153<br>0.00000000<br>0.0000000                                                                                      | Eq 154<br>6.00000000 u<br>0.00000000                                                          | E 0 155<br>0. JC0JJ0064<br>0. 00J000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E0 156<br>0.00000000<br>0.00000000                                                                                 | E0 157<br>0.00000000<br>0.00000000              | e 0 158<br>0.00003000<br>0.0000000                                                   | E 0 159<br>0.00000000<br>0.0000000                                                          | 60 160<br>0.040400660<br>0.040400660                                               | сч 161<br>0.320939066<br>С.366600065                                                        | ru 162<br>6.00000000                               |
| 30KhHR<br>RFS LUI<br>RMS UPI                                                                                              | 308 TUR<br>R HS LU:<br>R HS UP:                                                                                        | 306 NËR<br>RHS LQI<br>KMS UPI                                                                 | 30LABR<br>RHS LD:<br>RHS UP:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 300 PCR<br>RHS LD:<br>RHS UP:                                                                                      | 30INVR<br>RMS LDI<br>RMS UPI                    | 30C 3P0<br>RHS LD:<br>RHS UP1                                                        | 30C 4P0<br>RHS LD:<br>RHS UP:                                                               | 3CMAPD<br>RHS LU:<br>RHS UP:                                                       | 304 8 AD<br>8 H S L J 8<br>8 H S U 8                                                        | 304 AAD<br>R HS LJI<br>R HS LJI                    |

| 03M<br>01A<br>049<br>0349<br>C                                                | 03M<br>04P<br>03M<br>C                                                             | ų                                     | 03M<br>04P<br>03M<br>C 3M                                                      | 03M<br>04P<br>03M<br>C 3M                                                             | 0 3 M                                                                                          |                               | 103M<br>04P<br>03M<br>03M                                                   | OF M                                                                    | OFH<br>03H                                      | 05M<br>03M                                      |                                  |                                         |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|----------------------------------|-----------------------------------------|
| 2046A03M<br>3046A01M<br>3046A04P<br>5046A04P<br>5046A03M<br>3046AC            | 2040A03M<br>3040A01M<br>3040A04P<br>5040A03M<br>3040AC                             | 304040                                | 2054A03M<br>3054A03M<br>3054A03M<br>5054A03M<br>305AAC                         | 2058803M<br>3058801M<br>3058804P<br>3058804P<br>5058804P<br>3058803M                  | 205CA03M<br>305CA03M<br>305CA04P<br>505CA04P<br>305CA03F                                       |                               | 2050803M<br>3050803M<br>3050804P<br>5050803M<br>3050803M                    | 30V600FM<br>30V60C                                                      | 3050A0FM<br>5050A03M                            | 305080FM<br>5050803M                            |                                  |                                         |
| -1.000000000 P<br>1.0000000000 P<br>1.0000000000 P<br>1.000000000 P           | -1.00000000 P<br>1.000000000 P<br>1.000000000 P<br>-1.000000000 P<br>1.000000000 P | -1.00000000                           |                                                                                | -1.000000000 P<br>1.000000000 P<br>1.0000000000 P<br>1.0000000000 P<br>1.0000000000 P | -1.000000000 P<br>1.000000000 P<br>1.000000000 P<br>-1.000000000 P<br>1.000000000 P            |                               | -1.000000000000000000000000000000000000                                     | 1.00000000 P                                                            | 1.000000000 P                                   | 1.000000000 P                                   |                                  |                                         |
| P 104CA03P<br>P 304CA0FP<br>P 304CA0FP<br>P 404CA03P<br>P 604CA03P            | P 1040403P<br>P 304040F<br>P 3040402P<br>P 4040403P<br>P 404033P                   | P 304CAC                              | P 1054403P<br>P 305440F<br>P 305440F<br>P 4054402P<br>P 4054403P<br>P 6054403P | P 1058803P<br>P 305886FP<br>P 3058802P<br>P 4058803P<br>P 4058803P                    | P 105CA03P<br>P 305CA0FP<br>P 305CA02P<br>P 405CA03P<br>P FU5CA03P                             |                               | P 105C803P<br>9 305C805P<br>P 305C862P<br>P 405C803P<br>P 405C803P          | P 20V6003M<br>P 30V6005M                                                | P 2050A03M<br>P 3050A05M                        | P 2050803M<br>P 3050805M                        |                                  |                                         |
| -1.000000000<br>1.000000000<br>-1.000000000<br>-1.0000000000                  | -1.0000000000<br>1.0000000000<br>1.0000000000<br>1.00000000                        | -1.0000000                            | -1.000000000<br>1.000000000<br>1.000000000<br>1.00000000                       | -1.00000000<br>1.000000000<br>1.000000000<br>-1.000000000                             | -1.00000000<br>1.00000000<br>1.00000000<br>-1.00000000<br>-1.00000000                          |                               | -1.000300000<br>1.0003300000<br>-1.000300000<br>-1.000300000                | -1.000000000                                                            | -1.000000000                                    | -1-000000000                                    |                                  |                                         |
| 1046A63M<br>3046A6FM<br>3046A62M<br>3046A62M<br>5046A62M<br>5046A63M          | 1040463M<br>304046FM<br>3040402M<br>3040402M<br>5040405P                           | 3048AC                                | 10544034<br>30544664<br>30544664<br>30544654<br>30544659<br>60544034           | 1058843M<br>3058845M<br>3058802M<br>3058802M<br>5058803M<br>6058803M                  | 1056463M<br>3056405M<br>3056402M<br>3056405P<br>5056405P<br>F056403M                           | 305000                        | 1050803M<br>3050805M<br>3050802M<br>3050803M<br>5050803M                    | 10V6003M<br>30V6062M                                                    | 1650463M<br>3050462H<br>3050462H                | 1050803M<br>3050802M<br>30508C                  | <b>BUVROC</b>                    | P 30CKAC                                |
| -1.00000000 P<br>1.0000000 P<br>1.00000000 P<br>1.00000000 P                  | -1.00000000 P<br>1.000000000 P<br>1.000000000 P<br>1.000000000 P<br>-1.00000000 P  | -1.30000000 P                         | -1.000000000000000000000000000000000000                                        | -1.00000000 P<br>1.300000000 P<br>2.30000000 P<br>1.00000000 P                        | -1.30000000 P<br>1.000000000 P<br>1.0000000000 P<br>1.00000000000 P<br>1.00000000000 P         | 1.0000000 L                   | 4 00000000°1-<br>4 00000000°1 -<br>1 000000000°1 -<br>1 000000000°1 -       | -1.00000000 P                                                           | -1.000000000 P<br>1.000000000 L<br>1.00000000 L | -1.00000000 P<br>1.000000000 P<br>1.000000000 L | 1.0000000                        | 1 .000 66 00 50 P                       |
| P 364CA<br>P 244CAu3P<br>P 344CAu3P<br>P 344CAu1P<br>P 344CAu1P<br>P 546CAU1P | P 3040A<br>P 2340AL3P<br>P 3040AL3P<br>P 3040A01P<br>P 3040A05M                    | P 304AAC<br>X 3útgasc                 | P 305AA<br>P 205AA03P<br>P 305AA03P<br>P 305AA01P<br>P 305AA01P<br>P 505A403P  | P 30%48<br>P 20%8803P<br>P 30%8801P<br>P 30%8801P<br>P 30%8801P<br>P 50%4803P         | P 305CA03P<br>P 205CA03P<br>P 305CA01P<br>P 305CA03P<br>P 505CA03P<br>L 305CCC                 | L 305CAC                      | P 305C8<br>205C803P<br>P 305C803P<br>P 305C803P<br>P 305C803P<br>P 305C803P | P 30VGU<br>P 30VGULM                                                    | F 3050A<br>P 3050AL1M<br>P F050Au3M             | F 33508<br>P 30566L1M<br>P FC566U3M             | r JUVAC                          | r súcka                                 |
| -1.00030000<br>-1.00030000<br>1.0000000<br>1.0000000<br>1.000000              | -1.000000000<br>-1.00000000<br>1.00000000<br>-1.00000000                           | -1.60000000                           | -1.00000000<br>1.000000000<br>1.000000000<br>1.00000000                        | -1.00000000<br>1.00000000<br>1.00000000<br>1.00000000                                 | -1.0000000<br>-1.00000000<br>1.00000000<br>1.0000000<br>1.0000000<br>-1.00000000<br>1.00000000 | - • 75 00 000 00              | -1.00000000<br>-1.00000000<br>1.00000000<br>1.00000000                      | -1.000000000<br>1.000000000                                             | -1.000000000<br>1.000000000<br>-1.000000000     | -1.0000000<br>1.0000000<br>-1.0000000           | - 0.6000.00.1-                   |                                         |
| 20 100 100 100<br>0. 100 100 10<br>0. 000 000 00                              | E 4 1 54<br>0.0030033003<br>0.000003030                                            | E0 1c5<br>0.060J000000<br>0.300309000 | E 9 1 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                    | EQ 1000000000000000000000000000000000000                                              | EQ 168<br>0.00000000<br>0.00000000                                                             | GE 149<br>0.000000000<br>+1NF | EQ 170<br>0.0000000000<br>0.00000000                                        | <ul> <li>Eq 171</li> <li>ο. υύουυσοις</li> <li>ο. οςοσοςοσος</li> </ul> | 20 172<br>3.043633940<br>6.600063966            | EQ 173<br>0.00000000<br>0.00000000              | 26 174<br>2.40510<br>3.902000310 | 119121000000000000000000000000000000000 |
| 304CA0<br>RHS LU<br>RHS UP 1                                                  | 3040AD<br>RHS 1U1<br>RHS UV                                                        | 3056A50<br>RH5 LU:<br>RH5 UPE         | 305 AAD<br>RHS LD1<br>RHS UP1                                                  | RHS LUI<br>RHS LUI<br>RHS UPI                                                         | 305CAO<br>RHS LOI<br>RHS UPI                                                                   |                               | 305CBO<br>RhS LU:<br>RhS UP:                                                | 30V 600<br>RHS LQ:<br>RHS UP 4                                          | 305040<br>RHS LJI<br>RHS UP 0                   | 305030<br>KHS LJ<br>RHS UP1                     | 304600<br>RHS LUI<br>RHS UPI     | 30CAAU<br>RFS LUI<br>RHS UPI            |

X L L

E 2

| <u>.</u>                                                             | 21563636                                                                                  | <u>×</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                               |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| <b>a</b> . (                                                         | 40000000 P                                                                                | U P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 404 AAF                                                       |
| .7581JJ000 P 46CBSHC<br>460JJ0000 7 46DLHCL                          | 0947600000 P 400BSLC<br>0340500000 P 400ASLC<br>-1.30000000 A 402PREM                     | <ul> <li></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .4<br>181 181<br>181 181 | 464 647<br>RHS LJI<br>RHS UP 8                                |
|                                                                      |                                                                                           | -1.(((000000 P 40NAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60 000 150<br>000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40NAPP<br>6H3 L38<br>RHS UP1                                  |
| -003100000 P 40CBSHC<br>-035100000 L 400LMC2                         | • <b>303100000 P 40085LC</b><br>• <b>003160000 P 400A5LC</b>                              | <ul> <li>CUBIGUOD P 40CBSBA</li> <li>CUBIGCCOD P 40CASHC</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EC 189<br>C.006000000<br>0.00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40C 4PP<br>RHS 101<br>RH3 121                                 |
| .012800000 P 4008MC<br>027100000 L 400LMC2                           | .012800000 P 40CBSLC<br>.0128600000 P 40CASLC                                             | .(12800000 P 40CBSBA<br>.(1200003 P 40CBSBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EQ 166<br>0.003300660<br>0.00300000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40C3PP<br>RMS LOI<br>RMS UPI                                  |
| 005900000 P 4008LC<br>007300000 P 4008M1A                            | 003460000 P 40CBSBA<br>003300000 P 40CASLC                                                | 1.00000000 P 40TIC4<br>000600000 P 40CASHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Eu 187<br>3.303043060<br>0.04000060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 401040<br>RMS 'LJ:<br>RMS UP:                                 |
| 005903000 P 40C8SLC<br>001400000 P 40D5MTA                           | 012600000 P 40CBSBA<br>009100006 P 40CASHC                                                | 1.60000000 P 40TNC4<br>C11006600 P 40CASBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EQ 1 t6<br>0.000000000<br>0.000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40NC40<br>C 2HS L34<br>RHS UP8                                |
| 037900000 P 40CBSLC<br>058400000 P 40CASLC                           | 073000000 P 40CBSBA<br>073000000 P 40CASHC                                                | 1.600000000 P 4006FN<br>073000040 P 40CASBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EQ 165<br>0.03J300626<br>0.300040030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40NGFD<br>RHS LJ4<br>RHS UP4                                  |
| -1.00000000. P 40CBSLC                                               | -1.00000000 P 400858A                                                                     | 1.0000000 P 400BIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E4 144<br>0.000000600<br>0.000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40CBID<br>RMS LOI<br>RMS UPI                                  |
| -1.000300000 P 40CASHC                                               | -1.00000000 P 40CAS8A                                                                     | 1.00000000 L 40CAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E9 163<br>0.000000000<br>0.00000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40CAID<br>RHS LOI<br>RHS UPI                                  |
| -1.000000000 P 40CBSHC<br>1.000000000 L 40TSML                       | -1.000000000 P 40C8SLC<br>-1.000000000 P 40CASLC                                          | -1.60000000 P 40CBSBA<br>-1.60000000 P 40CBSHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EQ 182<br>0.000000000<br>0.00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 405ML<br>RH5 LJ1<br>RHS UP1                                   |
| -6.300000000 P 40NGFN<br>-12.4200000 P 40BTU<br>.300000000 X 40ZPREM | -9.330C00000 P 40CBIN<br>02000000 P 40KWH<br>9956900000 P 40INV<br>-1.000000000 P 40IPCST | -9.25~J.(JUO [ 4JCAIA<br>-7.330005JUOG P 40TIC4<br>-1.6L(JUC4UO P 4008JT<br>1.6U(JU006G P 4008JT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E u 161<br>0.000c03000<br>0.000c03000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4008J<br>RHS LQI<br>RHS UPI                                   |
|                                                                      | 1.00000000 P 30MISC                                                                       | -1.00000000 P 30MIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 69 180<br>0.00000000<br>0.0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30MISD<br>RMS LJ8<br>RMS UP8                                  |
|                                                                      | 1.00000000 P 30148C                                                                       | -1.CU0000000 P 301A8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EQ 179<br>0.00000000<br>0.33000300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 301 ABO<br>RHS LOI<br>RHS UPI                                 |
|                                                                      | 1.00100000 P 361A7C                                                                       | -Loi JUULULDU F BUIAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E 3 178<br>C. OUOUJOOUU<br>O. OGJCCJJCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 301 A 7U<br>RHS 1-31<br>RHS UP1                               |
|                                                                      | 1.406060000 P 30146C                                                                      | attne 4 vyngologia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e a 177<br>3. Usucut 916<br>6. Juu Caburu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 301 A00<br>RH5 1.1:<br>RH5 U.1                                |
|                                                                      |                                                                                           | P       301A6C         P       3000000000         P       4000000000         P       4000000000         P       4000000000         P       4000000000         P       4000000000         P       400033900000         P       400033900000         P       400033900000         P       400033900000         P       400033900000         P       400033100000         P       -0.0031000000         P <t< td=""><td>-1.00000000       P 301AC       1.00000000       P 301AC         -1.00000000       P 301AC       -9.30000000       P 301AC         -1.00000000       P 400KH       -1.00000000       P 301AC         -1.00000000       P 400KH       -1.00000000       P 400KG         -1.00000000       P 400KG       -1.00000000       P 400KG         1.00000000       P 400KG       -1.000000000       P 400KG</td><td>(0.0.00000       &gt; 301.00C        (0.0.000000       &gt; 301.00C        </td></t<> | -1.00000000       P 301AC       1.00000000       P 301AC         -1.00000000       P 301AC       -9.30000000       P 301AC         -1.00000000       P 400KH       -1.00000000       P 301AC         -1.00000000       P 400KH       -1.00000000       P 400KG         -1.00000000       P 400KG       -1.00000000       P 400KG         1.00000000       P 400KG       -1.000000000       P 400KG                                                                                                                                                                                                                                                                                                                                                   | (0.0.00000       > 301.00C        (0.0.000000       > 301.00C |

| 15000000 F 40CA58A<br>150000000 L 400LHC2                       | .639700000 P 40CASBA<br>150000000 L 40DLHC2                              | 1.00000000 P 4040A                           | .023400000 P 40CAS8A                                                  | .056200000 P 406A58A<br>1.00000000 P 40588X  | <ul> <li>209700000 P 40CASBA</li> <li>974000000 L 400LMC2</li> <li>- 600000000 P 405BBX</li> </ul> | .132000000 P 40CAS8A<br>005000000 P 40DSHTA                           | .002400000 P 40CAS8A                          | .03200000 P 40CASBA                          | .032000000 P 4004471<br>022000000 P 4004471                         | .054500000 P 40CASBA                          | -1.00000000 P 40CKA               | -1.00000000 P 40CKB                |                                      |                                    |                                       |
|-----------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------|-----------------------------------|------------------------------------|--------------------------------------|------------------------------------|---------------------------------------|
| .175030000 P 400654C                                            | .17500000 P 4008SHC<br>15000000 P 400LHC1                                | 1.000000000 P 404CA                          | <ul> <li>030900000 P 40685HC</li> <li>−1,000000000 P 4054A</li> </ul> | .045600000 P 4058BHC<br>-1.000030000 P 40588 | .146000000 P 40C85HC<br>1.235000000 P 40DLHC1<br>1.000000000 P 405CXX                              |                                                                       | .002400000 P 400685HC<br>-1.000000000 P 40V60 | .032000000 P 4058HC<br>-1.000000000 P 4050A  | .032000000 P 40085HC<br>458000000 P 400LHC1                         | .056400000 P 40085HC<br>-1.0003330000 P 40VR0 | .004600000 P 40CASLC              | .005800000 P 40CBSHC               |                                      |                                    |                                       |
| .14(00000 P 40CBSLC<br>.121500000 P 40CASLC                     | <pre>。140000000 P % CBSLC .121500000 P % CASLC 1.000000 C % 02PPEM</pre> | 1.00000000 P \$U\$AA                         | .035200300 P 40CBSLC<br>.023400000 P 40CASLC                          | .043300000 P 40C8SLC<br>.053860030 P 40C8SLC | <pre>~268900000 P 40C85LC<br/>~304300000 P 40C85LC<br/>~1.000000000 P 405CA</pre>                  | *088060000 P 40C85LC<br>•113600000 P 40C85LC<br>•1.00000000 P 40C85LC | .002400000 P 40CBSLC<br>.002400000 P 40CASLC  | .032000000 P 40CBSLC<br>.032000000 P 40CASLC | .032000000 P 40C85LC<br>.032000000 P 40C85LC                        | .054500000 P 40CBSLC                          | .004600030 P 40CASHC              | .005800000 P 40CBSLC               |                                      |                                    |                                       |
| «୯୬୨୬୯୯୬୯୦ ዮ 400୫୬୪୫<br>«၂୭೭୯୯୯୬୦ ዮ 4408ጵ6<br>-1.୧୦୧୦୦୦୦ ዮ 4046 | .039700000 P 4608584<br>.152300000 P 4608560<br>-1.000000000 P 40404     | 1.000000000 P 4048A<br>-1.000000000 P 4016AS | .(35200000 P 400858A<br>.(23400000 P 400A5MC                          | .445760000 P 406858A<br>.653806000 P 406ASH6 | <pre>。16860503U P 460858A 。190305033 P 400ASHC 1.0000500000 P 400LMTL</pre>                        | .00880000000 P 400858A<br>.132000000 P 400A5HC<br>-1.00000000 P 435C8 | .002400000 P 40CBS8A<br>.6v2400000 P 40CASHC  | .v32040000 P 400856A<br>.63204000 P 400ASHC  | .03200000 P 400858A<br>.u52500000 P 400ASHC<br>-1.000300000 P 40508 | .054500000 P 400858A<br>.054500000 P 400ASHC  | .0U3200600 P 40CASBA              | .005300000 P 40CBSBA               | -1.000300000 P 40146                 | -1.600004030 P 401A7               | -1.(000000 P 40148                    |
| ές 193<br>0.00000000<br>0.00000000                              | EQ 3300000000000000000000000000000000000                                 | 64 145<br>0.033300000<br>0.303300000         | EQ 196<br>0.002000000<br>0.0000000                                    | 00000000000<br>0000000000<br>251 n2          | ξ q 198<br>0.00000000<br>0.00000000                                                                | EQ 159<br>0.00000000000000000000000000000000000                       | EQ 200<br>0.00000000<br>0.00000000            | E4 201<br>0.0000400000<br>0.000000000        | EQ 242<br>0.010000666<br>0.300063040                                | EQ 203<br>0.00000000<br>0.0000000             | EQ 2C4<br>6.60000000<br>6.0000000 | EG 245<br>C.ŬUUUDOVO<br>O.OOOOOOCO | EQ 206<br>0.000000000<br>0.000000000 | EQ 267<br>0.00000000<br>0.00000000 | Eu 2.66<br>0.003603060<br>U.360017060 |
| 404CAP<br>RMS LJI<br>RMS UPI                                    | 40404P<br>RH5 L31<br>RHS UP1                                             | 4056A5P<br>RHS LJ1<br>RHS UP                 | 405AAP<br>RHS LJ1<br>RHS UP1                                          | 405888<br>RHS LQ1<br>RHS UP1                 | A. 405CAP<br>A. RHS LOB<br>RHS UPI                                                                 | 405CBP<br>RHS LUC<br>RHS UP 1                                         | 40460P<br>RMS 201<br>RMS UP1                  | 4050AP<br>845 Lũi<br>Rhs UPI                 | 40508P<br>RHS LJI<br>RHS UPI                                        | 46VRDP<br>RHS LJ1<br>RHS UP1                  | 40CKAP<br>RHS LOI<br>RHS UPI      | 40CKBP<br>RHS EUI<br>RHS UPI       | 40146P<br>RHS LUFE<br>RHS UPE        | 401A7P<br>RHS LDI<br>RHS UPI       | 401AdP<br>RHS LUI<br>RHS UVI          |

4 - - - - 4

| 0 P 40CASBA<br>0 P 400LHT1                     | 0 P 40CASBA<br>10 P 4005HTA                       | 0 P 40CASBA<br>10 L 40DLHC2<br>0 P 40ENE      | 0 P 40CASBA                            | 0 P 40CASBA<br>0 1 400LHC2<br>10 P 400PC     | O P 40DSHTA                        | 0 P 30C3P04P<br>0 P 40C3P03P<br>0 L 40C3PC               | 0 P 30C4P04P<br>0 P 40C4P03P<br>0 L 40C4PC         | 0 P 30NAP04P<br>0 P 40NAP03P<br>10 P 40NAPC | 0 P 3048A04P<br>0 P 4048A03P<br>0 P 4048AC  | 10 P 304AA04P<br>10 P 404AA03P<br>10 P 404AAC | 0 P 3046404P                              | 0 P 3040A04P<br>0 P 4040A03P<br>0 P 4040AC       | 0 P 4040AC                          | 0 P 305AA04P<br>0 P 405AA03P<br>0 L 405AAC              | 0 P 3058804P<br>0 P 4058803P             |
|------------------------------------------------|---------------------------------------------------|-----------------------------------------------|----------------------------------------|----------------------------------------------|------------------------------------|----------------------------------------------------------|----------------------------------------------------|---------------------------------------------|---------------------------------------------|-----------------------------------------------|-------------------------------------------|--------------------------------------------------|-------------------------------------|---------------------------------------------------------|------------------------------------------|
| 2.72900000<br>.66800000                        | .051630000                                        | -0000000000000000000000000000000000000        | 5 • C 6000000                          | .170200000<br>557000000<br>-1.000000000      | • +0000000                         | -1.000000000<br>1.0000000000000000000000000              | -1.0000000<br>1.00000000<br>1.00000000             | -1.000000000<br>1.0000000000000000000000000 | -1.000000000<br>1.0000000000000000000000000 | -1.00000000<br>1.000000000                    | -1.00000000                               | -1.00000000<br>1.00000000000000000000000000      | -1.00000000                         | -1.000000000<br>1.000000000                             | -1.00000000<br>1.00000000                |
| P 40CBSHC<br>P 400LHC1<br>P 40KWH              | P 40CBSHC<br>L 40DLHC2                            | P 40CBSHC<br>P 400LHC1<br>P 400SHTC           | P 40CBSHC<br>P 40DLHC1<br>P 40LAB      | P 40CBSHC<br>P 46DLHC1<br>P 40DSHTC          | P 400LHT1                          | P 20C3P04P<br>P 40C3P02P<br>P F0C3P04P                   | P 20C4P04P<br>P 40C4P02P<br>P F0C4P04P             | P 20NAP04P<br>P 40NAP02P<br>P FONAP04P      | P 2048A04P<br>P 4048A02P<br>P F048A04P      | P 204AA04P<br>P 404AA02P<br>P F04AA04P        | P 204CA04P<br>P 404CA62P<br>P 404CA6      | P 2040A04P<br>P 4040A02P<br>P F040A04P           | P 404CAC                            | P 2054464P<br>P 4054402P<br>P 6054404P                  | P 2058804P<br>P 4058802P                 |
| 0000000000000<br>33.16000000<br>1-             | • 056650000<br>• 055300000                        | .062780000<br>.520300000<br>.014300000        |                                        | .13040000<br>038200000<br>.000000000         | 000000000°T-                       | -1.000000000<br>1.0000000000                             | -1.000000000<br>1.000000000<br>-1.0000000000       | -1.000000000<br>1.000000000<br>-1.000300000 | -1.0000000000<br>1.000000000000000000000000 | -1.00010000<br>1.000000000<br>-1.000100000    | -1.00000000<br>1.000100000<br>1.000000000 | -1.000000000<br>1.0000000000                     | -1.00000000                         | -1.00030790<br>1.0001004000<br>-1.000300030             | -1.000000000                             |
| P 40C85LC<br>P 40C85LC<br>P 40D5HTC            | P 40CBSLC<br>P 40CASLC<br>P 40BTU                 | P 40CBSLC<br>P 40CBSLC<br>P 40DSHTA           | P 40CBSLC<br>P 40CASLC<br>P 40DSHTC    | P 40CBSLC<br>P 40CBSLC<br>P 40DSHTA          | L 4CDLHC2<br>P 405MLN              | P 10C3P04P<br>P 40C3P04P<br>P 50C3P64P                   | P 10C4P04P<br>P 40C4P01P<br>P 50C4P04P             | P 10NAP64P<br>P 40NAP01P<br>P 50NAP04P      | P 1048A04P<br>P 4048A01P<br>P 5048A04P      | P 104A04P<br>P 404A01P<br>P 504A4U4P          | P 104CAU4P<br>P 404CAU1P<br>P 504CA04P    | P 1040A04P<br>P 4040AU1P<br>P 5040AC4P           | P 4048AC                            | P 1054464<br>P 4654461<br>P 5654464<br>P 5654464        | P 1003804P<br>P 4308801P                 |
| 3.24140C000<br>3.096600600<br>3.12660600       | •053170000<br>•054380000<br>•1-                   | .059260000<br>.06020000<br>.01800000          | 5.33000000<br>5.00000000<br>.60000000  | 0000001660°<br>0000001260°<br>00000001260°   | •100000000<br>••000000000          | -1.00000000<br>1.30000000<br>-1.000000000                | -1.000000000<br>1.000000000<br>-1.0000000000       | -1.00000000<br>1.00000000<br>-1.00000000    | -1.00000000<br>1.00000000<br>-1.00000000    | -1.000000000<br>1.000000000<br>-1.0000000000  | -1.00660000<br>1.0060000<br>-1.0060000    | -1.00000000<br>1.00000000<br>-1.00000000         | -1.000000                           | -1.00000000<br>1.0000000<br>-1.0000000                  | -1.00000000<br>1.00000000                |
| 4668584<br>4068586<br>4005414                  | 4 UCBS BA<br>4 UCBS BA<br>4 CDAS HC<br>4 CDAS H C | 40CBSBA<br>4UCASHC<br>4ULATI                  | 40C858A<br>40C85HC<br>40D5HTA          | 40C858A<br>46C85AC<br>40DLHT1                | 21H2005<br>70H1005                 | 40C3P<br>40C3P0FP<br>40C3P05P                            | 40C4P<br>40C4PUFP<br>4UC4P05P                      | 4 UNAP<br>4 ONAP CFP<br>4 ONAP OSP          | 4048A<br>4048ACEP<br>4048ACEP               | 40488<br>404846<br>4048465P                   | 404CA<br>404CALFP<br>404CALFP             | 4040A<br>4040ACFP<br>4040A05P                    | 424AAC<br>4076ASC                   | 405.44<br>46.544.0F2<br>42544.J5P                       | 40268<br>4028150F2                       |
| 3.265306000 P<br>2.625700000 P<br>1.05030000 P | 4 000014 50.<br>• 05440000 P                      | 9 000000000<br>• 00000000<br>• 00000000000000 | • • • • • • • • • • • • • • • • • • •  | .195000600 P<br>.128900000 P<br>.012500000 P | 3.60000000 P<br>1.134000000 P      | -1.000000000 -1<br>1.00000000000000000000000000000000000 | -1.000000000 P<br>1.0000000000 P<br>1.0000000000 P | -1.66000000 P                               | -1.60000000 P                               | -1.00000000 P                                 |                                           | -1.000000000 P<br>1.000000000 P<br>1.000000000 P | -1.66000000 A                       | -1.000330000 P<br>1.000000 P<br>1.000000 P              | -1. Ctuatter P<br>1. 1. 1. 60000 P       |
| c.03)04000400<br>0.0000400                     | EU 211<br>0.00000000<br>0.00000000                | EQ 212<br>0.00000000<br>0.00000000            | E 0 213<br>0.0000000000<br>0.000000000 | EQ 214<br>0.300003360<br>0.00000000          | EQ 215<br>6.00000000<br>0.00000000 | EQ 216<br>0.000000000<br>0.000000000                     | EQ 217<br>0.000060000<br>0.00000000                | E 4 218<br>0.000000000<br>0.000000000       | E 9 219<br>0.000000060<br>0.00000000        | EQ 220<br>0.ju0000000<br>0.0000000            | EQ 221<br>0.000000000<br>0.00000000       | 69 222<br>0.360603363<br>0.301600566             | 20 223<br>0.0033003060<br>v.0000060 | 5 G 2 4 4<br>6 + 5 + 5 0 2 2 4<br>0 + 0 0 2 5 1 3 1 0 3 | 10 H C C C C C C C C C C C C C C C C C C |
| 40K MHR<br>RHS LOI<br>RHS LOI                  | 408 TUR<br>R HS 101<br>R HS UP1                   | 42EAER<br>RHS LOB<br>RHS UPB                  | 40LABR<br>RHS LOI<br>RHS UPI           | 400PCR<br>RHS LJ:<br>RHS UP:                 | 401 NVR<br>R HS LJ:<br>R HS UP:    | 40C3P0<br>RHS LD1<br>KHS UP1                             | 40C4PD<br>RHS LD1<br>RHS UP1                       | 40MAPD<br>RHS LU:<br>RHS UP:                | 4048AD<br>RHS LQI<br>RHS UP:                | 404 AAD<br>RHS LQ:<br>RHS UP:                 | 404CAD<br>RHS L91<br>RHS UP1              | 404 CAD<br>R H5 LQ1<br>K H5 UP 1                 | 4056ASU<br>RH3 LU<br>RHS UP8        | 402 AAD<br>R 1 2 1 2 1<br>R 1 2 1 2 1                   | 445650<br>R MS 1 18<br>M M 1.23          |

| -1.00000000 P 3056A04P<br>1.000000000 P 4056A03P<br>1.000000000 L 4056AC                             | -1.000000000 P 3056804P<br>1.000000000 P 4056803P<br>1.000000000 L 405686                                                                       |                                                                                                                                        |                                                              |                                                                                                                      |                                                                                                       |                                                        | -8.756000000 L 50CDIN<br>020000000 P 50K4M<br>958900000 P 50INV<br>-1.000000000 P 50IPCSI                                                          | -1.000000000 P 50CCL8A<br>1.000000000 L 50TLR6                           | 1.000000000 L 50TSML         |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------|
| -1.000100100 P 205CAC4P<br>1.000100010 P 405CA04P<br>-1.000100000 P 405CA04P                         | -1.00000000 P 2055804P<br>1.000000000 P 4055802P<br>-1.000000000 P 6055804P                                                                     |                                                                                                                                        |                                                              |                                                                                                                      |                                                                                                       |                                                        | -8.500000000 P 50CCIM<br>-7.300700000 P 50TIC4<br>-1.000300000 P 50DRJT<br>1.0003300000 P 50DRJT                                                   | -1.000000000 P 50CALLC.<br>-1.00000000 P 50CDL8A                         | -1.0003030300 P 50CASLC      |
| -1.)U(000000 P 105CA04P<br>1.000000000 P 405CA04P<br>-1.000000000 P 505CA04P<br>1.000000000 L 435CCC | -1.000000000 P 1056804P<br>1.000000000 P 405681P<br>-1.0000000000 P 5056804P<br>1.0000000000 P 40V68C                                           | 1.000000000 L 4050AC<br>1.000000000 L 4050BC                                                                                           | 4 0000000.                                                   | 1.000000000 P 40048C<br>1.000000000 P 401A6C                                                                         | 1.00000000 P \$01A7C<br>1.00000000 P \$01A8C                                                          | 1.006600000 P 40MISC                                   | -9.000300000 P 50CBIN<br>-6.90000000 P 50TMC4<br>005450000 P 501A8<br>092000000 P 505CXX                                                           | -1.000000000 P \$UCALHC<br>-1.000000000 P \$0CCLHC                       | -1.00100000 P 50CASHC        |
| 14 216 -1                                                                                            | Eq 228 -1.40000000 P 40568<br>0.000000000 1.00000000 P 405686P<br>0.000000000 1.0000000 P 4056805P<br>Eq 229 -1.00000000 P 40V60<br>0.000000000 | E0 232 -1.00000000 P 4050A<br>0.300000000<br>0.3000000000<br>E0 231 -1.000000000 P 40508<br>0.000000000<br>E0 232 -1.000000000 P 40400 | 4 000000001.1-                                               | E4 234 -1.06~000000 P 406K8<br>0.000000000<br>0.000000000<br>E4 235 -1.60000000 P 401A6<br>0.000000000<br>0.00000000 | E0 236 -1.00000000 P 401A7<br>0.000000000<br>0.000000000<br>E0 237 -1.00000000 P 401A8<br>0.000000000 | EQ 236 -1.66600000 P 40MIS<br>0.00000006<br>0.00000060 | EQ 239 -5.2500000U L 56CAIN<br>0.00000000 -6.30000000 P 50N6FA<br>0.00000000C -10.80000000 P 508TU<br>-30000000 X 502PREM<br>-1.00000000 P 507ACST | EQ 246 -1.00000000 P 500484<br>6.00000000 -1.000000000000000000000000000 | EQ 241 -1.000300.0 P 5004564 |
| 402 CAJ<br>RMS LUI<br>RMS UPI<br>AODULIN<br>RMS LUI                                                  | •                                                                                                                                               | 405040<br>RHS L01<br>RHS U21<br>405080<br>RHS L01<br>RHS U21<br>40V R00                                                                | ADCKAD<br>RHS LOI<br>RHS LOI<br>RHS LOI<br>RHS LOI<br>RHS UP | 40CKBD<br>8H5 LU1<br>8h5 UP1<br>401A60<br>8H5 LU1<br>8H5 LU1<br>8H5 UP1                                              | 401 A70<br>RHS LG3<br>RHS LP3<br>401 A60<br>RHS L01<br>RHS L01<br>RHS L01<br>RHS UP3                  | 40MISO<br>RHS LU:                                      | SUDEJ<br>RHS LUE<br>RHS UPE                                                                                                                        | DOLKG<br>RHS LUI<br>RHS UPJ                                              | 14505                        |

| -1.60000000 P 50CALLC                                                   | -1.00000000 P 50CCLHC                     | .014000000 P                  | P 50C0L8                                                                                 | •004000000 P 5005                      | .015000000 P 50CCL8A<br>.015000000 P 50CASBA<br>-1.000000000 P 50C3P                              | .003100000 P 50CCL8A<br>.010000000 P 50CAS8A<br>-1.000000000 P 50C6P                              | .009600000 P 50CCLBA<br>.037000060 P 50CA5BA                                                        | •163000000 P 50CCLBA<br>•045000000 P 50CASBA<br>•300000000 L 50DLHC2                                                        | .316000000 P 50CCLBA<br>.105000000 P 50CASBA<br>400000000 L 500LHC2                                                            | .062400000 P 50CCLBA<br>.022000000 P 50CASBA<br>150000000 L 50DLHC2                               | .062500000 P 5056LBA<br>.023000000 P 505A5BA<br>150000000 L 500LHC2                                                              | 1.00000000 P 5040A                        |
|-------------------------------------------------------------------------|-------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| -1.00000000 P 50CALHC<br>-1.000000000 P 50CASLC                         | -1.00000000 P 50CCLLC                     | .014000000 6 5                | 014700000 P 50CGLHC<br>014700000 P 50CASLC<br>011700000 P 50CALHC<br>015200000 P 50CGLHC | .01000000 P 5                          | <ul> <li>015000000 P 50CALLC</li> <li>015300900 P 50CDLBA</li> <li>027100000 L 500LHC2</li> </ul> | <ul> <li>005500000 P 50CALLC</li> <li>010000000 P 50C0L8A</li> <li>035000000 L 500LHC2</li> </ul> | <ul> <li>006400000 P 50CALLC</li> <li>0096000000 P 50C0LBA</li> <li>1.0000000000 P 50NAP</li> </ul> | <ul> <li>133200000 P 50CALLC</li> <li>114000000 P 50C0LBA</li> <li>300000000 P 500LHC1</li> </ul>                           | .044200000 P 50CALLC<br>.316000000 P 50C0LBA<br>400000000 P 50DLHC1                                                            | <ul> <li>133200000 P 50CALLC</li> <li>062400000 P 50C0LBA</li> <li>150000000 P 500LHC1</li> </ul> | <ul> <li>133200000 P 50CALLC</li> <li>041600000 P 50C0LBA</li> <li>150000000 P 50DLHC1</li> </ul>                                | 1.000000000 P 504CA                       |
| -1.00000000 P 50CALBA<br>-1.000000000 P 50CASHC                         | •336000000 P 50CCLB                       | .00000000 P 5                 | 01400000 P 50CCLLC<br>01720000 P 50CASHC<br>01500000 P 50CALBA<br>01500000 P 50CCLLC     | 4 0000009400.                          | .015000000 P 50CALHC<br>.015000000 P 50CCLHC<br>.0123000000 P 50CALHC                             | .010000000 P 50CALHC<br>.004300000 P 50CCLHC<br>.010300030 P 50CASLC                              | .036400000 P 56CALHC<br>.00500000 P 50CCLHC<br>.037800000 P 50CASLC                                 | <ul> <li>1646600000 P 50CALHC</li> <li>181100000 P 50CALHC</li> <li>058600000 P 50CASLC</li> </ul>                          | .055500000 P 50CALHC<br>.060400000 P 50CCLHC<br>.023100000 P 50CALHC<br>-1.000000000 X 502PREM                                 | •166600000 P 50CALHC<br>•1811400000 P 50CCLHC<br>•05000400 P 50CASLC                              | <ul> <li>195600000 P 50CALHC</li> <li>27900000 P 50CCLHC</li> <li>056600000 P 50CASLC</li> <li>1.0000000000 X 50ZPREM</li> </ul> | 1.JOC 000000 P 504AA                      |
| 1.6663566394 L 20641N<br>-1.663564662 P 2064584<br>3.664496496 P 20681N | 10005 4 00000000°.                        | 00 P 5                        | 00 00<br>00 00                                                                           | P 50CCLL                               | .615006000 P 5UCALBA<br>015000060 P 50CCLLC<br>.616430600 P 50CASHC                               | .009100053 P 50CALBA<br>.0619u6u60 P 50CCLLC<br>.021u00000 P 50CASHC                              | .03900000 P 50CALBA<br>.005300000 P 50CCLLC<br>.00300003 P 50CASHC                                  | <ul> <li>135560000 P 50CALBA</li> <li>154000600 P 50CCLLC</li> <li>07390000 P 50CASHC</li> <li>1.6030000 P 504AA</li> </ul> | <ul> <li>315000000 P 50CALBA</li> <li>51300000 P 50CCLLC</li> <li>626600000 P 50CASHC</li> <li>-1.000000000 P 5048A</li> </ul> | .c62400000 P 50CALBA<br>.154360000 P 50CCLLC<br>.c6760000 P 50CASMC<br>-1.00000000 P 504CA        | .041500000 P 50CALBA<br>.154060000 P 50CCLLC<br>.0799060JU P 50CASMC<br>-1.660000000 P 5045A                                     | 1.66-9-0000 P 5648A<br>-1.600000 P 5676AS |
|                                                                         |                                           |                               |                                                                                          | . 0.0000000000000000000000000000000000 | EC 249<br>10.0000000<br>1 C.00000000                                                              | EQ 250<br>1 0.0000000                                                                             | EQ 251<br>0.333300000                                                                               | E 4 252<br>0.000000000<br>1 0.00000000                                                                                      | <ul> <li>c4</li> <li>253</li> <li>u.cccucco</li> <li>u.oooooucco</li> </ul>                                                    | EQ 254<br>0.000000000                                                                             | 10.00000000000000000000000000000000000                                                                                           | EQ 256<br>0.0000000<br>10.001000000       |
| 50CA10<br>AMS L01<br>RMS UP1<br>80CB10<br>RMS L01                       | KHS UP 1<br>50CC10<br>RHS LUP1<br>RHS UP1 | SOC DIO<br>RHS LUI<br>RHS UPI | RHS LUI<br>RHS UPI<br>FIN CAD<br>RHS LUI                                                 | 501C40<br>501C40<br>RHS LD1            | 50C 3PP<br>RHS LD1<br>RHS UP1                                                                     | 50046P<br>RHS LUL<br>RHS UP1                                                                      | SONAPP<br>RHS LUI<br>RHS UPI                                                                        | 504AAP<br>RHS LDI<br>RHS U21                                                                                                | 5048AP<br>RHS LU1<br>RHS UP1                                                                                                   | - 504CAP<br>RHS LUI<br>RHS UPI                                                                    | 5040AP<br>RHS LDI<br>RHS UP1                                                                                                     | SGSGASP<br>RHS LJI<br>RHS UPI             |

| .033660000 P 50CCL8A<br>.022400000 P 50CAS8A                                        | <ul> <li>071400000 P 50CCL8A</li> <li>051800000 P 50CAS8A</li> <li>1.00000000 P 50588X</li> </ul> | .059200000 P 50CCLBA<br>.120000000 P 506A5BA<br>.974000000 L 500LHC2<br>~.60000000 P 505BBX                                        | .0544300000 P 50CCLBA<br>.118700000 P 50CASBA<br>005000000 P 50DSHTA                        | .010200060 P 50CCLBA<br>.010300000 P 50CASHC                                                       | .072800000 P 50CCL88<br>.167000000 P 50CA588                         | .072800000 P 50CCL8A<br>.16700000 P 50CL8A<br>022000000 P 50DLHT1                           | .020000000 P 50CCLBA<br>.079800000 P 50CASBA                         | .002200000 P 50CASLC                                             |                                   | -1.000000000 P 50CKC                    | -001400000 P 50CCL8A<br>-1.000000000 P 50146 | -002900000 P 50CCL8A<br>-1.000000000 P 50147 | .0022600000 P 50168<br>-1.000000000 P 50148   | .005000000 P 50CASLC                    | - 47*ANCACO P 50CCLAA                 |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------|-----------------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------------|-----------------------------------------|---------------------------------------|
| .022400000 P 50CALLC<br>.022400000 P 50CDLBA<br>-1.00000300 P 565AA                 | .069400000 P 50CALLC<br>.065600000 P 50C0LBA<br>-1.000300000 P 50588                              | <pre>.274200000 P 50CALLC<br/>.095100300 P 50C0LBA<br/>1.2353300000 P 50DLHC1<br/>1.000300000 P 505CXX</pre>                       | .036810700 P 50CALLC<br>.055200000 P 50CDL8A<br>-1.00000000 P 500LMT1<br>400000000 P 505BBX | .010200000 P 50CALLC<br>.010300000 P 50CASBA                                                       | .072900000 P 50CALLC<br>.072900000 P 50C0L8A<br>-1.000000000 P 5050A | •072800000 P 50CALLC<br>•072800000 P 50CDLBA<br>••458000000 P 50DLHC1                       | .020000000 P 50CALLC<br>.020000000 P 50C0L8A<br>-1.00000000 P 50VRD  | 002700000 P 56CASHC                                              |                                   | •016200000 P 50CCLHC                    | .001200000 P 50CALLC<br>.001370000 P 50CDL8A | .002900000 P 56CALLC<br>.002900000 P 50CDLBA | .002600000 P 50CALLC<br>.003500000 P 50CDLBA  | .014400000 P 50CASHC                    |                                       |
| .927725960 P 5CCALHC<br>.022460006 P 5LCCLHC<br>.022400006 P 5DCASLC                | <ul> <li>071400000 P 50CALHC</li> <li>069400000 P 50CCLHC</li> <li>651800000 P 50CASLC</li> </ul> | <ul> <li>0066000000 P 50CALHC</li> <li>0592000000 P 50CCLHC</li> <li>2526000000 P 50CASLC</li> <li>-1.000000000 P 505CA</li> </ul> | <ul> <li> <ul> <li></li></ul></li></ul>                                                     | <ul> <li>010200000 P 50CALHC</li> <li>010200000 P 50C0LHC</li> <li>-1.000000000 P 50V60</li> </ul> | .072800000 P 50CALHC<br>.072800000 P 50CCLHC<br>.16000000 P 50CASLC  | .072800000 P 50CALHC<br>.072800000 P 50CALHC<br>.072800000 P 50CASLC                        | .02000000 P 500ALHC<br>.02000000 P 5000LHC<br>.057600000 P 500ASLC   | .002700000 P 50CASBA                                             | -1.00000000 P 50CK8               | •001400000 P 50CCLLC                    | .001200000 P 50CALHC<br>.001200000 P 50CCLHC | .002900000 P 50CALHC<br>.002900000 P 50CCLHC | .002600000 P 50CCLHC<br>.002600000 P 50CCLHC  | •005000000 P 50CA58A                    | · · · · · · · · · · · · · · · · · · · |
| <pre>.case0.cc.v P %.CALBA<br/>.c2%;cc.vv P %0.ccLLC<br/>.c2750cu30 P 56CASHC</pre> | <ul> <li>(7140000 P 500AL#A</li> <li>(0440000 P 500LLC</li> <li>(0490000 P 500AKHC</li> </ul>     | .cce8800000 P 50CALBA<br>.2124000000 P 50CCLLC<br>.120000000 P 50CASHC<br>1.0000000 P 50DLMTL                                      | .055260000 P 50CALBA<br>.036602000 P 50CCLLC<br>.C74560060 P 50CASHC<br>-1.60600000 P 50568 | .010200000 P 500ALBA<br>.010200000 P 500CLLC<br>.005600000 P 500ALC                                | .C7280CCJC P 50CALBA<br>.G728U0600 P 50CCLLC<br>.14750U060 P 50CASHC | .672800000 ; 500AL8A<br>.672800000 P 500CLLC<br>.147500000 P 500ASHC<br>-1.00000000 P 50508 | .C2UJU0000 P 50CALBA<br>.C2CUDCOUO P 50CCLLC<br>.C798COUOO P 50CASHC | •€01400000.P >00ALHC<br>−1.¢000000000000000000000000000000000000 | .LISSOUGUE P SUCDLBA              | .C.06500040 P 500048A                   | .CJ120C0J0 P 50CALBA<br>.LU120C0J0 P 50CCLLC | .002900000 P 50C4L6A<br>.002900000 P 50CCLLC | .Cu260Cu0C P 50CCLLC<br>.Cu2560cu0C P 50CCLLC | -1.00000000 P -004188                   |                                       |
| 20 257<br>5.5000000<br>0.0000000                                                    | Eu 258<br>0.000000000<br>v.0502000                                                                | EQ 229<br>3.000000000                                                                                                              | EQ 200<br>6.00000000<br>0.00000000                                                          | EQ 261<br>0.600033030<br>0.0600000                                                                 | EQ 262<br>0.0000000000000000000000000000000000                       | EQ 263<br>0.0000000000                                                                      | EQ 264<br>0.003003060<br>0.0030000                                   | E Q 265<br>0.0000000<br>0.0000000                                | EQ 266<br>0.60000000<br>0.0000000 | E 9 267<br>6. JJÚJUOOUO<br>C. ODVČLOOCO | EQ 264<br>0.0000000000                       | Eq 269<br>0.000063060<br>0.000063060         | EQ 270<br>0.00000000<br>0.00000000            | E9 271<br>0.000000000<br>0.00000000     |                                       |
| 505AAP<br>RHS LJ:<br>RHS UP:                                                        | 505888<br>RMS LU8<br>RMS UP8                                                                      | 505CAP<br>RHS LUI                                                                                                                  | SOSCEP<br>RHS LOI<br>RHS UP1                                                                | 50V60P<br>RHS LQ:<br>RHS UP:                                                                       | ADSDAP<br>RHS LGI<br>RHS UPI                                         | 50508P<br>RHS LUI<br>RHS UPI                                                                | SOVRDP<br>RHS LU:<br>RHS UP 1                                        | 50CKAP<br>RHS LJ:<br>RHS UP1                                     | 50CK8P<br>RHS LD1<br>RHS UP1      | SOCKCP<br>NHS LJ:<br>RHS UP:            | 50146P<br>RHS LU:<br>RHS UP:                 | 501.47P<br>RHS LO:<br>RHS UP:                | 501.48P<br>RHS LU1<br>RHS UP 8                | SOMISP<br>RMS LUI<br>RMS LUI<br>RMS UPI | 5 14                                  |

|                                                                                                |                                                                                                  | -1.330000000 P 4050A<br>-1.370701000 P 5050A                                                   | ניניטונייי איםSMIC                                                                                                                                              | 6.000000000<br>6.000000000<br>6.000000000<br>6.00000000 | 4005051<br>4005051<br>845 UP1<br>845 UP1<br>5905051 |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|
|                                                                                                |                                                                                                  | -1.00066000 P 205CA                                                                            | 1.000000000 P 2005HTC                                                                                                                                           | F Q 2 5 4<br>U. 0033003000<br>C. 0033003000             | 200505L<br>RHS L01<br>RHS UP8                       |
|                                                                                                |                                                                                                  | -1.00000000 P 105CA                                                                            | 1.003300040 P 1005HTC                                                                                                                                           | E9 283<br>C.00000000<br>O.0000000                       | 100 50 5L<br>RHS LU<br>RHS UP (                     |
|                                                                                                |                                                                                                  | -1.00000000 P 5CT6AS                                                                           | 1.00000000 P 5005HTA                                                                                                                                            | EQ 262<br>0.00000000<br>0.0000000                       | 500 5645<br>RHS LOI<br>RHS UPI                      |
|                                                                                                |                                                                                                  | -1.00000000 P 4076AS                                                                           | 1.000000000 P 4005HTA                                                                                                                                           | EQ 281<br>0.00000000<br>0.0000000                       | 40056A5<br>RF5 LJ1<br>RH5 UP1                       |
|                                                                                                |                                                                                                  | -1.000006000 P 3076AS                                                                          | 1.CG0000000 P 3005HTA                                                                                                                                           | EQ 260<br>6.030000000<br>0.00000000                     | 30056AS<br>RHS LQI<br>RHS UP1                       |
|                                                                                                |                                                                                                  | -1.00000000 P 20TGAS                                                                           | 1.0000000 P 2JD5HTA                                                                                                                                             | EQ 279<br>0.00000000<br>0.00000000                      | 2005645<br>RHS L01<br>RHS UP1                       |
|                                                                                                |                                                                                                  | -1.00000000 P 1076AS                                                                           | 1.00000000 P 1005HTA                                                                                                                                            | EQ 278<br>0.00000000<br>0.03000000                      | 1005645<br>                                         |
| -4000000000 P 500HTA<br>-1.000000000 P 50THV<br>2.000000000 X 50TFP04                          | E0414106 4 000000000°C<br>NTWS05 4 00000000°C<br>11H1005 4 0000000°C                             | .100000000 L 500LHC2<br>4.000000000 P 50LR6N<br>4.000000000 X 50TPIP02                         | 3.800000000 P 500LHC1<br>1.134000000 P 5005H7C<br>5.00000000 X 501P1P01                                                                                         | EQ 277<br>0.003003030<br>0.00020000                     | SOLAVR<br>RHS LOI<br>RMS UP 1                       |
| .096700000 P 50CALLC<br>.235900000 P 50C0LBA<br>0382000000 P 500LHCL<br>.006000000 P 50D5HTC   | .125900000 P 50CALHC<br>.144800000 P 50CCLHC<br>.043700000 P 50CASLC<br>.013200000 P 50DSHTA     | .215100030 P 50CALBA<br>.105400000 P 50CCLLC<br>.356300030 P 50CASHC<br>.012500300 P 500LHT1   | <ul> <li>*235904000 P 3400484</li> <li>*219460340 P 5000484</li> <li>*043700300 P 5004844</li> <li>*55700400 P 5004402</li> <li>*1.60000000 P 500490</li> </ul> | £9<br>0.000000000<br>0.00000000<br>0.000000000          | 500PCR<br>RHS LUI<br>RHS UP1                        |
| 9.000000000 / 50CALLC<br>5.00000000 / 50C0L8A<br>.800000000 / 50CLHAL<br>-1.000000000 / 50LHAL | 5.000300000 P 50CALMC<br>5.0003300000 P 50CCLMC<br>5.000300000 P 50CASLC<br>6.00000000 P 500SMTC | 5.306360300 P 5664LBA<br>5.006600030 P 5066LLC<br>5.306669900 P 506ASHC<br>600060000 P 5005HTA | 5.000000000 P 3000184<br>5.00030000 P 9000148<br>5.000300000 P 5004884<br>5.00000000 P 5004884                                                                  | E4 275<br>0.030003000<br>0.0330000                      | 501.484<br>845 101<br>845 UP 6                      |
| .096200000 P 50CCL8A<br>.044500000 P 50CASBA<br>055000000 L 500LHC2<br>-1.00000000 P 50ENE     | .071910000 P 50CALLC<br>.084300000 P 50CDLBA<br>.52000000 P 500LHC1<br>.014000000 P 50DSHTC      | •085840046 P 5064LHC<br>•086200000 P 506CLHC<br>•0386200000 P 506CLHC<br>•018000006 P 500SHTA  | .(h/110~~ P 90CALba<br>.077990000 P 90CCLC<br>.C4530Cu00 P 90CASHC<br>.C250COU00 P 90CASHC                                                                      | 6 9 274<br>0.00040000<br>0.01004000                     | 5JENER<br>RFS LUI<br>RHS UPI                        |
| .084040000 P 50CCL8A<br>.040200000 P 50CAS8A<br>.016000000 P 50DSHTA                           | .062330000 P 50CALLC<br>.072245000 P 50CDLBA<br>055J300000 L 50DLHC2                             | .073620000 P 50CALHC<br>.372960000 P 50CCLHC<br>.034570030 P 50CASLC<br>-1.30000000 P 50BTU    | <pre>.(?2butuuu P bucatba .uccy16603 P bucktc .uco300000 P bucaSHC .uud2000u P bubSHTC</pre>                                                                    | د د 273<br>۵. د ۵۵ د د ۵ د ۵<br>۵. ۵ د د ۵ υ ۵ υ د      | 508 Tuk<br>Kr3 L01<br>RH5 UP1                       |

2040405M 4040405P 5040401P 5040401P 20NAP05N 40NAP05P 50NAP03P 50NAP03P 50NAP03P 20484059 40484059 50484039 50484039 50484039 20444054 40444059 50444039 50444039 50444039 204CA05P 404CA05P 504CA01P 504CA01P 504CA03P 40C3P05P 50C3P03P 50C3P03P 50C3P03P 50C4P01P 50C4P03P 50C4PC 20544050 40544050 50544030 50544030 2058805M 4058805F 5058803F 5058803F 5058803F 5058803F 205CA05P 405CA05P 505CA03P 505CA03P 505CA03P 505CA03P 2004058 40C4P05P 20030050 5040AC 5040AC ----.... ..... ..... ... --۰. ... ... ----۵. ۵. .... ... ۵. ----٥. \_ 1.000000000 1.000000000 1.000000000 -1.000000000 -1.000000000 1.000000000 1.000000000 1.0000000000 1.0000000000 -1.000000000 1.000000000 -1.000000000 .000000000 -1.000000000 10C3P05P 3CC3P05P 50C3P01M 50C3P01M FCC3P03M 10C4P05P 30C4P05P 50C4P03M 50C4P03M F0C4P03M 10NAP05P 30NAP05P 50NAP01M 1048405P 3048405P 5048401M 5048401M 5048403M F048403M 5044401M 5044403M F044405P 1446405P 3046465P 5046401M 5046403M 5046403M F046403M 1040405P 3040405P 5040403M 5040403M 5040403M F040403P 50NAP03N Fonaposp 1054405P 3054405P 5054401M 5054403M F054403P 1058805P 3058805P 5058803M 5058803M F058803P 305CA05P 505CA05P 565CA03M F05CA03M 1044405P 3044405P 105CA05P 504CAC ..... ----..... ..... ..... ..... ---ο. • ..... ..... -----1.000300000 -1.000000000 1.000300000 1.0003030000 -1.00000000 -1.000000000 -1.000000000 1.000000000 1.000000000 -1.000000000 -1.000000000 -1.000000000 1.000000000 1.000000000 -1.00000000 1.0000000000 1.0000000000 -1.00000000 -1.000000000 1.000000000 1.000000000 -1.0000000000 -1.000000000 -1.0000000000 1.000000000 Untranana. 10C3PU5M 30C3PC5M 5CC3PCFP 50C3P02P F0C3PC2P 16C4PC5N 30C4P05N 50C4P6FP 50C4P62P F0C4P62P IONAPC5M 36NAPO5N 50NAPOFP 1048405M 3048405M 5048465P 5048465P 5048462P F048405M 1044405M 3044405M 5044405P 5044405P 5044402P F04405P 104CA05N 304CA05N 504CA05P 504CA05P F04CA02P 1040405H 3040405h 5040405P 5040402P 1054455M 3054405M 5054405P 5654465P 5654462P F054405M 1058865M 3058805M 5058805F 5058805F 5058805F 5058802F 10564J5M 30564J5M 505646FP 5056402P 5056402P 5UNAPO2P FONAPC5M F040A05M 5648AC . . . . . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ---... ~ ~ ~ ••• -• ۰. ۰. • ~ ~ ~ ~ ~ --.... 9. 0 ۵. ۵. • <u>م</u> م -1. JCCC00460 P -1. JOCCC00460 P 1. JCCCUC460404 P 1. 0000000000 P -1. 000000000 P -1.000600000 -1.000000000 1.000000000 1.000000000 +1.000000000 -1.000000000 -1.000000000 1.000000000 1.000000000 -1.000000000 -1.000000000 1.000000000 1.000000000 -1.000000000 -1.000000000 -1.000000000 1.000000000 1.000000000 -1.000000000 -1.000000000 1.000000000 1.330030000 -1.000000000 -1.000000000 1.000000000 1.000000000 0000000000 -1.00000000 -1.00000000 50037 051 20037 057 50037 057 50037 057 2004P05P 5004P05P 5004P04P SONAP ZONAPUSP Sonapgem SUNAPO2M SONAPU4P 50488 2046805P 5048805P 5048805M 5048802M 5048864P 50444 2044405P 5044405P 5044405M 5044402M 5044402M 504CA 264CAU2P 504CAU2P 504CAU2H 504CAU2H 534CAU2H 2040405P 504040FM 5040402M 5040402M 50544 2054457 50544057 50544024 50544024 50544047 50588 2058805P 5058865 53588628 50588628 5056405P 2056405P 505646FM 505646FM 5046AC 20046 **\$040A** 10200 ~ ~ ~ ~ ~ ..... ~ ~ ~ ~ ~ ..... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ a a a a a a a a a **a x ~** ~ ~ ~ ۰. -1. - C 000 0 C U 0 U V -1. - C C 0 U C U C U V 1. - C U C 0 U C U C U V 1. - 0 0 0 0 0 0 0 0 0 0 1 1. - 0 0 0 0 0 0 0 0 0 0 0 1 1. - 0 0 0 0 0 0 0 0 0 0 0 1 -1.000000000 F -1.000000000 F 1.000000000 F 1.0000000000 F -1.60000000 F -1.600000000 F 1.600000000 F 1.600000000 F 1.600000000 F -1.000000000 -1.000000000 1.00000000 1.0000000 1.0000000 \$0000CCJJJ0000 -1.000000000 .00000000 1.000000000 -1 7 EQ 2 2 2 4 9 0.00000000000 0.000000000 E4 240 0.030303000 0.040300000 EQ 291 0.J00000000 0.000000J Eq 242 0.00000000 0.000000000 EQ 293 0.000000000 0.00000000 E4 295 0.003600360 0.60060000 EQ 248 0.000003000 294 297 U. 200000000 ÊO ÊQ 101 i o i 101 5356ASO RMS LOI RMS UPI 504040 RHS 101 RHS UP1 i u i nP. 101 39 3 35 5: SO4CAO RHS L RHS U 505 AAO RHS L RHS U SOC 4PO RHS L SONAPO RHS L RHS U 504840 RHS L RHS U 504 AAO RHS L RHS U 0 C 3 P D 505880 505CA0 RHS RHS RHS N H N ā ~ 1 1 , d \_ J

|                               | 00 P 205C805M<br>10 P 405C805P<br>10 P 505C801P<br>10 P 505C803P<br>10 L 505C803P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 P 30V6005M                                                   | 0 P 3050A05N                    | 00 P 3050805M                                  |                                        |                                    |                                    |                                     |                                     |                                    |                                      |                                     | 0 L F044A<br>0 L F054A<br>0 P F050A<br>0 P F016KA<br>0 P F01AC<br>0 P F01AC                                                                                                  | 0 P 10C3P0FP<br>0 P 30C3P0FP       |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------|------------------------------------------------|----------------------------------------|------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|--------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|                               | -1.00000000<br>-1.000000000<br>1.000000000<br>1.000000000<br>1.00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.0000000                                                     | -1.00000000                     | -1.00000000                                    |                                        |                                    |                                    |                                     |                                     |                                    |                                      |                                     | $\begin{array}{c} -14 & 950 \\ -14 & 530 \\ -14 & 530 \\ -10 & 480 \\ -10 & 480 \\ -40 & 000 \\ 00 \\ -20 & 000 \\ 00 \\ -12 \\ 50 \\ 00 \\ 00 \\ 00 \\ 00 \\ 00 \\ 00 \\ 0$ | -1.000000000                       |
|                               | P 105C805P<br>P 365C805P<br>P 505C801M<br>P 505C801M<br>P 505C863M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P 2046005M                                                     | P 2050405M                      | P 2050805M                                     |                                        |                                    |                                    |                                     |                                     |                                    |                                      |                                     | P FCMAP<br>L F040A<br>L F05CB<br>P F0VRD<br>P F01A6<br>P F008JT                                                                                                              | P 10C3P0FM<br>P 30C3P0FM           |
|                               | -1-0000000000<br>-1-0000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.00000000                                                    | -1.000000000                    | -1.00000000                                    |                                        |                                    |                                    |                                     |                                     |                                    |                                      |                                     | -14.15000030<br>-15.83000000<br>-14.32000000<br>-10.00000000<br>-35.70000000<br>-35.70000000                                                                                 | 00000000-T-                        |
| L susccc                      | P 105C8C5M<br>P 305C8C5M<br>P 505C8C5M<br>P 505C8C5P<br>P 505C8C5M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P 10V60C5M<br>P 50V60C                                         | P 1050AC5M<br>P 5050AC1M        | P 1050805M<br>P 50508C1M                       | P SOVADC                               | P SOCKAC                           | P SOCKBC                           | P SOCKCC                            | P SOLAGC                            | P SOLATC                           | P 501ABC                             | P SONISC                            | P F0C4P<br>F F05CA<br>P F05CA<br>P F05CA<br>P F0C60<br>A15<br>P F0C80                                                                                                        | P FOC4P<br>P 20C3PUFP              |
| 1.066660000                   | -1.00000000<br>-1.00000000<br>1.00000000<br>1.00000000<br>1.00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 000000000000000000000000000000000000000                        | -1.000000000<br>1.00000000      | -1.336063300                                   | 1.00000000                             | 1.0000000                          | 1.00600000                         | 1.00000000                          | 1.00000000                          | 1.00000000                         | 1.00000000                           | 1.0000000                           | -9.03050036<br>-15.3700030<br>-15.3700030<br>-14.3200000<br>-14.3200000<br>-21.05500000<br>-20.05500000<br>-20.0550000                                                       | -1.30600000 -<br>-1.90600000       |
| JUSCAL                        | 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1 | SOVGDUFM                                                       | 5050ACFM<br>5050ACFM<br>5050AC  | 50508<br>505080FM<br>50508C                    | SOVRO                                  | SJCKA                              | 5 0 C K B                          | SOCKC                               | 5 <b>01</b> 46                      | 26147                              | 50148                                | SIMOS                               | F0C3F<br>F040a<br>F040a<br>F0508<br>F0508<br>F01ad<br>F01ad<br>F01ad                                                                                                         | FucaP<br>2003PUrM                  |
| 73000000 L                    | -1.((CJCGJCG P<br>-1.0CUJCCVUG P<br>1.0CUJCCVUG P<br>1.0CCOCCGUG P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.0000000 P                                                   | -1.000000000 P<br>1.000000000 L | -1.00006000 P<br>1.000000000 P<br>1.00000000 L | -1.606366500 P                         | -1.čv0ú003uG P                     | -1.6000000 P                       | -1.030006000 -                      | -1.6000000 P                        | -1.60000000 P                      | -1.00000000 P                        | -1.0000000                          |                                                                                                                                                                              | -1.00 courtou P<br>-1.00 Jeanvai P |
| 66 299<br>0.01000000          | € 0 3 00<br>0. 0 300 400 0 40<br>0. 0 30 0 000 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <pre>£ 9 301<br/>0.00000000<br/>0.0000000<br/>0.00000000</pre> | EQ 342<br>0.000000000           | EQ 363<br>0.600303060<br>6.433360066           | 60 00000000000000000000000000000000000 | EQ 305<br>0.00000000<br>0.00000000 | 69 340<br>0.00JJC0030<br>0.0000000 | EQ 337<br>0.000000000<br>0.00000000 | E Q 3C 8<br>0.00000000<br>0.0000000 | €0 309<br>0.00000000<br>3.√∪000000 | E 0 316<br>0.001030000<br>0.00000000 | EQ 311<br>0.00000000<br>0.002002000 | E9<br>                                                                                                                                                                       | fa 313<br>C. Courodation           |
| SOSOLIN<br>RAS LJI<br>RAS UPI | 505680<br>845 LOI<br>845 UP1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 50V6UD<br>RHS LU1<br>RHS UP1                                 | SOSOAD<br>RHS LJI<br>RHS UPI    | 505060<br>RHS L01<br>RHS UP1                   | L SOVRDD<br>RHS LUI<br>RhS UPI         | SOCKAD<br>RHS LUI<br>RHS UPI       | 50C KBD<br>RHS LD1<br>RHS UP1      | - 50CKCD<br>RHS LJ1<br>RHS UP1      | 501A6D<br>RHS LU1<br>RHS UP1        | 541470<br>RHS LU:<br>RHS UP:       | 501 A80<br>RHS LU3<br>RHS U23        | SOMISO<br>RHS LOI<br>RHS UPI        | FODRJ<br>RHS LUI<br>RHS UPI                                                                                                                                                  | FUC 3PO<br>Rms Lue<br>'            |

-

|                               | 0FP                                                                                   | JEN<br>Dan                                 | DFN<br>J3N                              | DF M                                     |                                      |                                     |                                     |                                   |                                   |                                     |                                     |                                           | 28<br>28<br>328                                         | 35                                                 | 940                                    |
|-------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------|------------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------|-----------------------------------|-------------------------------------|-------------------------------------|-------------------------------------------|---------------------------------------------------------|----------------------------------------------------|----------------------------------------|
|                               | 205080FM<br>405080FP<br>F050801P<br>F050803P<br>F050803P                              | 30 50 A 0 F I                              | 305080FM<br>F050803M                    | 30V600F                                  |                                      |                                     |                                     |                                   |                                   |                                     |                                     |                                           | 10C4P02P<br>104CA02P<br>105CA02P                        | 1014003P<br>1040403P<br>1050803P                   | 10000000000000000000000000000000000000 |
|                               | -1.000000000000000000000000000000000000                                               | 1.00000000 P                               | -1.00000000 P<br>1.000000000 P          | 1.00000000 P                             |                                      |                                     |                                     |                                   |                                   |                                     |                                     |                                           | 1.000000000 P<br>1.000000000 P<br>1.000000000 P         | 1.000000000 P<br>1.000000000 P<br>1.000000000 P    | 1.00000000 P                           |
|                               | 105586FP                                                                              | 2050A0FM -1<br>F050A02M 1                  | 205080FM -                              | 20V600FM -1                              |                                      |                                     |                                     |                                   |                                   |                                     |                                     |                                           | 10538028<br>10488028<br>10588028                        | 1064P03P<br>1046A03P<br>1056A03P                   | 10C4P04P                               |
|                               | 9 000000000.1-<br>9 000000000000000000000000000000000000                              | -1.000000000 P                             | -1.000000000<br>1.0000000000            | -1.00000000 -                            |                                      |                                     |                                     |                                   |                                   |                                     |                                     |                                           | 1.000000000<br>1.000000000<br>1.000000000<br>1.00000000 | 1.000000000 P<br>1.0000000000 P<br>1.00000000000 P | 4 000CUL000°1                          |
| FOSCCC                        | 105080FM<br>305080FM<br>505080FP<br>F050802P<br>F050802P                              | 1050A0FM<br>F05DAC1M<br>F05DAC             | 105080FM<br>F0508C1M<br>F0508C          | 10V600FM<br>F0V60C                       | FOVROC                               | FOCKAC                              | FOCKBC                              | FOCKCC                            | FC1A6C                            | FOIA7C                              | FOIABC                              | FONISC                                    | 10NP1P02<br>164A4U2P<br>105AA62P                        | 10C3P03P<br>1048A03P<br>1058803P                   | 10030640                               |
| 1 .Jouroouade                 | -1.000000000<br>-1.000000000<br>-1.00000000<br>1.00000000<br>1.00000000<br>1.00000000 | -1.000000000 P<br>1.0000000000 P           | -1.000000000 P                          | -1.00000000 P<br>1.000000000 P           | 1.00000000 P                         | 1.00000000 P                        | 1.00000000 P                        | 1.30000000 P                      | 1.000000uu P                      | d 0000000° t                        | 1.30000000 P                        | 1.00600000 P                              | -1.000000000 P<br>1.00000000 P<br>1.00000000 P          | 1.000000000 P<br>1.000000000 P<br>1.00000000 P     | a 0000000000°1                         |
| P FUECAC                      | L FJJC6<br>P 21:5C46FF<br>P 305C864TA<br>P FUVC8023A<br>P F05C8023A                   | P FOJDA<br>P 505DAvfm<br>P Fusuausm        | P FUDDB<br>P 505080FM<br>P F0508C5M     | P FUVGO<br>P SUVGOUFN                    | P FOVRD                              | P FOCKA                             | P FCCKB                             | P FOCKC                           | P F01A6                           | P FJJA7                             | P F01A8                             | P FUNIS                                   | L 16TP1462<br>P 16NAF024<br>F 1040462P<br>P 1656402P    | X LUTPIPU3<br>P lú4aajp<br>P lú5aaù3P              | 11. 五〇百六日 46                           |
| 75 34 066 44                  |                                                                                       | -1.600060000<br>-1.60000000<br>-1.60000000 | -1.000000000000000000000000000000000000 | - 1.000000000000000000000000000000000000 | -1-000000000                         | -1.00000000                         | CCC00C007*T-                        | 0000000001-                       | -1.662006000                      | -1.00000000                         | -1.00000000                         | [ [^C)00003° [-                           |                                                         | -1. + C C C C C C U U C C C C C C C C C C C        | •••••••••••                            |
| 61 325<br>C.JUJU00610<br>+INF | 6.60326<br>0.003560<br>1.003669060                                                    | EQ 327<br>0.03033000<br>0.00000000         | EQ 328<br>0.0300030vC<br>0.000000CC     | £9329<br>0.003003366<br>3.00030000       | E 0 330<br>6.000000000<br>0.00000000 | EQ 331<br>0.000000000<br>0.00000000 | £03332<br>0.000000000<br>0.00000000 | EQ 333<br>0.00000000<br>0.0000000 | EQ 334<br>6.00100000<br>0.0000000 | EQ 335<br>0.00000000<br>0.000000000 | E G 336<br>0,00000000<br>0,00000000 | 20<br>00000000000000000000000000000000000 | E3 336<br>0.00000000<br>0.00000000                      | EQ 339<br>0.0000000<br>0.0000000                   | 1 10 34.                               |
| Fu5DLTM<br>Rh5 LJ+<br>Rh5 U2+ | F05CdD<br>RMS L31<br>RMS U21                                                          | " F05DAD<br>RHS L01<br>RHS UP1             | FOSCBO<br>RHS LOI                       | F0V60D<br>R45 L01<br>R45 UP1             | - FOVRDD<br>RHS LÚI<br>RHS UPI       | FOCKAD<br>RHS LUI<br>RHS UPI        | FOCKBD<br>RHS LU1<br>RHS UP1        | FOCKCD<br>RHS LU1<br>RHS UP1      | FOIA6D<br>RHS LD1<br>RHS UP1      | F01A7D<br>RHS LU<br>RHS UP1         | F01A8D<br>Rhs LJ:<br>RhS UP:        | FONISD<br>RHS LD:<br>RHS UP:              | 10PCAP02<br>RH5 L01<br>RH5 U/1                          | 10PCAPC3<br>RHS LU1<br>RHS U21                     | JCPCAP )4                              |

| P 10%AP05P<br>P 1040405P<br>P 105C805P                | P 104406P<br>P 104046F<br>P 1056806F                             | P 2064P01P<br>P 2046401P<br>P 2056401P                  | P 2006P03P<br>P 2040403P<br>P 2090403P                  | P 20NAP04P<br>P 2040A04P<br>P 2056804P                    | P 2014P05P<br>P 2040A05P<br>P 205C805P                | P 20NAPOFP<br>P 2040A0FP<br>P 205C80FP                   | P 3064P01P<br>P 3046A01P<br>P 3056A01P                   | P 3054P02P<br>P 3046402P<br>P 3056402P                   | P 30NAP04P<br>P 304DA04P<br>P 305C804P                 | P 30NAP05P<br>P 304DA05P<br>P 305CB05P                   | P 30NAPOFP<br>P 304DAOFP<br>P 305CBOFP                   | P 40NAP01P<br>P 405C801P                                   | P 40MAP02P<br>P 4040402P<br>P 405CB02P                   | P 40NAP03P<br>P 4040A03P<br>P 405C803P                           |
|-------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------|
| 1.000000000<br>1.0000000000<br>1.000000000            | 1.000000000<br>1.000000000<br>1.000000000                        | 1.000000000<br>1.0000000000<br>1.0000000000             | 1.000000000<br>1.000000000<br>1.000000000               | 1.000000000<br>1.000000000<br>1.000000000                 | 1.00000000<br>1.000000000<br>1.000000000              | 1.00000000<br>1.000000000<br>1.000000000                 | 1.00000000<br>1.000000000<br>1.000000000                 | 1.00000000<br>1.000000000<br>1.0000000000                | 1.000000000<br>1.000000000<br>1.000000000              | 1.00000000<br>1.000000000<br>1.60000000                  | 1.000000000<br>1.000000000<br>1.000000000                | 1.00000000<br>1.000000000<br>1.000000000                   | 1.000000000<br>1.000000000<br>1.000000000                | 1.000000000<br>1.000000000<br>1.000000000                        |
| 9000 P 10C4P05P<br>0300 P 104CA05P<br>0000 P 105CA05P | 30000 P 1054PUFP<br>00000 P 1056A0FP<br>00000 P 1056A0FP         | 0000 P 20C3P01P<br>00000 P 2048AC1P<br>00000 P 2058801P | 0000 P 2053P03P<br>0000 P 2048A03P<br>0000 P 205863P    | 00000 P 2064P04P<br>330000 P 2046A04P<br>00000 P 2056A04P | 0000 P 2064P05P<br>0000 P 2046A05P<br>0000 P 2056A05P | 00000 P 2054P0FP<br>00000 P 2045A0FP<br>00000 P 2055A0FP | 10000 P 3053P01P<br>10000 P 3048A01P<br>10000 P 3058801P | 00000 P 30C3P02P<br>00000 P 304BA02P<br>00000 P 305B802P | 0000 P 3054P04P<br>0000 P 3046A04P<br>03000 P 3056A04P | 00000 P 3064P05P<br>00000 ° 3046A05P<br>00000 P 3056A05P | 00000 P 3064P0FP<br>00000 P 3046A0FP<br>00000 P 3056A0FP | 00000 P 40C4P01P<br>000000 P 404CA01P<br>000000 P 405CA01P | 00000 P 40C4P02P<br>00000 P 404CA02P<br>00000 P 405CA02P | 00110100 P 4064P03P<br>00000000 P 404403P<br>00100000 P 4056403P |
| P 1.000000000                                         | P 1.0000                                                         | 1 1.000000000<br>1.000000000<br>1.000000000000          | P 1.000000                                              | P 1.0000                                                  | P 1.000030<br>P 1.000300<br>P 1.000300                | 1 • 0000<br>1 • 0000                                     | L 1.00000<br>P 1.000000<br>P 1.00000                     | 2 1.00000<br>P 1.000000                                  | P 1.00000000<br>P 1.00000000                           | P 1.0000                                                 | P 1.0000<br>P 1.0000<br>P 1.0000                         | P 1.0001                                                   | P 1.0000<br>P 1.0000<br>P 1.0000                         | 000<br>111                                                       |
| 1 P 1058805<br>P P 1048AU5<br>P P 1058805             | 0 P 1003P0F                                                      | P 20%P1P0<br>P 20%AAG1<br>P 205AA01                     | P 20NPIP6<br>P 204AA03<br>P 205AA03                     | 0 P 20C3PU4<br>0 P 2048AU4<br>0 P 20588C4                 | 0 P 20C3P05<br>0 P 2048A05<br>0 P 2058805             | 0 P 20C3P0FP<br>0 P 2048A0FP<br>0 P 205880FP             | 0 P 30NPIP0<br>0 P 304AA01<br>0 P 305AA01                | 0 4 307P1P02<br>U P 364AA62P<br>0 P 365AA62P             | 0 P 30C3P04<br>0 P 3048A04<br>0 P 3058804              | U P 30C3P05<br>0 P 3048A05<br>0 P 3058845                | P 30C3PCF<br>P 305880F<br>P 305880F                      | P 40C3P01<br>P 4048AL1<br>P 4058861                        | 0 P 40C3P02<br>0 P 404BA02<br>0 P 405BB02                | P 40C3P03<br>P 4048A03<br>P 4058803                              |
| 1.33000000000<br>1.35000000000                        | 1.300000000<br>1.300000000<br>1.300000000                        | -1.00000000<br>1.00000000<br>1.00000000                 | -1.00000000<br>1.000000000<br>1.000000000               | 00000000°1<br>100000000°1<br>100000000°1                  | 1.0000000000<br>1.000000000000000000000000            | 1 • 00000000000<br>1 • 0000000000<br>1 • 0000000000      | -1.00000000<br>1.3000000000<br>1.0000000000              | -1.00000000<br>1.000000000<br>1.000000000                | 1.00000000<br>1.00000000<br>1.00000000                 | 1.000000000<br>1.000000000<br>1.000000000                | 1.000000000<br>1.00000000<br>1.00000000                  | 1.00000000<br>1.000000000<br>1.000000000                   | 1.0060000000<br>1.0000000000000000000000000              | 1.000000000<br>1.000000000<br>1.0000000000                       |
| X 1.141405<br>4 1.0484024<br>9 1.0584024              | L lútpiþúf<br>Þ lúsalfp<br>Þ lúsadífp                            | L 2UTPIP01<br>P 2CNAP31P<br>P 264DAulp<br>P 205CBULP    | L 20TPIPU3<br>P 20NAPU3P<br>P 2040A03P<br>P 205C803P    | 4. 20TP1P04<br>P. 2044404P<br>P. 2054404P                 | X 20TP1P05<br>P 2044445P<br>P 2054445P                | L 201P1PUF<br>P 204AAGFP<br>P 205AAOFP                   | L 30TP1PU1<br>P 30NAPU1P<br>P 304DA01P<br>P 305CBU1P     | P 3UNP1P02<br>P 3JNAPU2P<br>P 304DAL2P<br>P 3U5C8U2P     | L 30TP1PU4<br>P 364AA04P<br>P 345AA64P                 | L 3UTP1P05<br>P 304A405P<br>P 365A405P                   | X 30TP1F0F<br>P 305AAUFP<br>P 305AA6FP                   | X 40TP1P01<br>P 404AA61P<br>P 465AA61P                     | L 40TPI 402<br>P 404AAU2P<br>P 405AAU2P                  | L 40TPI PU3<br>P 404AAU3P<br>P 4U5AAU3P                          |
| <pre>% * * * * * * * * * * * * * * * * * * *</pre>    | - 1 - 600000000 - 1 -<br>000000000 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | -1.00000000<br>1.000000000<br>1.00000000<br>1.00000000  | -1.00000000<br>1.000000000<br>1.000000000<br>1.00000000 | -1.00000000<br>1.000000000<br>1.000000000                 | -1.60000000<br>1.60000500<br>1.600000000              | -1.00000000<br>1.000000000<br>1.000000000                | -1-00000000<br>1.00000000<br>1.000000000<br>1.00000000   | 1 00000000000<br>1 0000000000<br>1 0000000000            | -1.000000000<br>1.000000000<br>1.00000000              | -1.466300444<br>1.600000066<br>1.00000000                | -1.000000000<br>1.0000000000000000000000000              | -1.000000000<br>1.000000000<br>1.00000000                  | -1.000000000<br>1.0000000000<br>1.00000000000            | -1.0000000000<br>1.000000000<br>1.000000000                      |
| ະບີ341<br>ບູດບ່ວຍບ່ວຍເບີ<br><b>ບູນເ</b> ບັດດວຍເຜັ     | к. 343094350<br>6.063960350                                      | E 0<br>0,0000000<br>0,000000<br>0,000000                | EQ 344<br>J. 0000000<br>0. 0000000                      | EU 345<br>0.000300000<br>0.423003240                      | E U 346<br>Ú.000000000<br>0.00000000                  | EQ 347<br>0.00000000<br>0.00000000                       | EQ 346<br>0.0000000<br>0.0000000                         | E G 349<br>0.00300000<br>0.000000                        | EQ<br>0.000000000<br>0.00000000000000000000000         | E0 351<br>0.0000000000<br>0.000000000                    | E 9 352<br>0.000000000000000                             | E4 835<br>0.00000000<br>0.00000000                         | EQ 354<br>0.000000000<br>0.00000000                      | EQ 355<br>U. FCJUD00CO<br>C. JUJUD0CCL                           |
| LUP CAPUD<br>RH5 EUC<br>RH5 U28                       | LUPCAPOF<br>RMS LUS<br>RMS UPS                                   | 20PCAPUL<br>RHS LOS<br>RHS UPS                          | ZOPCAPO3<br>RHS LJ:<br>RHS UP3                          | 20PCAP04<br>RMS LJ1<br>RMS UP1                            | 20PCAP05<br>RM5 LU1<br>RM5 UP1                        | L ZOPCAPJF<br>R hs LOP<br>R hs UP =                      | BOPCAPUL<br>RHS LUS<br>RHS UPS                           | 30PCAP02<br>RHS LO:<br>RHS UP1                           | 30P CAP 04<br>MMS LO1<br>RMS UP1                       | 30PCAP0><br>RHS LUE<br>RHS UPE                           | 30P CAPUF<br>RHS LU<br>RHS UP 1                          | 40PCAP31<br>RHS L3<br>RMS UP3                              | 40PCAP02<br>RMS LJ1<br>RMS UP1                           | 40PCAP03<br>RHS LD1<br>RHS UP1                                   |

| 1.000000000 P 40MAPOFP<br>1.600000000 P 4040A0FP<br>1.000000000 P 405680FP | 1.000000000 P 50NAP01P<br>1.000000000 P 5040A01P<br>1.000000000 P 5050801P  | 1.60000000 P 50MAP02P<br>1.000000000 P 5040A02P<br>1.000000000 P 5056802P    | 1.00000000 P 50MAP03P<br>1.000000000 P 5040A03P<br>1.000000000 P 5056803P  | 1.000300000 P 50NAP04P<br>1.00000000 P 5040A04P<br>1.00000000 P 5050804P     | 1.000000000 P 50MAP0FP<br>1.000000000 P 5040A0FP<br>1.000000000 P 505CB0FP | 1.000000000 P FOMAPOIP<br>1.000000000 P F040A01P<br>1.000000000 P F05CA02P                             | 1.000000000 P FOMAP02P<br>1.000000000 P F040A02P                           | 1.00000000 P FONAP03P<br>1.00000000 P F04DA03P                             | 1.000000000 P FOMAP04P<br>1.00000000 P FOSAA04P                              | 1.000000000 P FONAP05P<br>1.000000000 P F040405P<br>1.000000000 P F05C805P  | 1.000000000 P 100AP02M<br>1.000000000 P 1040A02M<br>1.000000000 P 1050B02M                             | 1.000000000 P 10MAP03M<br>1.600000000 P 104DA03M<br>1.000000000 P 105C803M                          | 1.000000000 P 100AP05M<br>1.000000000 P 1040A05M<br>1.000000000 P 1050B05M                           | 1.000000000 P 10NAPOFM<br>1.ccuucudo P 1040A0FM<br>1.uu000000 P 105CB0FM  |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 1.000300000 P 40C4P0FP<br>1.000303030 P 405CA0FP<br>1.000303030 P 405CA0FP | 1.000000000 P 5064P01P<br>1.000000000 P 5046A01P<br>1.0000000000 P 5056A01P | L.0003330000 P 5054P02P<br>L.0000030000 P 504CA02P<br>L.000000000 P 505CA02P | 1.000300000 P 5064P03P<br>1.000300000 P 5046403P<br>1.000000000 P 5056403P | 1.000000000 P 5054P04P<br>1.0007303030 P 5645404P<br>1.0003030300 P 5655404P | 1.000000000 P 5054P0FP<br>1.000300000 P 5045A0FP<br>1.000300000 P 5055A0FP | 1.000000000 P F 05401P<br>1.00000000 P F045401P<br>1.000000000 P F055401P                              | 1.000300000 P F0C4P02P<br>1.000300000 P F04C402P<br>1.000000000 P F05C802P | 1.000300030 P F0C4P03P<br>1.000000000 P F04C403P<br>1.000300000 P F05C803P | 1.000000000 P F0C4P04P<br>1.000000000 P F640A04P<br>1.000000000 P F656A04P   | 1.0003000000 P F0C4P05P<br>1.000300030 P F04CA05P<br>1.000000000 P F05CA05P | 1.000300000 P 1064P02M<br>1.000300000 P 1046402M<br>1.000000000 P 1056402M<br>1.000000000 P 1046002M   | 1.00000000 P 1004003M<br>1.000000000 P 106603M<br>1.000000000 P 1056403M<br>1.000000000 P 1076003M  | 1.000070000 P 1454058<br>1.00000000 P 14564058<br>1.000000000 P 14564058<br>1.000000000 P 1440058    | 1.00000000 P 100406M<br>1.00000000 P 1040A0FM<br>1.0000000000 P 1040A0FM  |
| 1.00000000 P 40C3P0FP<br>1.00000000 P 4048ACFP<br>1.0000000 P 405880FP     | 1.300000330 P 50C3P01P<br>1.300000000 P 5048A01P<br>1.000000000 P 50588U1P  | 1.000000000 P 50C3PC2P<br>1.00000000 P 5048A02P<br>1.000000000 P 5058802P    | 1.000000000 P 50C3P03P<br>1.000000000 P 5048A63P<br>1.000000000 P 5058803P | 1.000000000 P 5003P04P<br>1.000000000 P 504BAC4P<br>1.000000000 P 505BBC4P   | 1.000000000 P 50C3P0FP<br>1.000000000 P 504BACFP<br>1.000000000 P 505BB0FP | 1.000000000 P F0C3P01P<br>1.000000000 P F048421P<br>1.000000000 P F058861P<br>1.000000000 P F056801P   | 1.00000000 P FGC3P02P<br>1.000000000 P F04BA62P<br>1.000000000 P F05BB02P  | 1.300000000 P F0C3PU3P<br>1.00000000 P F048A63P<br>1.000000000 P F058803P  | 1.300000000 P F0C3P04P<br>1.300000000 P F04BA04P<br>1.000000000 P F05CA04P   | 1.000000000 P F0C3P05P<br>1.0000000000 P F04BA05P<br>1.000000000 P F05B805P | 1.000000000 P 10C3PC2M<br>1.000000000 P 104BAA2M<br>1.0000000000 P 105BBC2M<br>1.000000000 P 105BBC2M  | 1.000000000 P 105963M<br>1.000000000 P 1058AA3M<br>1.000000000 P 1058BA3M<br>1.000000000 P 1058BA3M | 1.07000000 P 1053P05M<br>1.17000000 P 1058A5M<br>1.07000000 P 1058B05M<br>1.07000000 P 1050B05M      | 1.00000000 P 1009PCFM<br>1.000000000 P 1064ACFM<br>1.000000000 P 1054B0FM |
| -1.«.(.)0000) x 491P1Pur<br>1.«.(.)0000) 494ALFP<br>1.«.(.)0) 435AALFP     | 10414104 X 60000000000000000000000000000000000                              | -1.00000000 x 50171702<br>1.00000000 f 504A4627<br>1.00000000 f 505AA422     | -1.00000000 X 50TPLP.3<br>1.000000000 P 505AA03P<br>1.00000001 P 505AA03P  | -1.000000000 X 50TP1P04<br>1.0JUCC00000 P 504A444<br>1.0CU000000 P 505AA04P  | -1.0vc000033 L 50TP1P0F<br>1.cc000050 P 505AA0FP<br>1.cc0300000 P 505AA0FP | -1.0060300300 X FOTP1P01<br>1.000000000 P F54AA01P<br>1.000000300 P F05AA01P<br>1.000000300 P F05AA01P | -1.60000000 x f0[P]PU2<br>1.000360000 p f04AA02P<br>1.000300030 p f05AA32P | -1.00300000 X FOTPIPU3<br>1.00000000 P F04A43P<br>1.0000000.P F05A463P     | -1.6C0300600 X FOTFIP05<br>1.006006636 P FU4AA44P<br>1.6C13300000 P FU5BB04P | -1.0003464244 x FJTFIF45<br>1.0003030 P F04AA05P<br>1.0003330 P F05AA05P    | -1.«.UOUUUUUC P 10TMAKO2<br>1.«CCOCUUUV P 144A462M<br>1.«CCOOUJOJ P 1C>AA62M<br>1.«CUUOCOUUV P 105A42M | -1.600000000 P 101MAKG3<br>1                                                                        | -1.400000000 P 101MARC5<br>1.44 04(1.4 P 144A42M<br>1.4(1000000 P 101A402M<br>1.4(1000000 P 101A402M | -1                                                                        |
| 0.000000000000000000000000000000000000                                     | F 0 358<br>0.00000066<br>0.00000000                                         | . 935000000000000000000000000000000000000                                    | E U 360 - 0.000000000000000000000000000000000                              | E 4 361 -<br>C. 9606003060<br>O. 00000000                                    | 60 362 -<br>3.003000003<br>6.633000000                                     | E G 363 -<br>6.0000000<br>0.0000000                                                                    | E 0 364 -<br>0.000000000                                                   | E 4 365 4<br>0.03430000000                                                 | EQ 3660<br>0.60000000<br>0.00000000                                          | EC 307<br>0.00000000<br>0.00000000                                          | EQ 368<br>0.0000000<br>0.00000000                                                                      | . 9360,0000<br>0,000,0000<br>0,000,0000                                                             | E 0 370<br>0,00000000<br>0,00000                                                                     | 14 371<br>0.303339000<br>1.5573525                                        |
| 40PCAPCF<br>RHS LUI<br>RHS UPI                                             | SOPCAPUL<br>Rms L01<br>Rms UP1                                              | 50PCAPO2<br>RHS LJ:<br>RHS UP:                                               | SUP CAPO3<br>RHS LO3<br>RHS UP 1                                           | 50P CAP 04<br>RHS L01<br>RHS UP 1                                            | SOPCAPOF<br>RHS LOI<br>RHS UPI                                             | FOPCAPOL<br>RHS LOU<br>RHS UP1                                                                         | FOPCAPO2<br>RHS LO1<br>RHS UP1                                             | FOPCAP33<br>RHS LU1<br>RHS U21                                             | FOPCAPO4<br>RMS LO:<br>RMS UP:                                               | FOPCAPOS<br>RMS LO:<br>RMS UP:                                              | JONCAPO2<br>FHS LOI<br>RHS UPI                                                                         | LUM CAPO3<br>RMS LO1<br>RMS UP1                                                                     | 104CAP35<br>RH5 L31<br>RFS L21                                                                       | JumCaruf<br>Rhs Li<br>Rhs Ur                                              |

| ZONAPOIM<br>ZO5DAOIM<br>ZO5CBOIM                                   | 20 NA P03N<br>20 40 A03N<br>20 50 B03N                        | 2014 P05 N<br>2040 A05 N<br>2050 805 N                          | 20NAPOFN<br>2040A0FN<br>2050B0FN                                | 3044 PO1M<br>3040401M<br>3056801M<br>3056801M                                             | 30MAP02N<br>3040A02N<br>3056902N                                   | P 30NAP05M<br>P 3040A05M<br>P 305CB05M                        | P 30NAP0FM<br>P 3040A0FM<br>P 305C80FM                        | 5044P01M<br>5040401M<br>5050801M                       | 50MAPO2N<br>505DA02N<br>505C802M          | 50NAP03N<br>5040A03N<br>5056803N                        | SONAPOFN<br>504DAOFN<br>505CBOFN                                                | FOMAPOIN<br>F040A01N<br>F05C801N            |
|--------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------|
| 1.000000000 P<br>1.000000000 P<br>1.00000000 P                     | 1.00000000 P<br>1.00000000 P<br>1.00000000 P                  | 1.000000000 P<br>1.000000000 P<br>1.000000000 P                 | 1.000000000 P<br>1.000000000 P<br>1.000000000 P                 | 1.00000000 P<br>1.000000000 P<br>1.0000000000 P<br>1.000000000000000000000000000000000000 | 1.000000000 P<br>1.000000000 P<br>1.000000000 P                    | 1.000000000<br>1.600000000<br>1.000000000                     | 1.000000000<br>1.000000000<br>1.000000000                     | 1.000000000 P<br>1.000000000 P<br>1.000000000 P        | 1.000000000 P                             | 1.000000000 P<br>1.000000000 P<br>1.000000000 P         | 1.00000000 P                                                                    | 1.000000000 P                               |
| P 2004P01M<br>P 2046A01M<br>P 2056A01M<br>P 2056A01M<br>P 20V6001M | P 20C4P03M<br>P 204CAC3M<br>P 205CA03M<br>P 20VG003M          | P 20C4P65M<br>P 204C405M<br>P 205C405M<br>P 20V6065M            | P 20C4P0FM<br>P 204CA0FM<br>P 205CA0FM<br>P 20V600FM            | P 30C4P01M<br>P 304CA01M<br>P 305CA01M<br>P 30V6001M                                      | P 30C4P02M<br>P 304CA02M<br>P 305CA02M<br>P 30V6002M               | P 30C4P65M<br>P 364CA05M<br>P 305CA05M<br>P 30V6005M          | P 30C4P0FM<br>P 304CA0FM<br>P 305CA0FM<br>P 305CA0FM          | P 50C4P01M<br>P 504CA01M<br>P 505CA01M                 | P 50C4P02M<br>P 504CA02M<br>P 505CA02M    | P 50C4P03M<br>P 504CA03M<br>P 505CA03M                  | P 50C4P0FM<br>P 504CA0FM<br>P 505CA0FM<br>P 50V600FM                            | P FCC4PG1M<br>P F04CAU1M<br>P F05CA01M      |
| 1.000000000<br>1.00000000<br>1.000000000<br>1.00000000             | 1.000000000<br>1.000000000<br>1.000000000<br>1.00000000       | 1.000000000<br>1.00000000<br>1.000000000<br>1.00000000          | 1.000300000<br>1.000300000<br>1.000000000<br>1.0000000000       | 1.000000000<br>1.000000000<br>1.000000000<br>1.00000000                                   | 1 • 000000000<br>1 • 000000000<br>1 • 000000000<br>1 • 0000000000  | 1.000000000<br>1.000000000<br>1.0000000000<br>1.00000000      | 1.000000000<br>1.000000000<br>1.000000000<br>1.00000000       | 1.0000000000<br>1.000000000000000                      | 1.000300000<br>1.000300000<br>1.000300000 | 1.000000000<br>1.000000000<br>1.000000000               | 1.000000000<br>1.000000000<br>1.000000000<br>1.00000000                         | 1.000300000<br>1.000300000<br>1.00030300000 |
| P 20C3PLIM<br>P 2048AC4M<br>P 2058801M<br>P 2050801M               | P 20C3PC3A<br>P 2048AC3M<br>P 20588C3M<br>P 2050803M          | P 20C3P05N<br>P 2048A05M<br>P 2058805M<br>P 2050805M            | P 20C3P6FN<br>P 2048A0FN<br>P 205886FM<br>P 205080FM            | P 30C3P01M<br>P 3048A01M<br>P 3058801M<br>P 3050801M                                      | P 30C3P02M<br>P 3048A02M<br>P 3058802M<br>P 3050802M               | P 30C3PC5M<br>P 3C48A05M<br>P 3058805M<br>P 3050805M          | P 3CC3PCFM<br>P 3048A0FM<br>P 305880FM<br>P 305880FM          | P 50C3PC1M<br>P 5048A01M<br>P 5058801M<br>P 5050801M   | P 50C3P02M<br>P 5048AU2M<br>P 5058862M    | P 50C3PC3M<br>P 5048A03M<br>P 5058803M<br>P 5050803M    | P 50C3P0FM<br>P 5048A0FM<br>P 505880FM<br>P 505080FM                            | P FOC3PU1M<br>P F048AC1M<br>P F0588C1M      |
| 1.000000000 1<br>1.000000000000000000000000                        | 1.000000000000000000000000000000000000                        | 1.000000000<br>1.000000000<br>1.000000000<br>1.00000000         | 1.000000000<br>1.000000000<br>1.000000000<br>1.00000000         | 00000000000000000000000000000000000000                                                    | 1.000000000<br>1.000000000<br>1.000000000<br>1.00000000            | 1.000000000<br>1.000000000<br>1.0000000000<br>1.00000000      | 1.000000000<br>1.000000000<br>1.000000000<br>1.00000000       | 1.000000000<br>1.000000000<br>1.00000000<br>1.00000000 | 1.000000000<br>1.00000000<br>1.300000000  | 1.000000000<br>1.000000000<br>1.000000000<br>1.00000000 | 1.000000000<br>1.00000000<br>1.000000000<br>1.00000000                          | 1.000000000<br>1.001660000<br>1.005006      |
| 2714464<br>244461M<br>2050461M<br>2050461M                         | 207 MAKU3<br>204AA U3N<br>2 v5 AA J3M<br>2050A G3M            | 2 J T MARUS<br>2 U 6 AAG5M<br>2 2 5 AA 0 5 M<br>2 2 5 0 A 0 5 M | 20TMAKJF<br>2364A0FM<br>235AAGFM<br>205AAGFM<br>205DACFM        | 30TMARQ1<br>306AA01M<br>305AAu1M<br>305DAúim                                              | 30 T MA K 02<br>30 4 A 4 0 2 M<br>30 5 A 4 6 2 M<br>30 5 D 4 0 2 M | 30TMARU5<br>304AAU5M<br>305AA05M<br>305DA05M                  | 301MAROF<br>364AAUFM<br>305AAĉfm<br>305DAĜFN                  | 501MAR01<br>504AA01M<br>505AA41M<br>205DAG1M           | 50TMANU2<br>504AAU2M<br>505AAU2M          | 501 MA R03<br>504AA03M<br>505AAU3M<br>5050AU3M          | 501 MA KOF<br>504 A A UFM<br>505 A A UFM<br>505 D A OFM                         | FOTMARUL<br>Fogmauln<br>Fogmauln            |
| -1                                                                 | -1.00000000 %<br>1.00000000 %<br>1.00000000 %<br>1.00000000 % | -1                                                              | -1.660006000 P<br>1.660006000 P<br>1.0060000 P<br>1.600000000 P | -1.00000000 P<br>1.000000000 P<br>1.00000000 P                                            | -1.000000000 P<br>1.00000000 P<br>1.0000000 P<br>1.0000000 P       | -1.00000000 P<br>1.00000000 P<br>1.00000000 P<br>1.00000000 P | -1.00000000 P<br>1.00000000 P<br>1.00000000 P<br>1.00000000 P | -1. ( C ( 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0            | -1.00000000 P<br>1.000000000 P            |                                                         | -1.00000000 P<br>1.00000000 P<br>1.00000000 P<br>1.000000000 P<br>1.000000000 P | -1.0000000 P<br>1.0000000 P                 |
| ξι 372<br>υ.ούθυθας<br>υ.οσσυμοτι                                  | ⊾ч 373<br>⊍.000∪⊎30€0<br>0.000∪⊍30€0                          | EQ 374<br>0.600000000<br>0.00000000                             | EQ 375<br>0.0000000<br>0.0000000                                | EQ 376<br>0.003409066<br>0.0000066                                                        | EU 377<br>0.000000000<br>0.0000000000000000000000                  | E 0 378<br>0.00000000<br>0.00000000                           | 616 01000000000000000000000000000000000                       | E a 3 80<br>0.0030300 66<br>0.303364664                | EU 361<br>0.030//JJ00<br>0.000000000      | EQ 3E2<br>0.00000000<br>0.00000000                      | E 0 363<br>C. 00000000<br>C. 00000000                                           | EQ 344<br>0300000                           |
| 20MCAPUL<br>RHS LUI<br>RHS UPE                                     | 20HCAP03<br>RHS LOF<br>RHS UP 8                               | 20NCAP65<br>RHS LUI<br>RHS UPI<br>RHS UPI                       | 20MCAPOF<br>RMS LUI<br>RMS UPI                                  | 30MCAPO1<br>RHS LU:<br>RHS UP:                                                            | 30MCAP02<br>- RHS L01<br>RHS UP1                                   | 30ACAP05<br>RHS 401<br>RHS UP1                                | 30MCAPOF<br>RMS LJI<br>RMS UPI                                | SONCAPGI<br>RHS LOT<br>RHS UPT                         | 50MCAPO2<br>Rhs LJ:<br>Rhs UPI            | SONCAPO3<br>RNS LOI<br>RNS UPI                          | SONCAPOF<br>RHS LDI<br>RHS UP I                                                 | FONCAPUL<br>RHS LOB<br>RHS UPS              |

÷

| FUNCAPEZ<br>KHS LJ1<br>RHS UP1    | 202 EJ<br>0.00101010<br>0.0010010<br>0.0000000 | -1.(LUGULUU P FUTMARUZ<br>1.(LUDCCGUU P FUSARUZM<br>1.(LUJCUCJU P FUSARUZM<br>1.(LUCCJUUJU P FUSDAUZM  | L.JJC400040 P FCC3P42M<br>1.4000440040 P F048A62M<br>1.4000000000 P F058802M<br>1.400000000 P F058802M                       |             | 1.000000000 P                                   | F 064P 02 H<br>F 446 4 6 2 H<br>F 056 4 0 2 M         | 1.00000000 P F0NAP02N<br>1.00000000 P F040A02N<br>1.00000000 P F050802M    |
|-----------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------|
| FONCAPU3<br>RFS Lůt<br>RHS UP t   | 1 0 3 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0      | -1.600306.JU P FUTMAKU3<br>1.6000300000 P FU4AA03M<br>1.00000000 P FU5AAU3M<br>1.0001300000 P FU5DA03M | I.«CUODOOUGO P FCC3PC3M<br>I.«O0COOCOO P F04BA03M<br>I.«O0000000 P F05BC3M<br>I.«O0CG003U P F05DBC3M                         |             | 1.000000000000000000000000000000000000          | F0C4P03N<br>F04C403N<br>F05C403N                      | 1.000000000 F FOMAPO3M<br>1.000000000 P F040A03M<br>1.000000000 P F05C803M |
| FONCAPOS<br>RMS LUI<br>RMS UPI    | E 0 387<br>0.60000000<br>0.90000000            | -1.600300000 P F0TMARG5<br>1.000000000 P F04A65M<br>1.600000000 P FU5A465M<br>1.600000000 P F050A65M   | 1.000000000 P F0C3P05M<br>1.000000000 P F048455M<br>1.000000000 P F048805M<br>1.00000000 P F058805M<br>1.00000000 P F050805M |             | 1.000000000 P<br>1.000000000 P<br>1.000000000 P | F 0 C 4 P 0 5 N<br>F 0 4 C 4 0 5 N<br>F 0 5 C 4 0 5 N | 1.000000000 P F0NAP05H<br>1.000000000 P F040A05H<br>1.000000000 P F05C805H |
| 10PCOST<br>  RMS LOI<br>  RMS UP1 | EQ 366<br>0.000307060<br>0.00360000            | 30000000 1 JJTP1P02<br>-9.90000000 X 101P1P05                                                          | 300000000 P 10NPIP02<br>-12.00000000 L 10TPIP05                                                                              |             | -9.90000000 X                                   | 101P1P03<br>101PCST                                   | 58000000 X 10TP1P04                                                        |
| 20PC0ST<br>RMS LD1<br>RMS UP1     | ξα 359<br>6.000000000<br>0.000000000           |                                                                                                        | 270000000 P 20NPIP01<br>-9.400606030 X 20TPIP05                                                                              | - 10        | 990000000 L                                     | 201 P I P03<br>201 P I P0F                            | 990000000 P 20NFIP03<br>1.000000000 P 20TPCST                              |
| 30PC0ST<br>RHS LD:<br>RHS UP:     | EQ 350<br>0.000000000<br>0.00000000            | 426000000 L 301P1P61<br>660000000 L 301P1P64                                                           | 420000000 30NPIP05<br>-1.000000000 30TPIP05                                                                                  | 1           | 500300000 P                                     | 30NPLP62<br>30TPLP0F                                  | 500000000 L 301PLP02<br>1.000000000 P 301PCST                              |
| 40P COST<br>R HS LJ1<br>R HS UP1  | EQ 391<br>0.00000000<br>0.00000000             | -4.901000000 × 40191905<br>-12.00000000 × 40191905                                                     | 580000000 L 40TPLP02<br>1.00000000 P 40TPC5T                                                                                 | 1           | 1 000000009.                                    | 401 PI P03                                            | 60000000 L 401P1905                                                        |
| SUPCOST<br>RHS LUI<br>RHS UPI     | ξυ 392<br>0.00000000<br>0.0030023000           | -4.90000000 X 50TPIPUL<br>-12.00000000 L 50TPIPOF                                                      | -9.900000000 x 50TPLP02<br>1.000000000 P 50TPC5T                                                                             | 1           | • 05000000 K                                    | 501 PL P03                                            | 800000000 X 50191P04                                                       |
| FOP COST<br>RMS L11<br>RMS UP1    | £93<br>0.033500000<br>0.000000000              | -1.16006300 x FOTPIPOL<br>6660306000 x FUTPIPOS                                                        | 750000000 x FOTP160                                                                                                          | 0°-1        | X 00000006°                                     | F01P1P03                                              | 50000000 h fotptp04                                                        |
| LONCEST<br>RHS LJI<br>RHS UPI     | EQ 344<br>6.00000000<br>0.00000000             | -4.966360060 P 101MAR02<br>1.000003060 P 101MC51                                                       | -1.20000000 P 10TMARD                                                                                                        | 6<br>1<br>3 | • 000000000                                     | LOTMAROS                                              | -12.U000000 P 101MAROF                                                     |
| ZOMCOST<br>RHS LUI<br>RHS UPI     | E 4 355<br>0.0000000<br>0.0000000              | -9.56030000 P 2JIMAROL<br>1.000300000 P 201MC5T                                                        | 634004040 P 201MAR0                                                                                                          | 6           | • • • • • • • • • • • • • • • • • • • •         | 20TMAR05                                              | -12.00000000 P 20TMAROF                                                    |
| 30MCOST<br>RHS LUI<br>RHS UPI     | 50 356<br>5. 2010 CC<br>5. LOODOOCO            | -1.20000000 P 301MAKJ1<br>1.00010000 P 301M051                                                         | -1.80000000 P 3CTMAR                                                                                                         | 92          | -2.50000000 P                                   | 30THAR05                                              | -12.0000000 P 30TMAROF                                                     |
| 50NCOST<br>201 2H2<br>2H5 UP1     | 54 347<br>6.03121200<br>6.0000000              | -3.00000000 P 50TMARc1<br>1.00000000 P 50TMC51                                                         | -4.90000000 P 20TMARD                                                                                                        | 2 -         | 3.50000000 P                                    | SUTHARO3                                              | -12.00000000 P 50TMAROF                                                    |
| FORCUSI<br>Khu Lui:<br>KhS Ura    |                                                | 300010000 P FUTMAPUL<br>1.0000000 P FUTMOUL                                                            | 200000000 P FOIMARO                                                                                                          | 2           | -1.503379000 P                                  | FOTMARU3                                              | 40000000 P FOIMAR05                                                        |

ENT - MALLOR LASING



Appendix C

REFINING INDUSTRY MODEL VALIDATION

#### Appendix C

# REFINING INDUSTRY MODEL VALIDATION

## C.1 Background and Overview

From a statistical analysis of U.S. refining industry capacity data (see Appendix D), the capacity limits shown in Table C-1 were developed for each PAD for large, medium, and small refinery size classifications.

## Table C-1

## REFINING CAPACITY LIMITS--1974 VALIDATION CASE (Thousands of Barrels per Calendar Day)

|                               |       | PAD               | Distric | t   |       |                   |
|-------------------------------|-------|-------------------|---------|-----|-------|-------------------|
|                               | I     | <u>    II    </u> | III     | IV  | V     | <u>U.S. Total</u> |
| Small refineries *            |       |                   |         |     |       |                   |
| Lower limit                   | 180   | 700               | 700     | 420 | 500   |                   |
| Upper limit                   | 190   | 890               | 835     | 550 | 630   |                   |
| 1974 reported <sup>T</sup>    | 211   | 888               | 832     | 547 | 627   | 3,102             |
| Large refineries <sup>‡</sup> |       |                   |         |     |       |                   |
| Lower limit                   | 1,200 | 2,500             | 4,520   |     | 1,400 |                   |
| Upper limit +                 | 1,300 | 3,150             | 6,130   |     | 1,850 |                   |
| 1974 reported                 | 1,466 | 3,142             | 5,300   |     | 1,850 | 11,712            |
|                               |       |                   |         |     |       | 14,814            |

 $*0-50 \times 10^3$  b/d.

Reported stream-day capacities as of 1 January 1975, reported in <u>Oil and Gas Journal</u> (7 April 1975).

More than 50  $\times$  10<sup>3</sup> b/d.

Product requirements were based on those reported in Appendix D. Because the product categories reported in the "Petroleum Statement" do not in all cases correspond to those in the model, it was necessary to allocate as shown in Table C-2. Lower demand limits at the reported values were established for each of the major products in each district. For the validation work, the minor products were left unbounded. Limits were set

#### Table C-2

#### ALLOCATION OF BUREAU OF MINES PRODUCT CATEGORIES TO MODEL CATEGORIES

| Product                  | BuMines<br>Category | Industry Model<br>Category* |
|--------------------------|---------------------|-----------------------------|
| Liquefied gases          | x 🦳                 | 0.77                        |
| C3LPG                    |                     | 0.23 X                      |
| CLPG                     |                     | x                           |
| Naphtha                  | х                   | X                           |
| Premium gasoline         |                     | 0.25 X                      |
| Regular gasoline         |                     | 0.40 x                      |
| Low-lead gasoline        |                     | 0.20 X                      |
| Lead-free gasoline       |                     | 0 15 X                      |
| Mogas and avgas          | X                   |                             |
| JP-4                     | Х                   | X                           |
| Jet-A                    | Х                   | X                           |
| Kerosine                 | х                   |                             |
| Distillate fuel oil      | X                   | 0.332                       |
| Diesel                   |                     | 0.6 <del>68X</del>          |
| No. 2 fuel oil           |                     | x                           |
| Vacuum gas oil           |                     | x                           |
| Lubricants               | x                   |                             |
| Wax                      | X                   |                             |
| Asphalt                  | X                   |                             |
| Road oil                 | х                   |                             |
| Vacuum residual          |                     | X                           |
| Residual fuel oil        | X                   | 0.5                         |
| Low-sulfur residual      |                     | 0.5 X                       |
| High-sulfur residual     |                     | x                           |
| Petrochem feeds          | X                   | 0.60                        |
| Benzene                  | $\sim$              | 0.25 X                      |
| Toluene                  |                     | 0,10 X                      |
| Xylenes                  |                     | 05 X                        |
| C <sub>9</sub> aromatics |                     | ×                           |
| Coke                     | X                   |                             |
| Low-sulfur coke          |                     | x                           |
| High-sulfur coke         |                     | x                           |
| *                        | d on the f          |                             |

Allocations were based on the following sources: Gasoline--"National Petroleum News, Factbook Issue" (May 1975) Distillates--<u>Mineral Industry Surveys</u>, "Fuel Oil Sales, Annual" (1974) Others--SRI estimates. on inter-PAD pipeline capacities at an arbitrary 120 percent of reported 1974 rates (Appendix D) because actual capacities are not readily available in published literature. No minimum utilization requirements were set on either pipeline or marine shipments.

The remaining category of case-specific input data is that of prices of crude oil, natural gas liquids (NGL), and imported products. The prices used in the 1974 validation case are presented in Table C-3. Domestic product prices are not required for operating the refining industry model (RIM) in a cost-minimizing objective mode. Similarly, investment for existing facilities is considered a "sunk cost" and is not included in the validation process.

Detailed comparisons of RIM and BuMines data, by major product, are presented in Tables C-4 to C-6 for each PAD district. Refinery output, interdistrict movements by transportation mode, imports, and district demands are presented. Full output of the RIM validation case follows the comparison tables.

# Table C-3

# REFINING INDUSTRY MODEL FEEDSTOCK AND IMPORTED PRODUCT PRICES\* (Dollars per Barrel)

|                         |      | PA   | D Distri | ct   |      |
|-------------------------|------|------|----------|------|------|
|                         | 1    | 2    | _3       |      | 5    |
| Feedstocks              |      |      |          |      |      |
| Sweet crude             | 9.65 | 9.65 | 9.25     | 9.25 | 9.25 |
| Sour crude              | 9.40 | 9.40 | 9.00     | 9.00 | 9.00 |
| California blend        |      |      |          |      | 8.50 |
| Natural gasoline        | 8.30 | 8.30 | 8.30     | 8.30 | 8.30 |
| Isobutane               | 7.30 | 7.30 | 7.30     | 7.30 | 7.30 |
| Normal butane           | 6.90 | 6.90 | 6.90     | 6.90 | 6.90 |
| Product imports         |      |      |          |      |      |
| C <sub>3</sub> LPG      | 8    | .19  |          |      |      |
| C <sub>4</sub> LPG      | 9    | .03  |          |      |      |
| Naphtha                 | 14   | .15  |          |      |      |
| Gasoline (no-lead)      | 15   | .83  |          |      |      |
| JP-4                    | 14   | .53  |          |      |      |
| Jet A                   | 15   | .75  |          |      |      |
| Diesel (No. 2)          | 14   | .32  |          |      |      |
| No. 2 fuel oil          | 14   | .32  |          |      |      |
| No. 6 fuel oil (low S)  | 12   | .48  |          |      |      |
| No. 6 fuel oil (high S) | 10   | .48  |          |      |      |

\* Feedstock prices are estimated composite representative 1974 refinery acquisition costs. Product imports are representative 1974 prices FOB Caribbean refinery.

Sources: <u>Platt's Oil Price Handbook and Oil Manual</u>, 1974 prices, McGraw-Hill, New York (1974) Federal Energy Administration, "Monthly Energy Review" (July 1976) Table Cal

| Table C-4 | 0. J. T. TRANSPORTATION SYSTEMS CENTER | N ** 0<br>Refining industry model - 1974 Validation Casê | GASOLINE BLEND (MBPD) | PETROLEUM ADMINSTRATION FOR DEFENSE DISTRICTS (PAD) | 1 2 3 4 4 5 U.S.<br>REFINERY DUTPUT 814.5 (700) 2004.4 (1947)2527.0 (260) 256.3 (223) 9A;.1(883) 6582.0(6365) | INTER-PAD HOVEMENTS FRO4 | DISTRICT 1 (126)<br>PIPF-LINE (126) | MAQINE | DISTRICT 2 (34) (54) |  |
|-----------|----------------------------------------|----------------------------------------------------------|-----------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------|--------|----------------------|--|
|           | IS GENTER                              | VALIDATION CASE                                          | RD DU CT              | NSE DISTRICTS (PAD)                                 | 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                       |                          |                                     |        | (1)                  |  |

MOTE: Figures in parentheses are from the Bureau of Mines for 1974.

|                                       |                                             |                                                    | ~                                 |                         |        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |                              |                                                 | (36)1605.1 (1929)<br>1490.5<br>114.6              | 2160.6 (2160)2249.0(2249)1003.0(1003) 211.U (211)959.0 (959)6582.0 (6582) |
|---------------------------------------|---------------------------------------------|----------------------------------------------------|-----------------------------------|-------------------------|--------|------------------------------------------------------|------------------------------|-------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------|
|                                       |                                             |                                                    | (96)                              |                         |        |                                                      | 21 • 1 (12)                  | (1)                                             | (36                                               | 659 °C (959)                                                              |
|                                       | (2)                                         | (14)                                               |                                   |                         |        | (33)                                                 | 45.U (50)                    | (1)                                             | (33)                                              | :11.U (211)                                                               |
|                                       | (95)                                        |                                                    | 15.0<br>15.0                      |                         |        | 15.C (54)<br>15.0                                    | (95) 1539.0 (1646) 45.0 (50) | (19)                                            | 15.6 (54)<br>15.0                                 | 003.0(1003) 2                                                             |
| (126)                                 |                                             | 214.6 (259)<br>214.6                               | 33.0 (14)<br>30.9                 |                         |        | 244.6(399)<br>244.6                                  | (95) 1                       | (1)                                             | 244°6 (399)<br>244°6                              | :249.0(2249)1                                                             |
|                                       | (34)                                        | 1324.4 (1373) 214.6 (259)<br>12310.9 214.6<br>93.5 |                                   | 21 • 1                  | 21.1   | 1345.5 (1407) 244.6 (399)<br>1230.9 244.6<br>114.6   | (126)                        | (176)                                           | 1345.5(1407) 244.6 (399)<br>1230.9 244.6<br>114.6 | 2160 . C (2160)2                                                          |
| DISTRICT 1<br>DISTRICT 1<br>PIPE-LINE | HARINE<br>District 2<br>Pipe-Line<br>Harine | DISTRIGT 3<br>PIPE-LINE<br>Marine                  | DISTRICT 4<br>FIDE-LINE<br>Marine | DISTRICT 5<br>PIPE-LINE | MARINE | TOTAL DOMESTIC RECEIPTS<br>Pipe-Line<br>Marine       | DONESTIC SHIPMENTS           | FOREIGN IMPORTS/-EXPORTS<br>PIPE-LINE<br>Marine | TOTAL SUPPLY MOVEMENTS<br>PIPE-LINE<br>Marine     | DISTRICT DEMANO                                                           |

| JET A JET FUEL SUPPLY DEMAND BALANCE BY PRODUCT SUPPLY DEMAND BALANCE BY PRODUCT PETROLEUM ADMINSTRATION FOR DEFENSE DISTRICTS PETROLEUM ADMINSTRATION FOR DEFENSE DISTRICTS a structure of a structure and administration for the properties of a structure and a structure a | REFINING INDUSTR<br>SUPPLY DEMAND BALANCE BY PRODUCT<br>EUM AOMINSTRATION FOR DEFENSE DI<br>2 177.4(163) 473.6(405) 25.0(16)<br>24.6 (23) 25.0(16)<br>24.6 | REFINING INDUSTRY MODEL -<br>LANCE BY PRODUCT<br>A FOR DEFENSE DISTRICTS (1<br>3 4 5 5<br>6(405) 25.0(16) 224.0( | - 1974 VALIDATION CASE<br>5 (PAD) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D BALANCE BY PR<br>ATION FOR DEFEN<br>473.6(405) 25                                                                                                        | 00UCT<br>SE DISTRICT<br>4<br>• 0(16) 224                                                                         |                                   |
| 47<br>93<br>93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ATTON FOR DEFEN                                                                                                                                            | se District                                                                                                      |                                   |
| 1<br>(54)0.42)<br>(266)<br>339.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                            | 4<br>0(16)<br>5                                                                                                  |                                   |
| 339.0 (266)<br>339.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                            | 5                                                                                                                | 5 U.S.<br>224.0 (170) 947.0 (796) |
| 0°6EE<br>09°0°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                            | 5                                                                                                                |                                   |
| 339.0 (266)<br>339.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                            |                                                                                                                  |                                   |
| 0°6EE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                            | 10                                                                                                               | 1                                 |
| r s<br>I s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                            |                                                                                                                  |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                            |                                                                                                                  |                                   |
| TOTAL DUMESTIC RECEIPTS 339.0 (206) 24.6 (23)<br>PIPE-LINE 24.6 (23)<br>MARINE 339.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                            | ŕı                                                                                                               | 9 363.6 (313)<br>24.6<br>339.0    |
| DOMESTIC SHIPMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 363 <b>.</b> 6 (306)                                                                                                                                       | 3                                                                                                                | 0 • 0                             |
| FOREIGN TWPORTS/-EXPORTS 79 5<br>PIPE-LINE<br>MARINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                          |                                                                                                                  | 14                                |
| TOTAL SUPPLY MOVEMENTS 339.0(345) <sup>-</sup> 24.6 (29)<br>PIPE-LINE 339.0<br>MARINE 339.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                                                                                                                                          | n                                                                                                                | 9 363.6<br>24.6<br>339.0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                            |                                                                                                                  |                                   |

Table C-6

| D. D. T. TRANSPORTATION SYSTENS GENTER<br>Véfining Industry Model - 1974 Validation Gase | SUPPLY DEMAND PALANGE BY PKUDUCT<br>(MePD)<br>Petpoleum Anminstration For Defense districts (Pad) | 1 2 2 3 3 2 2 3 3 2 2 1 2 2 1 2 2 2 3 2 2 2 2 |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------|
| SECTION 4. 13                                                                            | MIODLE DISTILLATE BLEND                                                                           | REFINERY OUTPUT                               |

| DISTRICT 1<br>PIPE-LINE                                                                                                       |                                | (32.0)                                     |        |      |                                           |                           |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------|--------|------|-------------------------------------------|---------------------------|
| PAKING<br>DISTRICT 2<br>DIPE-LINF                                                                                             | 66.4 (3.0)<br>66.4             | 0                                          | (15.0) | 0.   | (1.0)                                     |                           |
| DISTRICT 3<br>DISTRICT 3<br>PIPE-LINE<br>DISTRICT 4<br>DISTRICT 4<br>HARINE<br>DISTRICT 5<br>PIPE-LINE<br>PIPE-LINE<br>HARINE | 866. 2 (731.0<br>769.1<br>91.1 | 966.°2(731.0)147.7 (86.0)<br>769.1<br>91.1 |        | (3.  | (2.0) 23.3 (19.0)<br>23.3<br>53.1<br>53.1 | (0.61)                    |
| TOTAL 0945STIC RÉCÉIPTS<br>Pipe-line<br>Marinè                                                                                | 926°6<br>835°5<br>91°1         | 147°7<br>147°7                             |        |      | 76 . 3<br>76 . 3                          | 1150.7<br>5 59.6<br>91.1  |
| ODYESTIC SHIPHENTS                                                                                                            |                                | 66.4                                       | 1031.1 | 53.1 |                                           |                           |
| FOREIGN IMPORTS/-EXPORTS<br>PIPE-LINE<br>Marine                                                                               | 50.7(257.0)<br>C.5<br>50.7     | 0) (1.0)                                   | (15.0) |      |                                           | (7.0) 54.7<br>0.0<br>5(.7 |
| TOTAL SUPPLY FOVÉMENTS<br>PIPE-LINE<br>Haptye                                                                                 | 377 • 1<br>875 • 1<br>141 • 8  | 147°7<br>147°7                             |        |      | 76 . 3<br>76 .                            | 1261•3<br>1659•6<br>141•8 |
| DISTOTA DEMAND                                                                                                                | 9661)                          |                                            |        |      |                                           |                           |

,

NOTE: The figures in parentheses are from the Bureau of Mines for  $1974_{\circ}$ .

| REFINING INDUSTICY MODEL - 1914 WALLANTION GARE           SUPPLY DEWAND EALANCE BY PRODUCT           SUPPLY DEWAND EALANCE BY PRODUCT           SUPPLY DEWAND EALANCE BY PRODUCT           PETROLEUM ADMINSTATION FOR DEFENSE DISTRICTS (PAD)           INTER-PAD HOVEMENTS FROM.           OISTRICT           INTER-PAD HOVEMENTS FROM.           OISTRICT           INTER-PAD           INTER-FROM.           OISTRICT           INTER-FROM.           OISTRICT           INTER-FROM.           OISTRICT           INTER-FROM.           INTER-FROM.           INTER-FROM.           INTER-FROM.           INTER-FROM.           INTER-FROM.           INTER-FROM.           INTER-FROM.           INTER-FROM.           INTER-FROM.INTER-FROM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Image: Control of the contro of the control of the contro of the control of the control of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (MBPD)       PETROLEUM ADMINSTRATION FOR DEFENSE DISTRIC       1     2       1     2       1     2       155.4 (180)     355.8 (362)       126.6 (154)     155.4 (180)       126.6 (154)     155.4 (180)       126.6 (154)     155.8 (180)       126.6 (154)     155.8 (180)       155.8     36       155.8     36       155.8     36       155.8     36       155.8     36       155.8     36       155.8     36       155.8     36       155.8     36       155.8     36       155.8     36       155.8     36       155.8     36       155.8     36       155.8     35       155.8     35       155.8     35       155.8     36       155.8     35       5     155.8       5     155.4       6     35       7417.6     24.6       1513.4     24.6       1513.4     24.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PETROLEUM ADMINISTRATION FOR DEFENSE DISTRIC       1     2     3     4       1     2     35.6 (154) 155.4 (180) 355.8 (362) 34.0 (34)       15     126.6 (154) 155.4 (180) 355.8 (362) 34.0 (34)       15     155.8 99 36       155.8 99 36       155.8       155.8       155.8       155.8       155.8       155.8       155.8       155.8       155.8       155.8       155.8       155.8       155.8       155.8       155.8       155.8       155.8       155.8       155.8       155.8       155.8       155.8       155.8       155.8       155.8       155.8       155.8       155.8       155.8       155.8       155.8       155.8       155.8       155.9       155.4       155.4       1573.4       1573.4       1573.4       1573.4       1573.4       1573.4       1573.4       1573.4       1573.4       1573.4       1573.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 126.6 (154) 155.4 (180) 355.8 (362) 34.0 (34)<br>126.6 (154) 155.4 (180) 355.8 (362) 34.0 (34)<br><br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 126.6 (154) 155.4 (180) 355.8 (362) 34.0 (34)<br><br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ••<br>.:55.8 99 36<br>.:55.8 99 36<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| .:55.8 99 36<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>15   |
| .:55.8 99 36<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>15   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>15 |
| 155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>15 |
| 155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>1573.4<br>1573.4<br>1573.4<br>1573.4<br>24.6<br>1573.4<br>24.6<br>1573.4<br>24.6<br>1573.4<br>24.6<br>1573.4<br>24.6<br>1573.4<br>24.6<br>1573.4<br>24.6<br>1573<br>1<br>1573.4<br>24.6<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>15 |
| 155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>1573.4<br>1573.4<br>1573.4<br>1573.4<br>24.6<br>1573.4<br>157.6<br>1573.4<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.7<br>157.6<br>157.7<br>157.7<br>157.7<br>157.7<br>157.7<br>157.7<br>157.7<br>157.7<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.   |
| 155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>155.8<br>15 |
| 155.8<br>155.8<br>155.8<br>155.8<br>157.6<br>1417.6<br>1573.4<br>1573.4<br>1573.4<br>24.6<br>1573.4<br>24.6<br>1573.4<br>24.6<br>1573.4<br>1573.4<br>24.6<br>1573.4<br>1573.4<br>1573.4<br>1573.4<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>157.6<br>1   |
| 155.8 (136) 1<br>-417.6 (1459) 24.6 (22) 32<br>1417.6 24.6<br>1573.4 (1558) 24.6 (58) 1<br>1573.4 24.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| _417.6(1459) 24.6(22) 32<br>1417.6 24.6<br>1573.4(1558) 24.6(58) 1<br>1573.4 24.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1417.6 24.6 29.2<br>1573.4 (1558) 24.6 (58) 1<br>1573.4 24.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1573.4 (1558) 24.6 (58) 1<br>1573.4 24.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1573.4 24.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

NOTE: The figures in parentheses are from the Bureau of Mines for 1974.

# C.2 Refining Industry Model: Full Output for 1974 Validation Case

The output tables on the pages that follow cover the matters tabulated below.

| Section | Content                                                                                  |
|---------|------------------------------------------------------------------------------------------|
| Α.      | Refinery output, inter-PAD transfers, imports, and demand by product                     |
| Β.      | Refinery output, inter-PAD transfers, imports,<br>and demand by PAD district             |
| C.      | Refinery capacity utilization by PAD district, size, crude type, and conversion severity |
| D.      | Refinery utility, manpower, operating costs,<br>and energy requirements                  |
| E.      | Summary of refinery input and output options existing in the industry model              |

| L.                                            |                       | 0 4 D )                                             | 1) • S • |                 |                          |            |                     |            |           |          |            |                      |                     |                                      |        |                    |                                                 |                                               | 22406         |
|-----------------------------------------------|-----------------------|-----------------------------------------------------|----------|-----------------|--------------------------|------------|---------------------|------------|-----------|----------|------------|----------------------|---------------------|--------------------------------------|--------|--------------------|-------------------------------------------------|-----------------------------------------------|---------------|
| LAN CES                                       |                       | STRICTS 0                                           | 5        | 23 .5           |                          |            |                     |            |           |          | ,          |                      |                     |                                      |        |                    |                                                 |                                               | 36°           |
| SYST TS OSTITON CASE<br>- 1974 VALIONTON CASE | 10004 X0 3            | P DFFFNSE 01                                        |          |                 |                          |            |                     |            |           |          |            |                      |                     |                                      |        |                    |                                                 |                                               | 6 • 9         |
|                                               | SUPPLY DÉMAND GALANCE | PETPULEUM ADMINSTRATION FOP DEFENSE DISTRICTS (PAD) | ~        | -2              |                          |            |                     |            |           |          |            |                      |                     |                                      |        |                    |                                                 |                                               | 45 ° C        |
| 0. 0. T. TPAHSPORTATION                       |                       | PULEUM ADMTR                                        | 2        | 79.6            |                          |            |                     |            |           |          |            |                      |                     |                                      |        |                    |                                                 |                                               | 79.6          |
| άŶ.                                           | ((1761)               | Ρέ Τ΄                                               | -        | 54 ° 6          | 0.4                      |            |                     |            |           |          |            |                      |                     | S                                    |        |                    | 12                                              |                                               | 54 . 4        |
| SECTION A. 1                                  | 63 LPG                |                                                     |          | REFINERY OUTPUT | INTER-PAD MOVENENTS FROM | DISTRICT 1 | PIPE-LINE<br>Pipers | DISTRICE 2 | PIPE-LINE | DISTRICE | DISTRICT 4 | NARINE<br>District s | PIPE-LINE<br>VANINE | TOTAL DOMESTIC RECEIPTS<br>PIPE-LINE | HARINE | DOMESTIC SHIPHENTS | FOREIGN IMPDPTS/-EXPORTS<br>PIPE-LINE<br>Marine | TOTAL SUPPLY HOVEMENTS<br>PIPE-LINE<br>Marine | ONARAU DEMAND |

u.s. ------62.7 62.7 PETPOLEUM ADMINSTRATION FOR DEFENSE DISTRIFTS (PAD) REFINING INDUSTRY MODEL - 1974 VALIDATION CASE ഹ 13.5 10 11 D. D. T. TRANSPORTATION SYSTEMS CENTER SUPPLY DEMAND BALANCE BY PROJUCT .+ 1.6 1.5 2 13.4 13.4 2 17.9 17.9 • (MBPD) ---0 8 8 0 0 0 0 19.1 19.1 INTER-PAD MOVEMENTS FRO1.. FOREIGN IMPOFIS/-EXPORIG PIPE-LINE Marine TOTAL DOMESTIC RECEIPTS PIPE-LIME FARINE TOTAL SUPPLY MOVEMENTS PIPE-LINE Marine REFINERY OUTPUT **NOMESTIC SHIPMENTS UTSTRICT DEMAND** DISTRICT 4 PIPE-LINE MARINE DISTRICT 5 DISTRICT 1 PIPE-LINE MAPINE DISTRICT 2 PIPE-LINE MAPINE DISTRICT 3 PIPE-LINE MARINE PIPE-LINE MARINE N SECTION A. 54 LPG

.

,

u.s. 106.2 166.2 PETROLEUM ADMINSTRATION FOP DEFENSE DISTRICTS (PAD) REFINING INDUSTRY MOD'L - 1974 VALIDATION CASE 25.5 25 °5 "). J. T. TPANSPORTATION SYSTEMS CONFIC SUPPLY DEMAND RALANCE BY PRODUCT m 7 د قل 45°2 29.1 29.1 . (HPF0) -INTER-PAD MOVEMENTS FROM .. FOREIGN IMPORTS/-FXPORTS PIPE-LINE Marine TOTAL DOMESTIC RECEIPTS PIPE-LINE PARINE TOTAL SUPPLY MOVEMENTS PIPE-LINL Faring REFINERY OUTPUT DOMESTIC SHIPHENTS **DISTRICT DEMAND** DISTRICT 4 PIPE-LINE Maring DISTRICT 5 PIPE-LINE Marine MARINE DISTRICT 3 FIPE-LINE MARINE DISTRICT 1 PIPE-LINE DISTRICT 2 PIPE-LINE PARINE m SECTION A. NAPHTHA

|                                                                                 |                       | (0)                                                 | u. S. | 2135.1           |                          |                                                                           |                                                                                        | 753.6<br>753.6                                              |                              |                                                 | 763.6<br>753.6                                | 21:5.1           |
|---------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------|-------|------------------|--------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------|-------------------------------------------------|-----------------------------------------------|------------------|
| STION CASE                                                                      |                       | STRICTS (PA                                         | ŝ     | 273.5            |                          |                                                                           |                                                                                        |                                                             |                              |                                                 |                                               | 2.13 .           |
| eyatese dantes<br>- 1974 val fuation case                                       | AY PRODUCT            | 10-224330                                           | *     | c • 1 1          |                          |                                                                           |                                                                                        |                                                             |                              |                                                 |                                               | C                |
| 000141104 57<br>147 40051 -                                                     | SUPPLY DEMAND AALANCE | RATION FOR                                          | ~     |                  |                          |                                                                           |                                                                                        |                                                             | 753.6                        |                                                 |                                               |                  |
| 0. 3. T. TRANSPORTATION SYSTEMS GENTLA<br>Refuted thoustry monet - 1974 valimat | SUPPLY DEM            | PETPOLEUM ADMINSTRATION FOR OFFENSE UISTRICTS (PAD) |       | 92 <b>.</b> ]. 4 |                          |                                                                           | 214°6<br>214°É                                                                         | 214°6<br>214°6                                              | )<br>•<br>•<br>4             |                                                 | 224 - E<br>224 - E                            | 1 v 35. v        |
| 0.<br>6<br>878                                                                  |                       | PETFOU                                              | 4     | 212+5            |                          |                                                                           | 5 3 9 ° -<br>5 3 9 ° 1                                                                 | 539.0<br>539.0                                              |                              |                                                 | 539.°.                                        | 151.4            |
| SECTION 4. +                                                                    |                       | 1.1.2014K 642011NF                                  |       | RLFINERY OUTPUT  | INTER-PAD NOVEMENIS FROM | DISTRICT 1<br>PIPE-LINE<br>WARINE<br>DISIRICT 2<br>PIPE-LINE<br>PIPE-LINE | DISTRICT<br>PIPE-LINE<br>DISTRICT 4<br>PIPE-LINE<br>MARINE<br>DISTRICT 5<br>DISTRICT 5 | PIPE-LINE<br>Marine<br>Total Doméstic récfipts<br>Pipe-line | MARINE<br>DOMESTIC SHIPHENTS | FOREIGN IYPDATS/-EXPOPTS<br>PIPE-LINE<br>Martne | TATAL SUPPLY MOVENENTS<br>PIPE-LINE<br>FARINE | ntsipict bemand. |

|                               |                         |               |                                                                         | (0)                                                 | U. S.                                                                                            | 1693.8          |                           |            |                     |                          |        |                         |          |           |                     |           |        | 25°6<br>25°6                                   |                    |                                       |        | 25. E                  | 25 ° 6              |  |
|-------------------------------|-------------------------|---------------|-------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------|---------------------------|------------|---------------------|--------------------------|--------|-------------------------|----------|-----------|---------------------|-----------|--------|------------------------------------------------|--------------------|---------------------------------------|--------|------------------------|---------------------|--|
| <b>2</b>                      | ATION CASE              |               |                                                                         | STPICTS (PA                                         | 5                                                                                                | 135 • 2         |                           |            |                     |                          |        |                         |          |           |                     |           |        |                                                |                    |                                       |        |                        |                     |  |
| STARS CENT                    | - 1974 VALIJATION CASE  | 10000 X8      |                                                                         | DEFENSE UT                                          | 3"  <br> <br> <br> <br> <br> <br> <br> <br> <br>                                                 |                 |                           |            |                     |                          |        |                         |          |           |                     |           |        |                                                | 25 . 0             |                                       |        |                        |                     |  |
| TPANSPOPTATION SYSTEMS GENTER | - 13008 AB              | ND BALANCE    |                                                                         | PATION FOR                                          | 0<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 |                 |                           |            |                     |                          |        |                         |          |           |                     |           |        |                                                |                    |                                       |        |                        |                     |  |
| •                             | PEFINING INDUSTRY MODEL | SUPPLY DEMAND | 0<br>8<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | PETROLEUM ADMINSTRATION FOR DEFENSE DISTRICTS (PAD) | 2                                                                                                | 519.1           |                           |            |                     |                          |        |                         |          | 25.6      |                     |           |        | 25.6<br>25.6                                   |                    |                                       |        | 25.6                   | 25.6                |  |
| D. 1.                         | 9 T F I                 |               | (MRPD)                                                                  | PETROL                                              |                                                                                                  | 124.6           | 1:4                       |            |                     |                          |        |                         |          |           |                     |           |        |                                                |                    | S                                     |        |                        |                     |  |
| SECTION P. S                  | •<br>L                  |               | PFEMIUM GASOLINE                                                        |                                                     |                                                                                                  | REFINERY OUTPUT | INTER-PAD MOVEMENTS FROM. | 01STPICT 1 | PIPE-LINE<br>MADINE | DISTRICT 2<br>DISTRICT 2 | MARINE | DISTRICT 3<br>PIPE-LINE | PIAR INE | PIPE-LINE | MARINE<br>DISTORT C | PIPE-LINÉ | AARINE | TOTAL NOMESTIC RECEIPTS<br>PIPE-LINE<br>MARINE | SIN-HAIHS DIISJHOU | FOREIGN IMPORIS/~EXPORIS<br>DIPE-11N# | MARINE | TOTAL SUPPLY POVENENTS | PIPE-LINE<br>Karine |  |

165.204

e \* : 1 T

5 9 E ° 3

1 \*\* \* 3

128.6

NISTPICT DEVEND

| ແມ່<br>ເວັ                                                                               |                       | (PAD)<br>5 U.S.                                                      | 1 1667.7        |                          |                                                                        |                                                                                                                | 692°C<br>692°C                                           |                     |                                                 | 692.J<br>692.0                                | 1 1667°7        |
|------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------|-----------------|--------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------|-------------------------------------------------|-----------------------------------------------|-----------------|
| HER<br>DATION C                                                                          | tr: 1                 | STOTATST                                                             | 253.1           |                          |                                                                        |                                                                                                                |                                                          |                     |                                                 |                                               | 253.1           |
| N. J. I. THANSPORIATION SYSTENS CENTE?<br>PEFINING INDUSTRY MOMEL - 197+ VALIDATIGN CASE | 10000 AK 30           | PETROLEUM ADMINSTRATION FOR DEFENSE DISTVICTS (PAD)<br>1 2 3 3 4 5 5 | 76.4            |                          |                                                                        |                                                                                                                |                                                          |                     |                                                 |                                               | 76.4            |
| HSPORTATION<br>USTRY NOMEL                                                               | SUPPLY DEMAND BALANCE | NSTRATION FC<br>3                                                    | 0•269           |                          |                                                                        |                                                                                                                |                                                          | F 92 °C             |                                                 |                                               |                 |
| D. J. T. THANSPORTATION<br>PEFINING INDUSTRY MONEL                                       | SUPPLY D              | ROLEUM ANMI<br>2                                                     | 356.5           |                          |                                                                        |                                                                                                                |                                                          |                     |                                                 |                                               | 39 6° 5         |
| C 2                                                                                      | (MBPD)                | PET<br>1                                                             | 223.7           | 1                        |                                                                        | 692°C<br>692°E                                                                                                 | 692 ° C<br>692 ° C                                       |                     |                                                 | ,<br>692.0                                    | 325.7           |
| SECTTON A. F                                                                             | LOW LEAD GASOLINE     |                                                                      | REFINERY DUTPUT | INTER-PAD MOVEMENTS FPOM | DISTRICT 1<br>PIPE-LINE<br>MARINE<br>DISTRICT 2<br>PIPE-LINE<br>MARINE | DISTRICT 3<br>PIPE-LINE<br>MATNE<br>DISTRICT 4<br>DISTRICT 4<br>PIPE-LINE<br>MARTNE<br>DISTRICT 5<br>PIPE-LINE | FARINE<br>Total DDMESTIC RECEIPTS<br>PIPE-Line<br>Marine | NOME STIC SHIPMENTS | FORETGN IMPJATS/-EXPDPT3<br>PIPE-LINE<br>Maring | TNTAL SUPPLY MOVEMENTS<br>PIPE-LINE<br>Marine | DISTRICT DEMAND |

| SECTION A. 7                                    | °C °U      | D. T. TEANS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     | INED SPEED           |             |               |  |
|-------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------|-------------|---------------|--|
|                                                 | 2£ F1      | <b>NEDDA Y SURVESSION ACTION I ACTION A</b> | TPY NODEL -                                         | 1474 VALTHATION CEST | ATION CEST  |               |  |
|                                                 |            | SUPPLY NEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SUPPLY REHAND BALANCE HY PP07JCI                    | HY PP004CI           |             |               |  |
| LEAD FREE GASOLINE                              | (เกิสอิพ)  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |                      |             |               |  |
|                                                 | 10 & 1 j d | FUN ADMINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PETROLEUM ADMINSTRATION FOR DEFENSE DISTRICTS (PAD) | DEFENSE JI           | STALCTS (P. | ADI           |  |
|                                                 |            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     | +                    | 5           | 0.5.          |  |
| REFINERY OUTPUT                                 | 249.2      | #7)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 790.2                                               | 76                   | 315.2       | 1745.4        |  |
| INTER-PAD MOVEMENTS FROM                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |                      |             |               |  |
| DISTRICT 1                                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |                      |             |               |  |
| PIPE-LINE<br>MADING                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |                      |             |               |  |
| DISTRIGT 2                                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |                      |             |               |  |
| PIPE-LINE<br>Madine                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |                      |             |               |  |
| DISTRICT 3                                      | 93° E      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |                      |             |               |  |
| PIPE-LINE<br>Mårine                             | 93.5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |                      |             |               |  |
| DISTRICT 4                                      |            | 5 + C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15°Ú                                                |                      |             |               |  |
| PIPE-LINE<br>Madine                             |            | 1 <sup>4</sup> + <sup>4</sup> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.0                                                |                      |             |               |  |
| DISTRICT 5                                      | 21.1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |                      |             |               |  |
| PIPE-LINE<br>MARINE                             | 21.1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |                      |             |               |  |
| TOTAL DOMESTIC RECEIPTS                         | 114 . 6    | -1 + 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 5 C.                                              |                      |             | 134.0         |  |
| PIPC-LINE<br>MAPINE                             | 114.5      | -3<br>0<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.0                                                |                      |             | 14°4<br>114°6 |  |
| DOMESTIC SHIPMENTS                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63.5                                                | 19.4                 | 21 • 1      |               |  |
| FOREIGH IMPORTS/-EXPORTS<br>PIPE-LINE<br>FARINE |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |                      |             |               |  |
| TOTAL SUPPLY MOVEMENTS                          | 114 · F    | 4 • 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.0                                                |                      |             | 134°C         |  |
| PIPE-LINE<br>Marine                             | 114.6      | 2 ° 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.0                                                |                      |             | 19.4<br>114.6 |  |
|                                                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |                      |             |               |  |
| <b>NISTRICT DEMAND</b>                          | 363 e r    | 312.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.717                                               | 57.3                 | 294 .1      | 1745.4        |  |

|                             |                                       | U.S.<br>181.2    |                          |                                             |                                                 |                                                           | 42.0<br>26.5<br>21.5                           |                                                             | 4,2°t<br>21,5<br>21,55                                                                      | 181.2                  |
|-----------------------------|---------------------------------------|------------------|--------------------------|---------------------------------------------|-------------------------------------------------|-----------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------|
| J<br>TION CASE              | SUPPLY DEMAND BALANCE BY PPO JUCT<br> | 4<br>4<br>2<br>6 |                          |                                             | d<br>                                           | б<br>• ф<br>•                                             | 6 ° 9<br>6 ° 9                                 |                                                             | 5 • 9<br>6 • 9                                                                              | د ٤ م 5<br>د           |
| *                           | BY PROJUCT                            | 1                |                          |                                             |                                                 |                                                           |                                                | 6°9                                                         |                                                                                             | 1 - 3<br>2<br>- 3      |
| РОКТАТТОН SV<br>ТКУ МОЛЕЦ - | SUPPLY DENAND BALANCE                 | 3<br>67.8        |                          |                                             |                                                 |                                                           |                                                | 21 • 5                                                      |                                                                                             | ۲<br>۹<br>۶            |
| 9NINI                       | SUPPLY DEN                            | 2<br>45.1        |                          |                                             |                                                 |                                                           |                                                | 13.6                                                        |                                                                                             | 3 <b>8</b> 5           |
| 95 F                        | (MRPO)<br>PET20                       | 1<br>7 . 7       |                          | 13°6<br>13°6                                | 21.5<br>21.5                                    |                                                           | 35.1<br>13.6<br>21.5                           |                                                             | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | 5 S =                  |
| SECTION A. 4                | JP-4 JET FUEL                         | REFINERY OUTPUT  | INTER-PAD HOVEHENTS FROM | PARINE<br>PARINE<br>DISTRICT 2<br>PIPE-LIFE | DISTRICT 3<br>DISTRICT 3<br>PIPE-LINE<br>MARINE | DISTPICE S<br>MARINE<br>DISTPICT 5<br>PIPE-LINE<br>PARINE | TOTAL ROMESTIC RECEIPTS<br>PIPE-LINE<br>Marine | DAMESTIC SHIPMENTS<br>FOREIGN IMPOPTS/-EXPORTS<br>PIPE-LINE | MARINE<br>Total Supply Movements<br>Pipe-liné<br>Mariné                                     | <b>DISTRICT DEMAND</b> |

| SECTION A. 11                                                                               | 0+ 0<br>Rift            | 0, 0, I, TOANSPORTATION<br>ACELHING INDUSTRY MODEL  |                                           | D. T. TPANSPOPTATION SYSTEMS GENTE?<br>THING IMPUSTEY 4905L - 1574 VALIDATION CASE | EP<br>ATTON CASE               |                        |
|---------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------|--------------------------------|------------------------|
|                                                                                             |                         | SUPPLY DEM                                          | SUPPLY DEMAND BALANCE                     | BY PRODUCT                                                                         |                                |                        |
| NIESEL                                                                                      | (U44N)                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | U<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                                                                    |                                |                        |
| 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | PCTP 01                 | FUN ADMINS                                          | TRATION FOR                               | PCTPOLFUM ADMINSTRATION FOR DEFENSE DISTPICTS (PAD)                                | STPICTS (PA                    | 01                     |
|                                                                                             |                         | د،                                                  |                                           | \$                                                                                 |                                |                        |
| REFINERY OUTPUT                                                                             |                         | 232. 3                                              | 552.1                                     | 153.9                                                                              | 113.2                          | 1127.0                 |
| INTER-PAD MOVEMENTS FROM                                                                    |                         |                                                     |                                           |                                                                                    |                                |                        |
| DISTRICT 1<br>PIPE-LINE                                                                     |                         |                                                     |                                           |                                                                                    |                                |                        |
| MARINE<br>DISTRICT 2<br>PIPE-LINE                                                           |                         |                                                     |                                           |                                                                                    |                                |                        |
| NAKINE<br>DISTRICI 3<br>PIPE-LINE                                                           | 172 . 4<br>172 . 4      | 147°7<br>147°7                                      |                                           |                                                                                    |                                |                        |
| MARINE<br>DISTRICT 4                                                                        |                         |                                                     |                                           |                                                                                    | 46.8                           |                        |
| PIPE=LINE<br>MARINE<br>Distote e                                                            |                         |                                                     |                                           |                                                                                    | , en e                         |                        |
| PIPE-LINE                                                                                   |                         |                                                     |                                           |                                                                                    |                                |                        |
| TDTAL DOMËSTIC RECEIPTS<br>PIPE-LINE<br>Marinë                                              | 172 °4<br>172 °4        | 147°7<br>147°7                                      |                                           |                                                                                    | 46°E<br>46°B                   | 365.9<br>366.9         |
| DOMESTIC SHIPMENTS                                                                          |                         |                                                     | 322.4                                     | 4 F . B                                                                            |                                |                        |
| FOREIGN IMPJPTS/-EXPORTS<br>PIPE-LINE<br>HARINE                                             |                         |                                                     |                                           |                                                                                    |                                |                        |
| TOTAL SUPPLY MOVEMENTS<br>PIPE-LINE                                                         | 172 • 4<br>17 2 • 4     | 147.7                                               |                                           |                                                                                    | 46 e 8<br>4 6 e 8              | 36 c.9<br>366.9        |
| MARINE                                                                                      |                         |                                                     |                                           |                                                                                    |                                |                        |
|                                                                                             |                         |                                                     |                                           |                                                                                    |                                |                        |
| TOTAL DISTRICT DEMANO<br>LIGHT DIESEL<br>Heavy diesel                                       | 266°5<br>134°3<br>134°0 | 383.ŭ<br>192.)<br>193.u                             | 232.c<br>116.5<br>116.6                   | C • K K<br>C • K K<br>C • F 5                                                      | 1 bû • î<br>8 û • ĵ<br>8 £ • ĵ | 127.6<br>53.0<br>574.C |

|                                                 | n•                                                                              | U. J. I. IKANSPORTALION STSTERS USHER               | PORTALION S                      | VSIE45 GUILT                                     |                |                         |
|-------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------|--------------------------------------------------|----------------|-------------------------|
| 0101101 No 110                                  | 808                                                                             | REFINING INDUSTRY NUDEL                             |                                  | - 1974 VALINATION CASE                           | AFICH CASE     |                         |
|                                                 |                                                                                 | SUPPLY DEM                                          | SUPPLY DEMAND BALANCE RY PRUBUCT | RY PRUDUCI                                       |                |                         |
| NO. 2 FUEL OIL                                  | (6489)                                                                          |                                                     |                                  |                                                  |                |                         |
|                                                 | Petro                                                                           | PETPALEUM ADMINSTRATION FOP DEFENSE DISTRICTS (PAD) | TRATION FOP                      | Drfense DI                                       | STRICTS (PA    | (0)                     |
|                                                 | 1                                                                               | 2                                                   |                                  | .+.<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | 5 I            | U.S.                    |
| REFINERY DUTPUT                                 | 265.1                                                                           | 566 <b>.</b> 4                                      |                                  | 47.2                                             | 7.1.5          | 1784.3                  |
| INTER-PAD MOVÉMENTS FROM                        |                                                                                 |                                                     |                                  |                                                  |                |                         |
| DISTRICT 1<br>PIPE-LINE                         |                                                                                 |                                                     |                                  |                                                  |                |                         |
| DISTRICT 2                                      | 66 <b>.</b> L                                                                   |                                                     |                                  |                                                  |                |                         |
| PIPE = LINE<br>Marine                           | 66°4                                                                            |                                                     |                                  |                                                  |                |                         |
| DISTRICT 3<br>PIDE-LINE                         | 687.8<br>626.7                                                                  |                                                     |                                  |                                                  | 23.3           |                         |
| MARINE                                          | 91.1                                                                            |                                                     |                                  |                                                  | 2<br>2<br>4    |                         |
| DISTRICT 4<br>PIPE+LINE<br>MADINE               |                                                                                 |                                                     |                                  |                                                  | 5 • 2<br>6 • 2 |                         |
| DISTRICE<br>PIPE-LINE<br>MARINE                 |                                                                                 |                                                     |                                  |                                                  |                |                         |
| TOTAL DOMÉSTIC RECEIPTS<br>Pipe-line<br>Marine  | 754.2<br>663.1<br>91.1                                                          |                                                     |                                  |                                                  | 23°5<br>29°5   | 763.7<br>692.6<br>91.1  |
| DOMESTIC SHIPHENTS                              |                                                                                 | 6 ú. 4                                              | 711.2                            | 6 • 2                                            |                |                         |
| FOREIGN IMPDKIS/-EXPORTS<br>PIPE-LINE<br>Marine | 56.7<br>2.6<br>5.6                                                              |                                                     |                                  |                                                  |                | 50.7<br>0.02            |
| TOTAL SUPPLY NOVEMENTS<br>PIPE-LINé<br>Marine   | 834°5<br>663°1<br>141°8                                                         |                                                     |                                  |                                                  | 29°5<br>29°5   | 834°4<br>692°6<br>141°8 |
| OTATATO                                         | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 | c<br>U                                              | ,<br>,                           | د<br>م                                           |                |                         |
| ULTRICI DEMANU                                  | 1976.5                                                                          | 50 J. 0                                             | 124 . ;                          | +1 • Ü                                           | 100            | 1855.2                  |

0. 3. T. TRANSPORTATION SYSTEMS GENTER

SECTION A. 14

D. J. T. TRANSPORTATION SYSTENS. CENTER

REFINING INDUSTRY MODEL - 1974 VALIDATION CASE

SUPPLY DEMAND BALANCE BY PRODUCT

HI SULFUP NO. 6

(ГЧВН)

PETPOLEUM ADMINSTRATION FOR DEFENSE DISTRICTS (PAD)

| U. S. | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                  | 523°4           |
|-------|----------------------------------------------------------|-----------------|
| ŝ     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | 195.4           |
| .+    | 11 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0   | 17.3            |
| 2     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | 176.0           |
| N     |                                                          | 87.7            |
| ***   | 8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | 63 ° 3          |
|       |                                                          | OUTPUT          |
|       |                                                          | REFINERY OUTPUT |

INTER-PAD MOVEHENTS FROM.

|                                                                                                                                                                                                                                      | 76.l<br>76.ù                                   |                    | 737.6<br>6.6<br>737.6                           | 813°6<br>813°6                                | 1267.0          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------|-------------------------------------------------|-----------------------------------------------|-----------------|
|                                                                                                                                                                                                                                      |                                                |                    | 1+•6<br>0•0<br>14•6                             | 14 • 6<br>14 • 6                              | 0 0 2           |
|                                                                                                                                                                                                                                      |                                                |                    |                                                 |                                               | 17.3            |
|                                                                                                                                                                                                                                      |                                                | 70.3               |                                                 |                                               | 1 č 0 • č       |
|                                                                                                                                                                                                                                      |                                                |                    | 12°3<br>0°0<br>12°3                             | 1 2 • 3<br>1 2 • 3                            | 10.1.0          |
| 76.5                                                                                                                                                                                                                                 | 76.U<br>76.0                                   |                    | 716°7<br>0°1<br>710°7                           | 746.7<br>785.7                                | d56 • t         |
| DISTRICT 1<br>PIPE-LIMÉ<br>MARINE<br>DISTRICT 2<br>PIPE-LIME<br>MARINE<br>MARINE<br>DISTRICT 4<br>DISTRICT 4<br>DISTRICT 4<br>DISTRICT 4<br>DISTRICT 4<br>DISTRICT 4<br>DISTRICT 5<br>PIPE-LIME<br>MARINE<br>DISTRICT 5<br>PIPE-LIME | TOTAL DOMESTIC RÉCEIPTS<br>PIPÉ-LINE<br>Marine | DOMESTIC SHIPHENTS | FOREJGN INPJFTS/~EXPOPTS<br>Pipe-Line<br>Marine | TOTAL SUPPLY MOVEMENTS<br>PIPE-LINE<br>Marine | DISTRICT DE4AND |

u.S. 79.8 C•U 733•B 533.2 613.6 79.8 013.6 733.8 PETROLEUM ADMINSTRATION FOR DEFENSE DISTRICIS (PAD) PEFINING INDUSTAY MODEL - 1974 VALIDATION CASE 2 1 1 1 14°6 14.6 135.4 14.6 14.6 9. 0. T. TRANSPORTATION SYCHEMS CENTER SUPPLY DEMAND HALANCE BY PRODUCT \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* .4 8 8 8 8 8 8 17.J 3 179.8 74.0 1203 000 1203 12.3 ~ 37.7 12.3 (040W) 79°6 4.97 0°C 76637 796.7 -63.3 4.67 79°A 786.7 706.5 INTER-PAD MOVENENTS FROM .. FOREIGN IMPDUTS/-EXPOUTS PIPE-LINE Marine TOTAL DOMESTIC RECEIPTS PIPE-LINE MARINE TOTAL SUPPLY NOVEMENTS REFINERY OUTPUT DOMESTIC SHIPMENTS LO SULFUP NJ. 6 DISTRICT 1 PIPE=LINE MARINE DISTPICE 2 PIPE-LINE MAPINE DISTRICT 4 PIPE-LINE MARINE DISTRICT 5 PIPE-LINE Marine DISTRICT 3 PIPE-LINE PIPE-LINE MARINE **JNI SAM** SECTTON 4. 15

1267.6

20:00

17.3

160.0

103.6

85C • C

DISTRICT DEMAND

|                                                      |                       |             |                                                     | U.S. | 216.0           |                           |            |           |            |           |           |        |            |           |          |                     |   |                                                |                    |                                       |        |                          | -                                                    |          | 210.0           |
|------------------------------------------------------|-----------------------|-------------|-----------------------------------------------------|------|-----------------|---------------------------|------------|-----------|------------|-----------|-----------|--------|------------|-----------|----------|---------------------|---|------------------------------------------------|--------------------|---------------------------------------|--------|--------------------------|------------------------------------------------------|----------|-----------------|
| 111                                                  |                       |             | P A D )                                             | U.S  | 51              |                           |            |           |            |           |           |        |            |           |          |                     | e |                                                |                    |                                       |        |                          |                                                      |          | 21.             |
| TON CAS                                              |                       |             | PICTS (                                             | 5    | 4.61            |                           |            |           |            |           |           |        |            |           |          |                     |   |                                                |                    |                                       |        |                          |                                                      |          | 4+61            |
| SYSTEMS CTHEER<br>- 1974 VALIDATION CASE             | BY PPDDUCT            |             | DEFENSE UISI                                        | .+.  | 1 • 3           |                           |            |           |            |           |           |        |            |           |          |                     |   |                                                |                    |                                       |        |                          |                                                      |          | 1.3             |
|                                                      | SUPPLY DEMAND JALANCE |             | PETFOLEUM ADMINSTRATION FOR DEFENSE UISTRICTS (PAD) | £    | 122.4           |                           |            |           |            |           |           |        |            |           |          |                     |   |                                                | -                  |                                       |        |                          |                                                      |          | 122.4           |
| ). (). (). TRANSPORTATION<br>SEFTHING INDUSTRY MOHEL | SUPPLY DEMA           |             | FUN ADMINS                                          |      | 32.9            |                           |            |           |            |           |           |        |            |           |          |                     |   |                                                | •                  |                                       |        |                          |                                                      |          | 32.9            |
| ) * (<br>5 *E                                        |                       | (Udù4)      | PE T+ 01                                            |      | 34.5            |                           |            |           |            |           |           |        |            |           |          |                     |   |                                                |                    |                                       |        |                          |                                                      |          | 39 ° 5          |
| SECTION A. 16                                        | -                     | LUBE STOCKS | 9                                                   |      | REFINERY DUTPUT | INTER-PAD MOVEMENTS FRO4. | DISTRICT 1 | PIPE-LINE | DISTRICT 2 | PIPE-LINE | DIDIALO S | PARINE | DISTRICT 4 | PIPE-LINE | DISTRICT | PIPE-LINE<br>MARINE |   | TOTAL DOMESTIC RECEIPIS<br>PIPE-LINë<br>Marine | NOVĖSTIG SHIPHĒNTS | FOREIGN IMPORIS/+EXPORIS<br>PIPE-LINE | MAPINE | TOTAL SHOPS A DUCK TOTAL | PIPELLINE<br>MANANANANANANANANANANANANANANANANANANAN | L'AT LUC | OISTRICT DEMAND |

,

|                                        |                         |                                  |                       | 10                                                  | U.S.   | 424.9                 |                          |          |                     |                         |                         |        |                         |                      |           |                                      |                               |                                                 |                                     |        | 40.4° 0         |
|----------------------------------------|-------------------------|----------------------------------|-----------------------|-----------------------------------------------------|--------|-----------------------|--------------------------|----------|---------------------|-------------------------|-------------------------|--------|-------------------------|----------------------|-----------|--------------------------------------|-------------------------------|-------------------------------------------------|-------------------------------------|--------|-----------------|
| 2                                      | ATION CASE              |                                  |                       | STRICTS (PAI                                        | 5      | 6, 19                 |                          |          |                     |                         |                         |        |                         |                      |           |                                      |                               |                                                 |                                     |        | 67 . )          |
| STERS CLAT                             | - 1974 VALINATION CASE  | BY PRODUCT                       |                       | DEFENSE DI                                          | +      | 29. ]                 |                          |          |                     |                         |                         |        |                         |                      |           |                                      |                               |                                                 |                                     |        | ۰<br>۳<br>۲     |
| 0. 0. T. THANSPOPTATION SYSTEMS CINTER |                         | SUPPLY DEMAND BALANCE BY PRODUCT |                       | PETROLFUM ADMINSTRATION FOR DEFENSE DISTRICTS (PAD) | ۳<br>۳ |                       |                          |          |                     |                         |                         |        |                         |                      |           |                                      |                               |                                                 |                                     |        | 1 5             |
| . T. THANSI                            | REFINING INDUSTRY MODEL | SUPPLY DEMAND                    |                       | FUM ADMINS                                          | 2      | 1<br>1<br>2<br>2<br>2 |                          |          |                     |                         |                         |        |                         |                      |           |                                      |                               |                                                 |                                     |        | 1340 8          |
| •0                                     | RE FI                   |                                  | (Odew)                | PETROL                                              | **     | 2 ° 2<br>2 S          |                          |          |                     |                         |                         |        |                         |                      |           |                                      |                               |                                                 |                                     |        | ي د د.          |
| SECTION A. 17                          |                         |                                  | ASPHALT AND POAD OILS |                                                     |        | REFINERY OUTPUT       | INTER-PAD MOVÉMENTS FROM | DISTRICT | PIPE-LINE<br>Marine | DISTRICT 2<br>DIDE-11NE | DISTRICT 3<br>PIPE-LINE | MARINE | DISTPICT 4<br>PIPE-LINE | MARINE<br>DISTRICI 5 | PIPE-LINE | TOTAL DOMESTIC RECEIPTS<br>PIPE-LINE | MAKINE<br>Dove Stil Shidhenis | FOPEIGN IMPOPTS/=EXPORTS<br>PIPE-LINE<br>Maring | TOTAL SUPPLY MOVEMENTS<br>PIPS-LING | JNIOTH | OFSTPICT DEFEND |

| a                                                | 0°J      | T. TRANSPO              | DRTATION S   | D. J. I. TRAMSPORTATION SYSTEMS GENTER | 2                                                   | 7    |
|--------------------------------------------------|----------|-------------------------|--------------|----------------------------------------|-----------------------------------------------------|------|
| SECTION A. 10                                    | 4EFI 4   | REFLAING INDUSTRY APPEL | א אניחפון -  | 1474 VALIDATTON CASE                   | ATTON CASE                                          |      |
|                                                  | 6        | SUPPLY BEMAND JALANGE   | NO JALANGE   | BY PPODUCT                             |                                                     |      |
| COKE (LO SULFUR)                                 | (1484)   |                         |              |                                        |                                                     |      |
|                                                  | PF Lours | UM ADMINST              | ATION FOP    | DEFENSE DI                             | PETPOLEUM ADMINSTRATION FOP DEFENSE DISTRICTS (PAD) |      |
|                                                  | -        | 2                       | ~            | + 0                                    | 5                                                   | U.S. |
| REFINERY OUTPUT                                  | 1        |                         | ता<br>- २    | 4 0                                    | 1.04                                                |      |
| INTER-PAD HOVENENTS FROM                         |          |                         |              |                                        |                                                     |      |
| DISTRICT 1                                       |          |                         |              |                                        |                                                     |      |
| PIPE+LINE<br>MARINE                              |          |                         |              |                                        |                                                     |      |
| DISTRICT 2<br>PIPE-LINE                          |          |                         |              |                                        |                                                     |      |
| MARINE<br>DISTRICT 3                             |          | •                       |              |                                        |                                                     |      |
| PIP2+LINE<br>MAPINE                              |          |                         |              |                                        |                                                     |      |
| DISTRICT 4<br>PIPE-LINE                          |          |                         |              |                                        |                                                     |      |
| MARINE<br>DISTRICT 5                             |          |                         |              |                                        |                                                     |      |
| PIPE-LINE<br>Marine                              |          |                         |              |                                        |                                                     |      |
| TOTAL DOMESTIC RECEIPTS<br>PIPE-LINE<br>Marine   |          |                         |              |                                        |                                                     |      |
| JONESTIC SHIPHENTS                               |          |                         |              |                                        |                                                     |      |
| FOREIGN IMPJPIS/-EXPORIS<br>BIL-EALINE<br>MADINE |          |                         |              |                                        |                                                     |      |
| JANSTANIS                                        |          |                         |              |                                        |                                                     |      |
| TOTAL SUPPLY MOVERENTS<br>PIPF-LINE<br>Marine    |          |                         |              |                                        |                                                     |      |
|                                                  |          |                         | -            |                                        |                                                     |      |
| ~                                                |          |                         |              |                                        |                                                     |      |
| <b>UISTATCE DE4AND</b>                           |          |                         | \$<br>•<br>0 | •1                                     | 1.4                                                 | 6°9  |

|                                     | 1 SE                    |                                  |                  | (PAD)                                               | 5 U.S. |                 |                           |            |                      |                         |        |                         |        |            |        |                   |                     |                                                |                    |                                                 |                                               | и.<br>9<br>С   |
|-------------------------------------|-------------------------|----------------------------------|------------------|-----------------------------------------------------|--------|-----------------|---------------------------|------------|----------------------|-------------------------|--------|-------------------------|--------|------------|--------|-------------------|---------------------|------------------------------------------------|--------------------|-------------------------------------------------|-----------------------------------------------|----------------|
| O. T. TRANSPORTATION SYSTEMS CENTER | - 1974 VALIDATION CASE  | SUPPLY DEMAND NALANCE NY PRODUCT |                  | PETROLĜUM ADMINSTRATION FOR DËFËMSË DISTRICIS (PAD) |        |                 |                           |            |                      |                         |        |                         |        |            |        |                   |                     |                                                |                    |                                                 |                                               | *<br>•<br>0:   |
| PORTATION S                         |                         | AND BALANCE                      |                  | TRATION FOH                                         | 2      | 19•3            |                           |            |                      |                         |        |                         |        |            |        |                   |                     |                                                |                    |                                                 |                                               | 0 + £ +        |
| . T. TPANS                          | FFFINING INDUSTRY MUDEL | SUPPLY DEM                       |                  | CUM ADMINS                                          | 2      |                 |                           |            |                      |                         |        |                         |        |            |        |                   |                     |                                                |                    |                                                 |                                               | 29.2           |
| u• 0                                | 555                     |                                  | (เปยพ)           | PETROL                                              | F      |                 |                           |            |                      |                         |        |                         |        |            |        |                   |                     |                                                |                    |                                                 |                                               |                |
|                                     | SECTION A. 19           |                                  | COKE (HI SULFUR) |                                                     |        | REFINERY OUTPUT | INTER-PAD MOVENENTS FPD4. | OISTRICT 1 | MIPE -LINE<br>MARINE | DISTRICT 2<br>PIPE-LINE | MARINE | DISTRICT 3<br>PIPE-LINE | MARINE | DISTRICT 4 | MARINE | <b>DISTRICT 5</b> | PIPE-LINE<br>Marine | TOTAL DOMESTIC RECEIPTS<br>PIPE-LINE<br>Marine | DOVESTIC SHIPHENTS | FAREIGN THPDFIS/-EXPORTS<br>PIPE-LINE<br>MARINE | TOTAL SUPPLY MOVEMENTS<br>PIPE-LINE<br>NAPINE | OHAMEU DISTRIC |

| D. C. T. TRANSPORTATION SYSTEMS CENTER<br>Refining industry model - 1974 Validation Case<br>Supply demand malance by product<br>D) | PETPOLEUM ADMINSTRATION FOR DEFINGE DISTRICTS (PAD) | 2 10.5.<br>23.9 20.9 |                          |                                                 |                                                                        |                                                                        |                                                |                    |                                                 |                                               |  |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------|--------------------------|-------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------|--------------------|-------------------------------------------------|-----------------------------------------------|--|
| Dection A. 2)<br>Rection A. 2)<br>Refinition<br>Supi<br>Supi<br>Coke (cal Crude)                                                   | 0                                                   | 1<br>PĒFINĒRY GUTPUT | INTER-PAD MOVEMENTS FROM | OISTRICT 1<br>PIPE-LINU<br>Marine<br>Oistrict 2 | PIPE-LINE<br>MARINE<br>DISTRICT 3<br>DISTRICT 3<br>PIPE-LINE<br>MAPTNF | OISTRICT 4<br>PIPE-LINE<br>HARINE<br>DISTRICT 5<br>PIPE-LINE<br>HARINE | TOTAL DOMESTIC RECEIPIS<br>PIPE-LINE<br>Marine | DOMESTIC SMIPMENTS | FOREIGN IMPOPIS/-EXPORIS<br>PIPE-LINE<br>Harine | TOTAL SUPPLY MOVEMENTS<br>PIPE-LING<br>MARINE |  |

8:0

2. .4

OISTPICT DEMARD

U. S. 23.0 PETPOLEUM ADMINSTFATION FOR DEFENSE DISTPICTS (PAD) REFINING INDUSTRY MODEL - 1974 VALIDATION CASE 1.7 9. 0. T. TRANSPORTATION SYSTEMS GENIE? SUPPLY DEMAND RALANCE BY PRODUCT .7 0 0 0 0 0 0 0 ~7 16.3 2 3.8 (MIPD) **4**78 1.8 INTER-PAD MOVENENTS FROM.. REFINERY OUTPUT DISTRICT 1 PIPE-LINE Marine SECTION A. 21 RENZENE

FARETGN TMP2PTS/-EXPORTS PIPE-LINE HAPINE TOTAL DOMESTIC RECEIPTS PIPE-LINE Marine DOMESTIC SHIPPENTS DISTAICT 2 PIPALINE MARINE DISTRICT 3 PIPE-LINE PARTNE DISTRICT 4 DISTRICT 4 DISTRICT 5 PIPE-LIME MARINE MARINE

TOTAL SUPPLY MOVEMENTS PIPE-LINE Marine

0131PICT DEMAND

1r + 3

.

1.7

23°6

U. S. ..... 35.5 PETROLEUM ADMINSTRATION FOR DEFENSE DISTRICTS (PAD) PEFINING INDUSTPY NOBEL + 197+ VALIDATION 6451 S ..... 1.4 0. 0. T. TRANSPORTATION SYSTEMS JENTER SUPPLY DEMAND RALANCE BY PRODUCT \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* .† m 27.6 ~ 2.6 ÷ (C98M) -4 0 0 0 0 0 0 0 0 0 0 1.2 INTER-PAD MOVEMENTS FPO4.. FOREIGN TMPOPTS/-EXPORTS PIPE-LINE MARINE TOTAL DOMESTIC RECEIPTS PIPE-LINE MARINE TOTAL SUPPLY HOVEMENTS PIPE-LINE Maqine REFINERY OUTPUT DOMESTIC SHIPMENTS DISTRICT 2 PIPE-LINE MARINE DISTRICT 3 PIPE-LINE MARINE DISTRICT 4 DISTRICT 1 PIPE-LINE MARINE PIPE-LINE MARINE DISTRICT 5 PIPE-LINE MARINE SECTION A. 22 TOLUENE 9 4 8 9 8 9 8 9 8 8

.

35.5

4.1

27.6

2,6

() • •

DISTRICT DEMAND

.

|                                                 | C °U     | Shbar .T .              | 0. T. TPANSPORTATION SYSTEMS GENTER | STEMS CENTER                                        |       |
|-------------------------------------------------|----------|-------------------------|-------------------------------------|-----------------------------------------------------|-------|
| ECTIV A. 23                                     | REFI     | REFLAING TUNUSTRY MODEL |                                     | 1974 VALIDATION CASE                                |       |
|                                                 |          | SUPPLY DEM              | SUPPLY DEMAND GALANCE               | 10f.Cod AB                                          |       |
| MIXED XALENES                                   | (Caum)   |                         | }                                   |                                                     |       |
|                                                 | PF. TROL | EUN ADMINS              | TRATION FOR                         | PETROLEUM ADMINSTRATION FOR DEFENSE DISTRICTS (PAD) | (U)   |
|                                                 |          | 2                       | 47                                  | -2-                                                 | n• S• |
| REFINEPY OUTPUT                                 | ۍ<br>۲   | 5 • 2                   | 23.0                                | ~                                                   | m     |
| THTER-PAD MOVEMENTS FROM                        |          |                         |                                     |                                                     |       |
| DISTRICT 1<br>PIPE-LINE                         |          |                         |                                     |                                                     |       |
| MARINE<br>DISTRIGT 2<br>PIPE-LINE               |          |                         |                                     |                                                     |       |
| MARIHE<br>DISTAICT 3<br>DIDELIINE               |          |                         |                                     |                                                     |       |
| MACINE<br>MISTRICT 4                            |          |                         |                                     |                                                     |       |
| PIPE-LINE<br>MARINE                             |          |                         |                                     |                                                     |       |
| DISTPICT 5<br>PIPE-LINE<br>MARINE               |          |                         |                                     |                                                     |       |
| TOTAL DOMESTIC RECEIPTS<br>PIPE-LINE<br>Haring  |          |                         |                                     |                                                     |       |
| DOMESTIC SHIPMENTS                              |          |                         |                                     |                                                     |       |
| FOREIGN IMPORTS/-EXPORTS<br>PIPE-LINE<br>Marine |          |                         |                                     |                                                     |       |
| TOTAL SUPPLY MOVEMENTS<br>PIPE-LINE<br>Marine   |          | · ·                     |                                     |                                                     |       |
| OTSTPICT DEMAND                                 | 0        | 5                       | 0.02                                | ~                                                   | 7 . 7 |
|                                                 | •        | 246                     | C 70L                               | 2 <b>0</b> 1                                        | 1000  |

|                                                                                          |                                  | (0)                                                 | n• 5.   | 164+1           |                          |            |                     |            |                     |            |           |        |                         |        |                   |                     |                                                  |                     |                                                   |                        |                      | 104.1                  |
|------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------|---------|-----------------|--------------------------|------------|---------------------|------------|---------------------|------------|-----------|--------|-------------------------|--------|-------------------|---------------------|--------------------------------------------------|---------------------|---------------------------------------------------|------------------------|----------------------|------------------------|
| D. J. I. TPANSPOPTATION SYSTEMS GUNTER<br>Pefiuing industry honel - 1974 valijation Case | SUPPLY DEMAND BALANCE RY PROUNCT | PETROLEUM ADMINSTRATION FOR DEFENSE DISTRICTS (PAD) | .+      |                 |                          |            |                     |            |                     |            |           |        | ,                       |        |                   |                     |                                                  |                     |                                                   |                        |                      | 5° 7                   |
| SPOPTATION S<br>STRY HONEL -                                                             | MAND BALANCE                     | STRATION FOR                                        | P) (    |                 |                          |            |                     |            |                     |            |           |        |                         |        |                   |                     |                                                  |                     |                                                   |                        |                      | 40.24                  |
| N. J. I. TPANSPOPTATION<br>P€FI4ING INDUSTRY HONGL                                       | SUPPLY DEMAN                     | OLEUM ADMIN                                         | 2       |                 |                          |            |                     |            |                     |            |           |        |                         |        |                   |                     |                                                  |                     |                                                   |                        |                      | 4 F. 4                 |
| b c                                                                                      | (14840)                          | PETR                                                | 41<br>1 | 11 • 9          | 0<br>9                   |            |                     |            |                     |            |           |        |                         |        |                   |                     |                                                  |                     |                                                   |                        |                      | 2,11                   |
| Section &. 24                                                                            | MISC. PRODUCIS                   |                                                     |         | REFINERY OUTPUT | INTER-PAD MOVENENTS FROM | DISTRICT 1 | PIPE-LINE<br>Marine | DISTRICT 2 | PIPE-LINE<br>MADIAE | DISTRICE 3 | PIPE-LINE | MARINE | DISTRICT 4<br>PIPE-LINE | MARINE | <b>DISTRICT 5</b> | PIPE-LINE<br>Marine | TOTAL DOMESTIC RECEIPTS '<br>PIPE-LINE<br>Marine | DOME STIC SHIPMENTS | . FOREIGN INPORIS/-EXPORIS<br>PIPE-LINE<br>Marine | TOTAL SUPPLY MOVEHENTS | PIP5-LINE<br>1221115 | <b>DISTRICT DEWARD</b> |

| • |  |  |
|---|--|--|
| - |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |

SECTION A. 25

1. J. T. TRANSPORTATION SYSTEMS NEWLER

REFINENCE INDUSTRY MODEL - 1974 VALIDATION CASE Case 1-

|                      |                                       | ď                                       | • A. O. OIST                            | OISTRICT           |                                         |              |          |                                           |         |
|----------------------|---------------------------------------|-----------------------------------------|-----------------------------------------|--------------------|-----------------------------------------|--------------|----------|-------------------------------------------|---------|
|                      |                                       | F                                       | ope                                     | of barrels per cal | calendar day <sup>(2)</sup>             |              |          |                                           |         |
|                      | -1                                    | 2                                       | m                                       |                    | ſ                                       | 0.S.U        | I MPORT  | EXPORT                                    | TOTAL   |
|                      |                                       |                                         |                                         |                    |                                         |              |          |                                           |         |
|                      |                                       |                                         |                                         | 1                  |                                         | 2<br>        |          |                                           | P 0 - P |
| SMEET CRUDE          |                                       | 10.00                                   | 20100                                   | 5° 47              | 1 *r 7 G                                | 0 - 0 - 0    | (Hete 1) |                                           |         |
| SOUR JAUPE           | 1 % jC • U                            | 21-43-15                                | 1141.6                                  | 5 • CP S           |                                         | 1040°4       |          |                                           | 10404   |
| CALTE CRUDE          |                                       |                                         |                                         |                    | 240003                                  | 14:1•0       |          |                                           | 1400.0  |
| ALASKAN CPUCE        |                                       |                                         | 4<br>5                                  |                    |                                         |              |          |                                           |         |
| NATUPAL GASOLINE     | 14.9                                  | 6°°9                                    | 133.5                                   | 22 .7              | 20.2                                    | 202 °E       |          |                                           | 242.5   |
| NOPMAL BUTANE        | 6°9                                   | 2<br>7<br>8<br>8<br>8                   | 54.0<br>5.1<br>7                        | 3.5                | 20°0<br>0'0                             | 139.1        | Å        |                                           | 109.8   |
|                      | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                                         |                                         |                    |                                         |              |          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |         |
| TOTAL INPUT          | 0                                     | 5                                       | ę,                                      | 5 60 ° 0           | ~                                       | , <b>1</b> 4 |          |                                           | 130+1.6 |
| 0017P1JT             |                                       |                                         |                                         |                    | -                                       |              |          |                                           |         |
|                      | i                                     |                                         |                                         |                    | :                                       |              |          |                                           |         |
| C3 (P3               | 54.6                                  | 6.67                                    | 50°E                                    | 2<br>9<br>9        | 6.3.5                                   | 214.0        |          |                                           | C14.0   |
|                      | 14.1                                  | 11.9                                    | 3°71                                    | 1.0                | ŝu                                      |              | ,        |                                           | 000     |
| NAPH THA             |                                       | 24.1                                    | 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4<br>1<br>1        | 0 ° 0 ° 1 ° 1 ° 1 ° 1 ° 1 ° 1 ° 1 ° 1 ° | 2°501        |          |                                           | 20101   |
| PEGULAR GASOLINE     | 6.212                                 | 7 2 1 • 4                               | 0.54/                                   | 0.11               | 0 • P / 7                               | 1.22.13      |          |                                           | C12301  |
| PREMIUM GASOLINE     | 128.6                                 | 513.1                                   | 285.3                                   | 55 • 6             | 135.6                                   | 16 45 . 6    |          |                                           | 1845.5  |
| LOW LEAD GASOLINE    | 223.7                                 | 356°5                                   | 632.0                                   | 76.4               | 259.1                                   | 1647.7       |          |                                           | 100 /.1 |
| LEAD FREE GASOLINE   | 249.2                                 | 305°4                                   | 196.2                                   | 10.4               | 51 2º 5                                 | 2/45.4       |          |                                           | 1/45.4  |
| JP-4 JET FUEL        | 7.7                                   | 46.el                                   | 67.8                                    | 18.2               | 4200                                    | 191.2        |          |                                           | 101.2   |
| JET A JET FUEL       | 47.3                                  | 177.4                                   | 473.6                                   | 25 °C              | 22403                                   | 947°0        |          |                                           | 947.0   |
| DIESEL               | 35°6                                  | 232 • 3                                 | 552°1                                   | 133.9              | 11 3.2                                  | 1127.6       |          |                                           | 1127.0  |
| NO. 2 FUEL OIL       | 265 <b>.1</b>                         | 566°4                                   | 835°1                                   | 2.74               | 13.5                                    | 1784.3       | 2.05     |                                           | 193591  |
| HI SULFUP NO. 6      | 53.3                                  | F 7 .7                                  | 176.0                                   | 17.6               | 135.4                                   | 523.4        | 737.6    |                                           | 12010   |
| LU SULFUF NU. 6      | 63.5                                  | 87.1                                    | 17 9.0                                  | 1/ • 0             | 133.4                                   | 5.1.5        | 135.0    |                                           | 126/01  |
|                      | 39.5                                  | 37.43                                   | 122.8                                   | 1 • 5              | 13.4                                    | 216.6        |          |                                           | 210.0   |
| ASPHALT AND ROAD OIL | 58°3                                  | 134 • B                                 | 134.3                                   | 29°0               | 67.9                                    | 414 ° 9      |          |                                           | 424.3   |
| FORE (LO SULFU?)     |                                       |                                         | 5 ° C                                   | •1                 | 1 . 4                                   | 6°4          |          |                                           | 6.4     |
| COKE (HI SULFU?)     | 5.9                                   | 25 °2                                   | •                                       | 2°3                |                                         | 52°3         |          |                                           | 52°3    |
| COKE (CAL CRUDE)     |                                       |                                         |                                         |                    | 2.3.9                                   | 21.9         |          |                                           | 20.3    |
| BENZENE              | 1 • 8                                 | 3.5                                     | 15.3                                    |                    | 1.7                                     | 23.6         |          |                                           | 23°5    |
| TOLUS                | 1.2                                   | 2 e f.                                  | 27.6                                    |                    | 4.1                                     | 32°5         |          |                                           | 35.3    |
| MIXEO XYLENES        | 6.                                    | 5.5                                     | 24.6                                    |                    | 3.0 13                                  | 34 .7        |          |                                           | 38.7    |
| MISC. PRODUCTS       | 11.9                                  | 10 2 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 42.4                                    |                    | 6.5<br>                                 | 1 14 .1      |          |                                           | 1.411   |
| TUSTAL OUTPUT        | 110                                   | 15                                      | 1 12                                    | 5                  | Ŧ.                                      | · · · ·      | 1522.1   |                                           | 14566.7 |
| OUTPUT/INFUT, PCT    | 1,3,1                                 | 10.15                                   | 97°3                                    | 5°66               | 1.1.7                                   | غره ۵٬۴      |          |                                           | 111.2   |

Note 1.-- Model does not currently define sources of the sweet and sour crudes as to domestic and imported. 2.-- Petroleum coke is reported in millions of pounds per day.

|                                  |                  |          | 10101010                  | DEMAND                                                                                      | 54.6                          | 19.1                          |                                | 751.9                                   | 128°6                                   | 915°7                                    | 363. B                                    | 42.8                                 | 386.0                                 | 134.0                         | 1070.0                                |
|----------------------------------|------------------|----------|---------------------------|---------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|--------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|-------------------------------------------|--------------------------------------|---------------------------------------|-------------------------------|---------------------------------------|
|                                  |                  |          | 01010101                  |                                                                                             | 5<br>4<br>6                   | 19.1                          |                                | 212.9                                   | 128.6                                   | 223.7                                    | 249.2                                     | 1.1                                  | 47.0                                  | 95 • 6                        | 265•1                                 |
|                                  |                  |          | TOTAL                     | MOVEMENTS                                                                                   |                               |                               |                                | 539.0<br>539.0                          |                                         | 692.0<br>692.0                           | 114°6<br>114°6                            | 35°1<br>13°6<br>21°5                 | 339.J                                 | 17204<br>17204                | 804.9<br>663.1<br>141.8               |
|                                  |                  |          | THOODY                    | /-Export                                                                                    |                               |                               |                                |                                         |                                         |                                          |                                           |                                      |                                       |                               | 50.7<br>50.7                          |
| GENTE?<br>Validation Case        | PICT             |          | TOTAL                     |                                                                                             |                               |                               |                                | 539°6                                   |                                         | 692.0<br>6 <b>9</b> 2.0                  | 114°E<br>114°E                            | 53°1<br>13°6<br>21°5                 | 339°U<br>339°U                        | 172.4                         | 754.2                                 |
| SYSTEMS GENTER<br>- 1974 VALIDAT | ANCE BY DISTRICT |          |                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                |                               |                               | 、                              |                                         |                                         |                                          | 21 • 1<br>2 1• 1                          |                                      |                                       |                               |                                       |
|                                  | DEMAND BALANCE   |          | FIPTS FROM                | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                             |                               |                               |                                |                                         |                                         |                                          |                                           |                                      |                                       |                               |                                       |
| ۲.                               | SUPPLY           |          | INTEM-STATE RECEIPTS FROM | 0<br>0<br>0<br>0<br>0                                                                       |                               |                               |                                | 539°ť<br>539°ť                          |                                         | 692.(<br>692.0                           | 93°5<br>93°5                              | 21.5<br>21.5                         | 339 ° U<br>339 ° ů                    | 172.4                         | 6.47.8<br>546.7<br>91.1               |
| 0, 0.<br>Refini                  | ٠                |          | E INT                     | 2                                                                                           |                               |                               |                                |                                         |                                         |                                          | د                                         | 130E                                 |                                       |                               | Сб. t<br>Л f . <u>1</u>               |
|                                  |                  |          |                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                               |                               |                                |                                         |                                         |                                          |                                           |                                      |                                       |                               |                                       |
| SECTION B. 1                     |                  | DISTRICT |                           |                                                                                             | C3 LPG<br>PIPE+LINE<br>MAPTNE | G4 LPG<br>PIPE-LIME<br>MAQIVE | NAPMTHA<br>PIPE-LINE<br>MARINE | REGULAR GASOLINE<br>PIPE-LINE<br>Marine | PREMIUM GASOLINE<br>PIPE-LINE<br>Mapine | LOW LEAD GASOLINÉ<br>PIPE-LINÉ<br>Mariné | LFAD FZEF GASOLINE<br>PIPF-LINE<br>Marine | JP-4 JET FUEL<br>PIPE-LINE<br>MAQINE | JET A JET FUEL<br>PIPE-LINE<br>MAPIVE | DIESEL<br>PIPE-LIHE<br>MAVINE | NO. ? FUEL OIL<br>Pipe-Line<br>Mapine |

|                                                                                          |                                   | DISTRICT<br>DEMAND                   | 85 J. C |                     | 85 ú • O        |                       | 39.5                               | 50.9                                        |                                         | 5° 9                                    |                                         | 1.8                            | 1.2                            | б <sup>.</sup> °                     | 11.9 | 5686.6                               |
|------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------|---------|---------------------|-----------------|-----------------------|------------------------------------|---------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------|--------------------------------|--------------------------------------|------|--------------------------------------|
|                                                                                          |                                   | 01 STRICT<br>OUTPUT                  | 63.3    |                     | 63°3            |                       | 39°5                               | 58°9                                        |                                         | б°<br>и                                 |                                         | 1.8                            | 1 • 2                          | 6°                                   | 11.9 |                                      |
|                                                                                          |                                   | TOTAL<br>MOVEMENTS                   | 786.7   | 786.7               | 786.7           | 786.7                 |                                    |                                             |                                         |                                         |                                         |                                |                                |                                      |      |                                      |
|                                                                                          |                                   | IMPORT<br>/-Export                   | 710.7   | 710.7               | 706.9           | 706.9                 |                                    |                                             |                                         |                                         |                                         |                                |                                |                                      |      | 1465+3<br>1465+3<br>1465+3           |
| -220 NCI                                                                                 |                                   | TOTAL                                | 76.6    | 76.5                | 19.8            | 79.8                  |                                    |                                             |                                         |                                         |                                         |                                |                                |                                      |      |                                      |
| D. D. T. TPANSPORIATION SYSTERS CERTER<br>Refermed industry model - 1974 validation CASE | SUPPLY DEMAND RALANCE BY DISTALGT | INTEP-STATE RECEIPTS FROM<br>2 3 4 5 | 76.6    | 76. ú               | 8°64            | 79.8                  |                                    |                                             |                                         |                                         |                                         |                                | ,                              |                                      |      | 2/                                   |
| SECTION 4. 2                                                                             | DISTRICT                          | 7                                    | Q       | PIPE-LINE<br>Marine | LO SULFUR NO. 6 | 717E - LINE<br>MARINE | LUBE STJCKS<br>PIPE-LINE<br>Mariye | ASPHALT AND ROAD OIL<br>Pipe-line<br>Marine | COKE (LO SULFUR)<br>PIPE-LINE<br>Marine | COKE (HI SULFUR)<br>PIPE-LIPE<br>MAPINE | COKE (CAL CRUDE)<br>PIPE-LINE<br>MARINÉ | BENZENE<br>PIPE-LINE<br>MAPINE | TOLUFNE<br>PIPE+LING<br>MAFINE | MIXEN XVLFFS<br>PIPE-LINE<br>P.APINE |      | TOTAL TYPELIC<br>PICE-LICE<br>PAULYS |

•

|                                                                        |                     |            | DISTRICT<br>DEHAND | 79°6                          | 17.9                          | 29°1                           | 1035.0                                  | 544.7                                   | 356°5                                    | 312.8                                    | 31.5                                 | 202.0                                 | 190.0                         | 500.0                                 |
|------------------------------------------------------------------------|---------------------|------------|--------------------|-------------------------------|-------------------------------|--------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------|---------------------------------------|-------------------------------|---------------------------------------|
|                                                                        |                     |            | DISTRICT<br>OUTPUT | 79.6                          | 17.9                          | 29.1                           | 820.4                                   | 519.1                                   | 356°5                                    | 308°4                                    | 45 e 1                               | 177.4                                 | 232.3                         | 560 °4                                |
|                                                                        |                     |            | TOTAL<br>HOVEHENTS |                               |                               |                                | 21406<br>21406                          | 25.6<br>25.6                            |                                          | 2 • 2<br>2 • 2<br>2                      |                                      | 24.6<br>24.6                          | 147 • 7<br>147 • 7            |                                       |
|                                                                        |                     |            | THPORT<br>/-EXPORT |                               |                               |                                | ,                                       |                                         |                                          |                                          |                                      |                                       |                               |                                       |
| ء<br>TIDN CASE                                                         | TRICT               |            | TOFAL<br>DOVESTIC  |                               |                               |                                | 214°E<br>214°E                          | 25° ć<br>25° ć                          |                                          | 1 0 2<br>1 0 2<br>1                      |                                      | 240E<br>240E                          | 147°7<br>147°7                |                                       |
| TPANSPORTAFION SYSILMS GENTE?<br>Industry Model - 197+ Validation Case | BALANCE BY DISTRICT |            | 5                  |                               |                               |                                |                                         |                                         |                                          |                                          |                                      |                                       |                               |                                       |
|                                                                        | <b>DEMAND</b>       | NOCO STOLO |                    |                               |                               |                                |                                         | 25°6<br>25°6                            |                                          | 202<br>202<br>2                          |                                      |                                       |                               |                                       |
| 1.                                                                     | Y JPPL Y            |            |                    |                               |                               |                                | 214.E<br>214.6                          |                                         |                                          |                                          |                                      | 24 ° 6<br>24 ° E                      | 1 ~ 7 ~ 7<br>1 4 7 ~ 7        |                                       |
| D, 7.                                                                  | ·                   |            |                    |                               |                               |                                |                                         |                                         |                                          |                                          |                                      |                                       |                               |                                       |
|                                                                        |                     | 2          |                    |                               |                               |                                |                                         |                                         |                                          |                                          |                                      |                                       |                               |                                       |
| SECTION 9. 3                                                           |                     | DISTRICT   |                    | C3 LPG<br>PIPE-LIHE<br>Mapine | C4 LPG<br>PIPE-LINE<br>MAPINE | NAPHTHA<br>PIPE-LINE<br>Marine | REGULA? GASOLINE<br>PIPE-LINE<br>MARINE | PREMIUM GASOLINE<br>PIPE-LINE<br>Marine | LOW LEAD GASOLINE<br>PIPE-LINE<br>MAPINE | LEAD FRE GASOLINE<br>PIPE-LINE<br>Marine | JP-4 JEI FUEL<br>PIPE-LINE<br>MAPINE | JET & JET FUEL<br>PIPE-LINE<br>Hapine | DIESEL<br>PIPE-LINE<br>MAPINE | NO. 2 FUEL OIL<br>PIPE-LINE<br>MAPINE |

0. 0. T. THANSPORTATION SYSTEMS CENTER

| DISTRICT<br>DEMAND                                                                            | 4 5 ° 0                      | 13°4                          | 4<br>5<br>0                   |                                         | 285.3                                   |                                          | 71.7.7                                    | 4 6 ° 2                              | 110.0                                 | 116.0                         | 124°C                                 |
|-----------------------------------------------------------------------------------------------|------------------------------|-------------------------------|-------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|-------------------------------------------|--------------------------------------|---------------------------------------|-------------------------------|---------------------------------------|
| DISTRICT                                                                                      | 4° E • 0                     | 23.4                          | 45.5                          | 753.6                                   | 265.3                                   | 692 • Û                                  | 796.2                                     | 67.8                                 | 473.6                                 | 552.1                         | A35.a1                                |
| TOTAL                                                                                         |                              |                               |                               |                                         |                                         |                                          | 15•3<br>15•0                              |                                      |                                       |                               |                                       |
| I HP 0KT<br>                                                                                  |                              |                               |                               |                                         |                                         |                                          |                                           |                                      |                                       |                               |                                       |
| GENIE?<br>ALIDATION CASE<br>Y DISTRIGY<br>TOTAL                                               |                              |                               |                               |                                         |                                         |                                          | 15°L<br>15°0                              |                                      |                                       |                               |                                       |
| 51645<br>1974 V<br>ANCF 9                                                                     |                              |                               |                               |                                         |                                         |                                          |                                           |                                      |                                       |                               |                                       |
| C 1 0 4 1                                                                                     |                              |                               |                               |                                         |                                         |                                          | 4 5 6<br>1 5 6<br>1 5 6 6                 |                                      |                                       |                               |                                       |
| D. J. T. TPANSPOPTATION<br>REFINING INJUSTRY MODEL<br>Supply Demann<br>INTER-STATE RECETPTS F |                              |                               |                               |                                         |                                         |                                          |                                           |                                      |                                       |                               |                                       |
|                                                                                               |                              |                               |                               |                                         |                                         |                                          |                                           |                                      |                                       |                               |                                       |
| m                                                                                             |                              |                               |                               |                                         |                                         |                                          |                                           |                                      |                                       |                               |                                       |
| SECTION A. 5<br>nistrict                                                                      | : LPG<br>PIPE-LINE<br>Marine | , LPG<br>PIPE -LINE<br>MAPINE | APHTMA<br>PIPF-LINE<br>MARINE | REGULÂR GASOLINE<br>PIPE-LINE<br>Maqine | PREMIUM GASOLINE<br>PIPE-LINE<br>Maqine | LOW LEAD GASJLINE<br>Pipe-line<br>Mapine | LEAD FREE GASOLINE<br>PIPE-LINE<br>Mapine | JP-4 JET FWEL<br>PIPF-LINE<br>MAPIVE | JET & JET FUEL<br>PIPE-LINE<br>Marine | PIPE-LINE<br>Pipe-Line<br>Ssi | NO. 2 FUEL DIL<br>Pist-Line<br>Mavite |
| 5 <b>1</b>                                                                                    | C3 LPG<br>PIPE<br>MART       | C4 LPG<br>PIPE-<br>MAPI       | NAPHTHA<br>PIPE-I<br>MARINI   | REGUI<br>PTI<br>MAS                     | PREM<br>PI<br>MA                        | LOW I<br>PIF<br>MAF                      | LEAD<br>PII<br>Ma                         | JP-4<br>PII<br>MAi                   | JET<br>PIH<br>MAR                     | DTE SEL<br>PTPF<br>MAPT       | .VM<br>.DM                            |

| SECTION A. 6                                | 140                       | INDUSTRY NOCL - 1974 V<br>Supply Demand Ralance 9 | TATENS CONTRACTON CASE<br>1974 VALIDATION CASE<br>ANGE AV DISTRICT           | CASE     |                                           |                        |                      |                    |  |
|---------------------------------------------|---------------------------|---------------------------------------------------|------------------------------------------------------------------------------|----------|-------------------------------------------|------------------------|----------------------|--------------------|--|
|                                             |                           |                                                   | 8<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | :        |                                           |                        |                      |                    |  |
|                                             | INTER-STATE RECEIPTS FROM | TS FROM                                           |                                                                              |          |                                           | 1                      |                      |                    |  |
|                                             | e<br>e                    |                                                   | 5                                                                            | DATESTIC | IMPORT<br>/-Export<br>                    | T0TAL<br>MOVEMENTS<br> | DI STRICT<br>OU TPUT | DISTRICT<br>DEMAND |  |
| HI SULFUR NO. 6<br>PIPE-LINč<br>Maqinë      | ·                         |                                                   |                                                                              |          |                                           |                        | 176.6                | 100.0              |  |
| LO SULFUR NO. 6<br>PIPE-LINE<br>Marine      |                           |                                                   |                                                                              |          |                                           |                        | 179.8                | 100.0              |  |
| LUBE STJCKS<br>PIPE-LIME<br>MAPINE          |                           |                                                   |                                                                              |          |                                           |                        | 122.8                | 122.8              |  |
| ASPMALT AMD ROAD OIL<br>PIPE-LINE<br>Maəine |                           |                                                   |                                                                              |          |                                           |                        | 134°3                | 13403              |  |
| COKE (LO SULFUR)<br>PIPE-LIME<br>Marine     |                           |                                                   |                                                                              |          |                                           |                        | 5 ° C                | 5° 4               |  |
| COKE (HI SULFUR)<br>PIPE-LINE<br>Marine     |                           |                                                   |                                                                              |          |                                           |                        | 1A . 3               | 18.3               |  |
| COKE (CAL CKUDE)<br>PIPF-LINC<br>Maqine     |                           |                                                   |                                                                              |          |                                           |                        |                      |                    |  |
| BFNZENE<br>PIPE-LINE<br>Maping              |                           |                                                   |                                                                              |          |                                           |                        | 16.3                 | 16.3               |  |
| TOLUZNE<br>PIPE-LINE<br>MAPINE              |                           |                                                   |                                                                              |          |                                           |                        | 27.f                 | 27.6               |  |
| MIKEN XYLÉNES<br>PIPE-LINE<br>Mapine        |                           |                                                   |                                                                              |          |                                           |                        | 29°J                 | 29° L              |  |
|                                             |                           |                                                   |                                                                              |          |                                           |                        | 1 ° 1<br>1           | 4204               |  |
|                                             |                           |                                                   |                                                                              |          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 15.J                   | 5311.5               | 2699.4             |  |

0. 0. T. TPANSPORTATION SYSTEMS CONTER

| DISTRICT                                                                                                                                                                                                           | 6 • 8                         | 1.6                           |                                | 77.6                                    |                                         | 76.4                                     | 57.0                                      | 11.3                                 | 25.0                                  | 3.0                           | 41.0                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|--------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|-------------------------------------------|--------------------------------------|---------------------------------------|-------------------------------|---------------------------------------|
| DISTRICT<br>OUTPUT                                                                                                                                                                                                 | 09<br>L                       | 1.6                           |                                | 77.6                                    | 25•6                                    | 76 • 4                                   | 76.4                                      | 10.2                                 | 25 • û                                | 13.9                          | 47.2                                  |
| TOTAL<br>MOV?HENTS                                                                                                                                                                                                 |                               |                               |                                |                                         |                                         |                                          |                                           |                                      |                                       |                               |                                       |
| Тмрокт<br>1 мрокт<br>                                                                                                                                                                                              |                               | ·                             |                                | ,                                       |                                         |                                          |                                           |                                      |                                       |                               |                                       |
| -<br>ITINH CASE<br>IRICE<br>DOMESTIC                                                                                                                                                                               |                               |                               |                                |                                         |                                         |                                          |                                           |                                      |                                       |                               |                                       |
| 0. 0. T. THAUSPORTATION SYSTEMS CZNTF?<br>HEFTYLNG TNDUSTPY HOUEL - 1574 VALIDATINH CAST<br>SUPPLY NEMAND RALANCE AY DISTRICT<br>INTER-STATE RECEIPTS FPOM<br>INTER-STATE RECEIPTS FPOM<br>TOTA<br>2 3 4 5 0046STT |                               |                               |                                |                                         |                                         |                                          |                                           |                                      |                                       |                               |                                       |
| SECTION 9. 7<br>DISTRICT 4                                                                                                                                                                                         | C3 LPG<br>PIPE-LINE<br>MAPINE | C4 LPG<br>PIPE-LINE<br>Marine | NAPHTHA<br>PIPE-LINE<br>Marine | REGULAR GASOLINE<br>PIPE-LINE<br>Mapine | PREMIUM GASOLINE<br>PIPE-LINE<br>Marive | LOW LEAD GASOLINE<br>PIPE-LINE<br>Marive | LEAD FREE GASOLINE<br>PIPE-LINE<br>Magine | JP-4 JET FUEL<br>PIPE-LIME<br>MARIVE | JET A JET FUEL<br>Pipe-line<br>Marive | DIESFL<br>PIPE-LINE<br>Mapive | NO. ? FUEL OIL<br>PIPF-line<br>Mapive |

| D. J. T. TRAUSPOPTATION SYSTEMS CENTER | REFINING INDUSTRY MODEL - 1974 VALIDATION CASE | SUPPLY DEMAND BALANCE 97 DISTFICT |          |
|----------------------------------------|------------------------------------------------|-----------------------------------|----------|
|                                        |                                                |                                   | 1        |
| e c mettudas                           |                                                |                                   | DISTRICT |

|            |                      | 0157R1C7<br>06man0<br> | 17.0                                   | 17.0                                   | 1 e 3                              | 29°0                                        | • 1                                     | 2•9                                     |                                         |                                |                                |                                      |                                        | 397.1                                                                                            |
|------------|----------------------|------------------------|----------------------------------------|----------------------------------------|------------------------------------|---------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------|--------------------------------|--------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------|
|            |                      | 015781CT<br>0017PUT    | 0°21                                   | 17 ° U                                 | 1 • 3                              | 29•C                                        | • 1                                     | 2°3                                     |                                         |                                |                                |                                      |                                        |                                                                                                  |
|            |                      | TOTAL<br>MOVÊMENIS     |                                        |                                        |                                    |                                             |                                         |                                         |                                         |                                |                                |                                      |                                        | - 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                            |
|            |                      | IНРОКТ<br>/-ЕХРОХТ<br> |                                        |                                        |                                    |                                             |                                         |                                         |                                         |                                |                                |                                      |                                        | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    |
|            |                      | 10114L                 |                                        |                                        |                                    |                                             |                                         |                                         |                                         |                                |                                |                                      |                                        | 0<br>0<br>1<br>0<br>0<br>0<br>0<br>0                                                             |
|            |                      |                        |                                        |                                        |                                    |                                             |                                         |                                         |                                         |                                |                                |                                      |                                        | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                             |
|            | MOcd SIGIE           |                        |                                        |                                        |                                    |                                             |                                         |                                         |                                         |                                |                                |                                      |                                        | 0<br>0<br>0<br>0<br>0<br>0                                                                       |
|            | INTER-STATE PECEIPTS | ~                      |                                        |                                        |                                    |                                             |                                         |                                         |                                         |                                |                                |                                      |                                        | *<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 |
|            | INTE                 | 2                      |                                        |                                        |                                    |                                             |                                         |                                         |                                         |                                |                                |                                      |                                        |                                                                                                  |
| :          |                      | 1                      |                                        |                                        |                                    |                                             |                                         |                                         |                                         |                                |                                |                                      |                                        | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    |
| nISTRICT 4 |                      |                        | HI SULFUR NO. 6<br>PIPE-LINE<br>MAPINE | LO SULFUR ND. 6<br>PIPE-LINE<br>MARINE | LURE STOCKS<br>PIPE-LINE<br>MAPINE | ASPHALT AND ROAD OIL<br>PIPE-LINE<br>Marine | COKS (LO SULFUR)<br>PIPE-LINE<br>MAPINF | COKE (HI SULFUR)<br>PIPE-LINE<br>MAPINE | COKE (SAL CRUDE)<br>PIPE-LINE<br>Mapine | BFNZENE<br>PIPE-LINE<br>MARINE | TOLUENZ<br>PIPE-LINE<br>MAPTNE | MIXED XYLENES<br>PIPE+LINE<br>MAXINE | MISC. P÷ONUCTS<br>PIPE -LINF<br>MAPINE | PIPE-LINE<br>PIPE-LINE<br>MAVINE                                                                 |

| DISTRICT                                          | 28°5                          | 10.5                          | 25°5                           | 270.6                                   | 135.2                                   | 259.1                                    | 294.1                                     | 49°5                                 | 224。0                                | 0 ° 0                                                                                            | 100.0                                 |
|---------------------------------------------------|-------------------------------|-------------------------------|--------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------|
| 01STRICI<br>CUTFUT                                | 28.5                          | 10.5                          | 25°5                           | 270.6                                   | \$ 35°2                                 | 259 <b>.1</b>                            | 315.2                                     | 42 . 6                               | 224.0                                | 117.2                                                                                            | 76.5                                  |
| TOTAL<br>MOVEMENTS                                |                               |                               |                                |                                         |                                         |                                          |                                           | 6.9<br>6.3                           |                                      | 4 6 e A<br>4 6 e A                                                                               | 29°5<br>29°5                          |
| IMPORT<br>/-Export                                |                               |                               |                                |                                         |                                         |                                          |                                           | σ                                    |                                      | Ŧ                                                                                                | ú.                                    |
| GENTER<br>VALIDATTON CASE<br>BY DISTRICT<br>TOTAL |                               |                               |                                |                                         |                                         |                                          |                                           | 6 • 9<br>6 • 9                       |                                      | 2<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | ц.<br>4. •<br>С.                      |
| SY STEMS<br>- 1974<br>3ALANGE<br>- 1074           |                               |                               |                                |                                         |                                         |                                          |                                           | 6°9<br>6°9                           |                                      | 4 6° X<br>46 ° A                                                                                 | دع<br>ف رج<br>ف                       |
| 0. 0<br>REFI<br>INT<br>2                          |                               |                               |                                |                                         |                                         |                                          |                                           |                                      | `                                    |                                                                                                  | 23.3<br>23.3                          |
| SECTION R. 9<br>DISTRICT 5                        | C3 LPG<br>PIDE-LINE<br>Marine | G4 LPG<br>PIFE-LINE<br>Marine | NAPHTHA<br>PIPE-LINE<br>Marine | REGULAR GASOLINE<br>PIPE-LINE<br>Marine | PREMIUY GASOLINE<br>Pipe-line<br>Mapine | LOW LEAD GASOLINE<br>PIPE-LINE<br>Marine | LEAD FREE GASOLINE<br>PIPE-LINE<br>Marine | JP-4 JET FUEL<br>Pipe-Line<br>Madine | JET A JET FUEL<br>PippLine<br>Manive | DTESEL<br>Ptde-ling<br>Mavine                                                                    | ND. Z FUEL AIL<br>PTPE-LTNE<br>MAPTHE |

•

|                                                                |                        | 0 I S TP I C T<br>DEMAND  | 26 0° 0                              | 200.0                                | 1904                               | 67.9                                 | 2.04                                    |                                         | 20°9                                    | 1.7                            | 40 1                                        | 3 ° D                               | 2 • 5                                 | 1998.5                                                                                                      |
|----------------------------------------------------------------|------------------------|---------------------------|--------------------------------------|--------------------------------------|------------------------------------|--------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------|---------------------------------------------|-------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------|
|                                                                |                        | 01 STRTCT<br>01 TPUT      | 185.4                                | 185°4                                | 19.4                               | 67°9                                 | 4 • 4                                   |                                         | 20°9                                    | . 1.7                          | 40 a 1                                      | ы.<br>Б                             | 2°2                                   | 1987.2                                                                                                      |
|                                                                |                        | TOTAL<br>Hovë4ënts        | 14°6<br>14°6                         | 14.66                                |                                    |                                      |                                         |                                         |                                         |                                |                                             |                                     |                                       | 12.4<br>83.3<br>29.2                                                                                        |
|                                                                |                        | IMPORT<br>/-E XP          | 14°6<br>14°6                         | 1406<br>1406                         |                                    |                                      | -                                       |                                         |                                         |                                |                                             |                                     |                                       |                                                                                                             |
| S CENTER                                                       |                        | TUTAL                     |                                      |                                      |                                    |                                      |                                         |                                         |                                         |                                |                                             |                                     |                                       | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                 |
| TRANSPOPTATION SYSTLMS GENTER<br>Industry Model - 1974 Valimat | 10 X 0                 | in<br>I                   |                                      |                                      |                                    |                                      |                                         |                                         |                                         |                                |                                             |                                     |                                       | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                    |
| PTATION SY<br>V modél -                                        | SUPPLY DEMAND RALARICE | EIPTS FROM                |                                      |                                      |                                    |                                      |                                         |                                         |                                         |                                |                                             |                                     |                                       | 60.6<br>60.6                                                                                                |
| T.                                                             |                        | INTE4-STATE REGELPTS FROM |                                      |                                      |                                    |                                      |                                         |                                         |                                         |                                |                                             |                                     |                                       | 5 4 4<br>5 4 4<br>5 4 4<br>5 4 4<br>5 4<br>7 |
| 0 * 0 *<br>1 1 1 5 6                                           | :                      | 1NT 5                     |                                      |                                      |                                    |                                      |                                         |                                         |                                         |                                |                                             |                                     |                                       | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                   |
|                                                                |                        |                           |                                      |                                      |                                    |                                      |                                         |                                         |                                         |                                |                                             |                                     |                                       | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                    |
| 3. 15                                                          | ICT 5                  |                           | NO. 6<br>IE                          | N0. 6<br>1E                          | S                                  | ID ROAD OIL                          | ULFUR)<br>IE                            | iul FUR)<br>IE                          | CRUDE)<br>IE                            | ш                              | ш.                                          | NE S<br>Itë                         | UC T S                                | RTS<br>16                                                                                                   |
| SECTION 8.                                                     | OISTRICT               |                           | MI SULFUP NO.<br>PIPE-LINE<br>MAPINE | LO SULFUR NO.<br>PIPE-LINE<br>MARINE | LUBE STOCKS<br>PIPE-LINE<br>MARINE | ASPHALT AND F<br>PIPE-LINE<br>Marine | COKE (LO SULFUR)<br>PIPE-LINE<br>MAºINE | COKE (HI SULFUR)<br>PIPE-LINE<br>MARIVE | COKE (CAL CRUDE)<br>PIPE-LINE<br>MARIVE | BENZENE<br>PIPE-LINE<br>MARINE | TOLU <sup>C</sup> NE<br>PIPE-LINE<br>MARINE | MIXEN XYLENE<br>PIPE-LINE<br>Mapine | MISC. PRODUCTS<br>PIPE-LINE<br>MARINE | TOTAL IMPORTS<br>PTPE-LINE<br>MAPINE                                                                        |

|                                                                   |        | 9               | PROPUGT           | PRODUCT CONSUMPTION SUPPLY | 74 SUPPAGE | 0         |                                                                                                  |                                                                                                  |         |
|-------------------------------------------------------------------|--------|-----------------|-------------------|----------------------------|------------|-----------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------|
|                                                                   |        | ć               | P. 4. D. NISIPICI | 151a                       |            |           |                                                                                                  |                                                                                                  |         |
|                                                                   | 1      | бя              | ۲                 | 2                          | ŝ          | •S•fi     | 51 909 Y 3                                                                                       | 54P 101                                                                                          | 10745   |
| •                                                                 |        | 3.67            | 1                 | 1 6 ° C                    | 23.5       |           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                        | 8<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 214.5   |
|                                                                   | 19.1   | 6°21            | 13.4              | 1.5                        | 1 J. 5     | 62.7      |                                                                                                  |                                                                                                  | 62°7    |
|                                                                   |        | T°t.c           | 45.5              |                            | 2°5°       | 101.2     |                                                                                                  |                                                                                                  | 166.2   |
| LIVE                                                              | 751.9  | 1615 °F         |                   | 77.6                       | 27.1.6     | 21.75.1   |                                                                                                  |                                                                                                  | 2135.1  |
| LINE                                                              | 128.6  | 544.7           | 285.3             |                            | 135.2      | 6.76 h1 . |                                                                                                  |                                                                                                  | 1093.9  |
| SOL I NE                                                          | 915.7  | 3000            |                   | 76.4                       | 253.1      | 16.27.07  |                                                                                                  |                                                                                                  | 1607.7  |
| LEAN FREE GASOLINE                                                | 3:53.8 | 312 .*          | 717.7             | 57.5                       | 234.1      | 1745.4    |                                                                                                  |                                                                                                  | 1745.4  |
| L                                                                 | 42.9   | 3 * <b>1</b> #/ | 46.2              | 11.3                       | 4, 9° 5    | 181.2     |                                                                                                  |                                                                                                  | 1.1.2   |
| ĒL                                                                | 196.3  | 202 00          | 110.0             | 25 ° 3                     | 22 4 . 3   | 0°176     |                                                                                                  |                                                                                                  | 947.3   |
|                                                                   | 264.0  | 1995            | 232.C             | 87.0                       | 162.5      | 1127.0    |                                                                                                  |                                                                                                  | 1127.0  |
| IL                                                                | 1376.9 | نون ° ژ         | 12400             | 1.1.2                      | 130.0      | 19.35 .6  |                                                                                                  |                                                                                                  | 1875.3  |
| •<br>•                                                            | 450°J  | 100.0           | 103.6             | 17 °C                      | 230.0      | 1267.3    |                                                                                                  |                                                                                                  | 1267.3  |
| • 6                                                               | 950.0  | 120.0           | 100.0             | 17.0                       | 239.3      | 1267.0    |                                                                                                  |                                                                                                  | 1267.3  |
|                                                                   | \$6\$  | 52 ° 3          | 122.6             | 1.3                        | 1 3.4      | 215.C     |                                                                                                  |                                                                                                  | 216.3   |
| P04N 01L                                                          | 5.9.3  | 174.09          | 134.3             | 29.5                       | 57.4       | 6°727     |                                                                                                  |                                                                                                  | 424.3   |
| FURI                                                              |        |                 | 5.4               | 4°                         | 1.4        | 6°9       |                                                                                                  |                                                                                                  | 6.3     |
| COK= (HI SULFUR)                                                  | 5.3    | 26:22           | 18.3              | 2.9                        |            | 52°3      |                                                                                                  |                                                                                                  | 52.3    |
| 1200                                                              |        |                 |                   |                            | 23.9       | 21.5      |                                                                                                  |                                                                                                  | 20.3    |
|                                                                   | 1.8    | 3 • F           | 16.3              |                            | 1.7        | 23.6      |                                                                                                  |                                                                                                  | 23.5    |
|                                                                   | e: -1  | 2.6             | 27.6              |                            | 4.1        | 35 ° F    |                                                                                                  |                                                                                                  | 10.57   |
| SINITATU SINITATU SINITATU SI | 6.     | دي<br>ما        | 29.0              |                            | 3.6        | 39.7      |                                                                                                  |                                                                                                  | 30.7    |
| MISC. PRODUCTS                                                    | 11.3   | 4.7.L           | 42.4              |                            | 2*2        | 104.1     |                                                                                                  |                                                                                                  | 104.1   |
| TOTAL                                                             |        | 3941.1          | 2215.4            | 451.1                      | 2179.5     | 14535.7   | 8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | 8<br>9<br>9<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                    | 14566.7 |
|                                                                   |        |                 |                   |                            |            |           |                                                                                                  |                                                                                                  |         |

1. 7. T. TPANSPORIATION SYSTEMS GENER

SECTION R. 11

PERIMING THOUSTOY MODEL - 1974 VALIDATION CASE

| -     |
|-------|
|       |
|       |
|       |
|       |
| Ċ     |
| -     |
|       |
| -     |
| NO    |
| 0     |
| See.  |
| here. |
|       |
| S     |
| SE    |
|       |
| 5     |

0. 0. T. TRANSPORTATION SYSTEMS CENTER

REFINING INDUSTRY MODEL - 1974 VALIDATION CASE

.\*

## REFINERY CAPACITY UIILIZATION (MAPP)

TROLEUM ADMINSTRATION FOR DÉFENSE DISTRICTS (PAD)

|                                                                                             | PETROLEUM | AOHINSTRAT      | PETROLEUM AOMINSTRATION FOR DEFENSE DISTRICTS (PAD) | NSE DISTRIC | ITS (PAD)                                                                                   |                           |  |
|---------------------------------------------------------------------------------------------|-----------|-----------------|-----------------------------------------------------|-------------|---------------------------------------------------------------------------------------------|---------------------------|--|
|                                                                                             | 1         | 2               | 100 H                                               |             | ۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲ | U. S.                     |  |
| LAPGE REFINERY                                                                              |           |                 |                                                     |             |                                                                                             |                           |  |
| SMEET CRUDE<br>Arse Case<br>High Conv<br>Low Conv<br>Subtotal                               |           |                 |                                                     |             |                                                                                             |                           |  |
| SOUR CRUOE<br>Rase Case<br>High Conv                                                        | 1346.0    | 2698.8          | 3°1552                                              |             |                                                                                             | 2698.3<br>4251.6          |  |
| SUBTOTAL                                                                                    | 1300.0    | 2698.8          | 2950 . Ú                                            |             |                                                                                             | 694 9 <b>.</b> 8          |  |
| CALIF CRUDE<br>Rase case<br>High conv<br>Lom conv<br>Surtotal                               |           |                 |                                                     |             | 1195.7<br>201.5<br>2406.0                                                                   | 1198°7<br>201°3<br>1460°0 |  |
| ALASKAN CRUJE<br>RASE CASE<br>HIGH Conv<br>Lom Conv<br>Surtotal<br>Total For Large refinery | 130C • (  | 2693 <b>.</b> 8 | (°1562                                              |             | 1403 .0                                                                                     | 834.9.8                   |  |
| MEO REFINERY                                                                                |           |                 |                                                     |             |                                                                                             |                           |  |
| SMEET CRUDE<br>RASF CASE<br>HIGH CONV<br>LOM CONV<br>SUBTOTAL                               |           |                 | 1378.1<br>1378.1                                    |             |                                                                                             | 1378°4<br>1378°4          |  |
| SOUP CFUDE<br>PASE CASE<br>HTGH CONV<br>LOW CONV<br>SUGTOTAL                                |           |                 | 191.6<br>191.5                                      |             |                                                                                             | 191.6<br>191.6            |  |

| ION SYSTEMS CENTER<br>DEL - 1974 VALIDATION CASE<br>ITY UTILIZATION (NAPD)<br>OFFENSE DISTRICTS (PAD)<br>3 4 5 U.S.                                                             | 1570.0                                                                                                                                                                                                                                                  | .0 25.3 503.0 1900.0 25.3 180.0 25.3 180.0 180.0 0.0 25.3 503.0 2165.3 180.0 2165.3 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 18 | .0 5%1.2 550.0 2611.3<br>.6 531.2 1940.0 2631.3                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D. D. T. TRANSPORTATION SYSTEMS CENTER<br>REFLMING INDUSTRY MODEL - 197, VALIDAT<br>PEFINERY CAPAGITY UTILIZATION 4<br>PETROLEUM AOMINSTRATION FOR DEFENSE DISTRICTS<br>1 2 3 4 | י<br>י<br>ע<br>ע<br>ע<br>ע                                                                                                                                                                                                                              | 0°752 0°752<br>0°752 0°752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 700.6 740.6<br>3598.8 5223.6                                                                                                                                                                                     |
| PETROL                                                                                                                                                                          | ,<br>RERY                                                                                                                                                                                                                                               | ः न<br>• • •<br>• •<br>• •<br>• •<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | REFINERY 1496.4                                                                                                                                                                                                  |
| SECTION C. Z                                                                                                                                                                    | HEN REFINERY<br>CALIF CRUDE<br>MASE CASE<br>MIGH CONV<br>LOH CONV<br>SUBTOTAL<br>ALASKAN CRUDE<br>ALASKAN CRUDE<br>ALASKAN CRUDE<br>ALASKAN CRUDE<br>ALASKAN CRUDE<br>NICH CONV<br>LOH CONV<br>LOH CONV<br>SUBTOTAL<br>TOTAL REFINERY<br>SMALL REFINERY | SWEET CRUDE<br>TASF CASE<br>HIGH CONV<br>LOM CONV<br>LOM CONV<br>SUBTOTAL<br>SOUR CRUDE<br>AASE CASE<br>HIGH CONV<br>LOM CONV<br>LOM CONV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CALIF CPUDE<br>RASE CASE<br>HIGH CONV<br>LON CONV<br>SUBTATAL<br>ALASKAN CRUDE<br>ALASKAN CRUDE<br>ALASKAN CRUDE<br>ALASKAN CRUDE<br>LON CONV<br>LON CONV<br>SUBTOTAL<br>TOTAL FOR SHALL REFINERY<br>GRAHD TOTAL |

SECTION C. 3

J. J. T. TRANSPORTATION SYSTEMS GUILER

PEFINING INDUSTRY MUDEL - 1974 VALIDATION CASE

## RFFINERY CAPACITY WILLTATION (MBPO)

# PETROLFUM AUMINSTRATION FOR DEFENSE DISTMICTS (PAD)

INCPEMENTAL PROCESSES

.

### 155-10

HYDROCCACKING FXIST. HC FOR DSL Hydrotzeating Gaso oesulf Diesel desulf

TOTAL FOR DIESEL

TOTAL FOR DESJLFURIZATION

|                          | 4 <u>.</u>                                                                                       | SOUNT SNIFT    | REFINING INDUSTRY MODEL - 1974 VALIDATION CASE      | 1974 VALID            | ATION CASE  |          |
|--------------------------|--------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------|-----------------------|-------------|----------|
|                          |                                                                                                  |                | UTILITY SUMMARY                                     | 1A P. Y               |             |          |
|                          | 3 10-13a                                                                                         | UPI AD 41 NSTE | PETTOLEUM AD4INSTRATION FOR DEFENSE DISTRICTS (PAD) | EFENSE DIST           | (UVJ) SIDIa |          |
|                          | 1<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | ~              | 5<br>7<br>6<br>5<br>5<br>6<br>6<br>8<br>9           | 1<br>1<br>1<br>1<br>1 | 5           | U.S.     |
| SLEC. PWR (16UUKWH/D)    | 4°623                                                                                            | 13964.1        | 19730.0                                             | 1714.9                | 19638.2     | 5186.6°5 |
| FUEL PEQD. (1066F0E3/7)  | 76.2                                                                                             | 190.7          | 302 - 2                                             | 26.5                  | 121.2       | 722.2    |
| ENERGY CONS. (1000FOE3/0 | 37.C                                                                                             | 216.9          | 342。8                                               | 1 = 7 2               | 241.3       | 819.7    |
| LAGOR (NO. EMPLOYEES)    | 7406.6                                                                                           | 1E 994. 2      | 26136.0                                             | 2656.3                | 9503 • 0    | 62650.5  |
| CPEP COSTS (M\$/D)       | 190.3                                                                                            | 521.5          | 592°7                                               | 54.7                  | 215.6       | 1575.9   |
| INVESTMENTS (MHS)        |                                                                                                  |                |                                                     |                       |             |          |

D. O. T. TRANSPORTATION SYSTEMS SENTER

SECTTON D. 4

U.S. 12063.8 18368.6 8440°1 1182°0 9622°1 30432.4 PEFINING INDUSTRY MODEL - 1974 VALIDATION CASE S 8442 •1 1142 •6 9622 •1 0. 3. T. TPANSPORTATION SYSTEMS GENTER . SUMMARY OF FLEC. PWP. (1606KWH/D) \$ ~ 12977.3 12977.3 • 12663.8 12463.8 .......... -4 5 341.2 5331.2 LARGE REFINERY RASE CASE HIGH CONV Lom Conv Subtotal RASE CASE MIGH CONV Lom Conv Surtofal BASE CASE HIGH CONV LOM CONV Subtotal RASE CASE HIGH CONV Low Conv Surtotal ALASKAN CRUDE CALIF CRUDE SHEET CRUDE SOUP CPUDE -SECTION D.

179

4363。8 4360。8

4369.8 4366.8

40054.5

9622.1

12977.3

12663.8

5391.2

TOTAL FOR LARGE REFINERY

SWEET CRUDE

MED REFINERY

BASE CASE MIGH CONV Low Conv Surtata

| U. S.                                                                                                                                         | 653.A                                                | 653°8                                                                                 | 5<br>6<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1            | 4654.5<br>7401<br>36422<br>529607                                           | 1¢0°1<br>1480°7<br>1640°5                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------|
| 22<br>41 Inhi CASE                                                                                                                            |                                                      |                                                                                       |                                                                                                             | 11 70 . 1<br>1ú7ó . 1                                                       |                                              |
| D. J. T. TRANSPORTATION SYSTEMS CENTER<br>Refining industry model - 1974 validation case<br>Summary of Elec. PWP (1661KMH/J)<br>1 2 3 5 4 5 5 |                                                      |                                                                                       |                                                                                                             | 74°1                                                                        | 156.1<br>1486.7<br>1640.9                    |
| RANSPORTATION S<br>NDUSTRY MODEL -<br>OF ELEC, PWP 1                                                                                          | وہ تا<br>م                                           | 653.8                                                                                 | 5614°5                                                                                                      | 1738°1                                                                      |                                              |
| D. J. T. FRANSPORTATION<br>REFINING INDUSTRY MODEL<br>SUNNARY OF ELEC. PWP.                                                                   |                                                      |                                                                                       |                                                                                                             | 1847。3<br>1843.3                                                            |                                              |
| 0.<br>REF                                                                                                                                     |                                                      |                                                                                       |                                                                                                             | 368°2<br>364°2                                                              |                                              |
| SECTION D. 2                                                                                                                                  | MER REFINERV<br>Soyr Grude<br>Basë Casë<br>High Conv | LDN CONV<br>SURTDTAL<br>CALIF CRUDE<br>BASE CASE<br>HTGM CONV<br>LON CONV<br>SUBTOTAL | ALASKAN CRUDE<br>AASE CASE<br>HIGH Covv<br>Lom Covv<br>Subtotal<br>Total for med refinery<br>Small Pefinery | SWZET CRUDE<br>RASE CASE<br>HIGH CONV<br>Low CONV<br>Surtotal<br>Sour Crude | BASE CASE<br>HTGH COVV<br>Loh Conv<br>Surtal |

....... u.s. 51406.52 6737.5 REFINING INDUSTRY MODEL - 1974 VALIDATION CASE 13639.17 5 1675.1 D. D. T. TRANSPORTATION SYSTEMS SENTER SUMMARY OF ELEC. PHP (LCLKNH/D) 1714.95 æ 1714.9 8 19729.48 PT: 1739.1 13994.13 0 1644.3 £759.29 -364.2 TOTAL FOP SHALL REFINERY HYDROCRACKING FXIST.HC FOR DSL Hydrotraitig Gaso desulf DIESEL DESULF Subtotal INCREMENTAL PPOCESSES HYDROCCACKING EXIST. HC FOR DSL HYDROTREATING GASO DESULF Diesel desulf Surtotal DF SULFURIZATION SMALL REFINERY BASE CASE HIGH CONV Lom Conv Subtotal BASE CASE HIGM CONV Lom Conv Subtotal ALASKAN CRUDE UTILITY TOTAL CALIF CRUDE 3 SECTION D. DIESEL

|                                                                                                                                  | ·1.S.                                                                                       |                |             |                                                |            | 157.0<br>256.9         | 424.7                |             | 87.5<br>13.5<br>160.9                          |               |                                                | 515.6                    |              |             | 78.5<br>78.5                                   |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------|-------------|------------------------------------------------|------------|------------------------|----------------------|-------------|------------------------------------------------|---------------|------------------------------------------------|--------------------------|--------------|-------------|------------------------------------------------|
| arron GASE                                                                                                                       |                                                                                             |                |             |                                                |            |                        |                      |             | 87.5<br>13.5<br>101.9                          |               |                                                | 9°CU1                    |              |             |                                                |
| 0. 0. T. TRAYSPORTAFION SYSTEMS GENTE?<br>Reflying troustry model - 1974 validation case<br>Summary of energy combumption (foem) |                                                                                             |                |             |                                                |            | -                      |                      |             |                                                |               |                                                |                          |              |             |                                                |
| PORTAFIUN SV<br>TRY MODEL -<br>Enepgy Comsu                                                                                      | ۰<br>۱                                                                                      |                |             |                                                |            | 186.1                  | 186.1                |             |                                                |               |                                                | 186 .1                   |              |             | 2°°2<br>78°5                                   |
| 0. J. T. TRA45PORTAFION<br>Refiging Industry Model<br>Summary of Energy Con                                                      | 2                                                                                           |                |             |                                                |            | 157.8                  | 157.8                |             |                                                |               |                                                | 157.8                    |              |             |                                                |
|                                                                                                                                  | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                |             |                                                |            | 70.8                   | 7ù . H               |             |                                                |               |                                                | 76 . 8                   |              |             |                                                |
| section n. 4                                                                                                                     |                                                                                             | LA35E REFINERY | SWEET CRUDE | RASE CASE<br>HIGH CONV<br>Lon Conv<br>Subtotal | SOUR CHUDE | BASE CASE<br>HIGH CONV | LUM LUNV<br>SUBTOTAL | CALIF CRUDE | RASE CASE<br>HIGH COVV<br>Low Conv<br>Subtotal | ALASKAN CRUDE | BASE CASE<br>HIGH GOVV<br>Low Conv<br>Subtotal | TOTAL FOR LAPGE REFINERY | MED REFINERY | SWEET CRUDE | BASE CASE<br>HIGH CONV<br>Low Conv<br>Subtotal |

Y

'n SECTION D.

0. D. T. TRANSPURTATION SYSTEMS CLUTE?

PEFINING INDUSTRY MODEL - 1474 VALIDATION CASE

................. SUPMARY OF FUFL REGD. (1002FUE3/D) ..... 

ų -

...... 1 \$ m 2 ......

u.s. ~

11.0 11.0

11.0

11.6

HED REFINERY

SOUR CRUDE

RASE CASF HIGH CONV Low Conv Surtotal

CALIF CRUDE

BASE CASE HIGM CONV Low Conv Subtotal

ALASKAN CRUDE

BASE CASE HIGM CONV Lom Conv Subtotal

TOTAL FOR MED REFINERY

89.5

3.68

SMALL PEFINEPY

83.2 1.4 91.1 2.1.3 M- 0 10 10 23.03 2.2 1.4 \*\*\* 31.6 () • . . . . 32.9 32.9 4 4 9 6 9 6 BASE CASE MIGM CO4V Lom Conv Surtotal BASE CASE HIGH CONV Low Gonv Surtatal SULCHUDE SCUP CRUDE

U.S. 722.15 9 9 9 9 8 9 9 8 9 9 9 8 9 8 9 8 9 8 9 117.0 PEFINING INDUSTRY MODEL - 197- VALIDATION CASE ഹ 121.18 23 °3 9. 0. T. TRANSPORTATION SYSTEMS GENTER SUMMARY OF FUEL REQD. (1003F02370) 28.46 \$ 28.5 8 9 9 8 9 8 9 8 9 8 9 8 9 8 9 3.5.66 m 33.6 9 9 9 9 9 9 9 9 9 9 9 9 N 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 190.76 32.9 76.15 -1 3° 61 TOTAL FOR SMALL REFINERY HYDROCRACKING Exist, HG For Osl Hydrofraating Gaso Desulf Difsel Desulf Suhtotal HYPROCRECKING EXIST. - 1C F04 DSL Hydrotkeating Gaso Dfsulf Oifsel Jesulf Subtotal INCREMENTAL PROCESSES \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* **NE SULFURI7ATION** SMALL PEFINERY BASÉ CASE HIGH COVV Low Conv Surtotal BASE CASE HIGH COVV Low Conv Subtotal ALASKAN CRUJE UTILITY TOTAL **FALIF** CRUDE £. SECTION D. DIESEL

.

SECTION P. 7

0. 0. T. TPANSPORTATION SYSTEMS CLATER

RFFINIMG INDUSTRY MODEL - 1974 VALIDATION CASE Summary of Energy Cons. (1)0.0029/0)

U.S. 80.7 80.7 180.6 291.5 591.1 472.1 153.3 15.7 119.0 ŝ 0.611 1:53.7 1:5.7 1:5.1 3 0 5 212.6 86.7 86.7 216 .6 21.j.t ~ 194.6 183.6 18].6 .......... -6..9 8°°9 80°5 TOTAL FOR LAFGE REFINEPY MFD REFINERY LARGE PEFINERY BASE CASE HIGH CONV Low Conv Surtotal RASE CASE HIGH CONV Low Conv Suetotal RASE CASE HIGH CONV Lom Conv Subtotal BASE CASE HIGH SOVV Low Conv Subtotal RASE CASE HIGH CONV Low Conv Surtotal ALASKAN CRUTE SWEET CRUDE CALIF CRUDE SWEET CRUDE SOUR CRUDE

.

U.S. 624.72 8 0 0 0 0 0 0 0 129.7 PEFINING INDUSTRY MODEL - 1974 VALIDATION CASE ŝ 0 0 0 0 0 0 0 0 0 0 0 1-1.57 22,•3 SUMMARY OF ENERGY CONS. (1900F050) 1. D. T. TPANSPOPTATION SYSTEMS GENTER 10.11 3 8 8 8 8 8 31.7 ~7 .......... 3-2 .34 33°3 210.94 • 36.4 96. ° 1: 3 -........ 6.1 TOTAL FOR SHALL REFINERY HYDPOCRACKING Exist. AC for dsl hydrotreating Gaso desulf difsel desulf HYDROCRACKING EXIST. 4C FOP DSL HYDROTHEFTING INCREMENTAL PPOCESSES 0 0 0 0 0 GASO DESULF DIESEL DESULF SUBTOTAL **DESULFURIZATION** SMALL REFINERY RASE CASE HIGM CONV LCM CONV SUBTOTAL BASE CASE HIGH CONV Lom Conv Subtotal UTILITY TOTAL ALASKAN CRUDE SUBTOTAL CALIF CRUDE σ SECTION D. DIESEL

.

|                                                                                                                       | U.S.                                                                                           |   |                                              |            | 13494°2<br>21250.0                  | 3474402  |             | 5993.4<br>1066.6<br>7300.0                     |               |                                                | 4174402                                  |             | 6892.1<br>6892.1                               |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---|----------------------------------------------|------------|-------------------------------------|----------|-------------|------------------------------------------------|---------------|------------------------------------------------|------------------------------------------|-------------|------------------------------------------------|
| co<br>Attou Case                                                                                                      | U' 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |   |                                              |            |                                     |          |             | 5393.4<br>1066.6<br>7603.0                     |               |                                                | 7603 • 0                                 |             |                                                |
| IY STEAS GENTE?<br>. 1474 - VALTSATTOY CASE<br>Employees)                                                             | 0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0                                                 |   |                                              |            |                                     |          |             |                                                |               |                                                |                                          |             |                                                |
| 0814110N_SY<br>147 HUNEL -<br>                                                                                        | 8<br>1<br>1<br>8<br>8<br>8<br>8<br>8<br>8<br>1<br>1                                            |   |                                              |            | 14750.0                             | 14755    |             |                                                |               |                                                | 1475C .u                                 |             | 6992 <b>.1</b><br>6842 <b>.</b> 1              |
| D. T. T. TRANSPORTATION SYSTEMS GENTCO<br>Meetining thoustry momen - 1974 validat<br>Summary of Lagoa (No. Employees) | 5                                                                                              |   |                                              |            | :3494°2                             | 13494.2  |             |                                                |               |                                                | 13494.2                                  |             |                                                |
|                                                                                                                       |                                                                                                |   | ,                                            |            | 65JQ.C                              | 6500 ° V |             |                                                |               |                                                | 65JC • C                                 |             |                                                |
| SECTION N. 1J                                                                                                         | LARGE REFINERY                                                                                 | 8 | BASE CASt<br>HIGH CONV<br>Low Conv<br>Surtal | SOUR FRUDE | BASE CASE<br>HIGH CONV<br>- OH CONV | SUBTOTAL | GALIF CRUDË | BASE CASE<br>HIGM COVV<br>Low Conv<br>Subtotal | ALASKAN CRUJE | BASE CASE<br>HIGH COVV<br>LCM CONV<br>Suntotal | TOTAL FOR LAPGE REFINERY<br>Mey rffinepy | SWEET CRUDE | BASE CASE<br>HIGH CONV<br>Low Conv<br>Surfotal |

SECTION D. 11

D. D. T. TRANSPORTATION SYSTEMS CENTER

REFINING INDUSTRY NUDEL - 197+ VALIDATION CASE

### SUMMARY OF LABOR (110. EMPLOYEES)

U.S. . 5 ...... ÷ m ~ -

| MED RFFINERY                                   |         |           |         |                           |         |                           |  |
|------------------------------------------------|---------|-----------|---------|---------------------------|---------|---------------------------|--|
| SOUR CRUDE                                     |         |           |         |                           |         |                           |  |
| BASE CASE<br>HIGH CONV<br>Loh Conv<br>Surtotal |         |           | 6°136   |                           |         | 957 <b>.</b> 9            |  |
| CALIF CRUDE                                    |         |           |         |                           |         |                           |  |
| BASE CASE<br>MIGN CONV<br>Lon Conv<br>Subtotal |         |           |         |                           |         |                           |  |
| ALASKAN GRUDE                                  |         |           |         |                           |         |                           |  |
| PASE CASE<br>MIGH CONV<br>Lom Conv<br>Subtotal |         |           |         |                           |         |                           |  |
| TOTAL FOR MEN REFINERY                         |         |           | 7850.0  |                           |         | 7856.6                    |  |
| SMALL REFIMENY                                 |         |           |         |                           |         |                           |  |
| SMEET CRUDE                                    |         |           |         |                           |         |                           |  |
| AASE CASE<br>MIGM CONV                         |         | 350.0.0   | 3562.j  | 126.6                     | 2530 °0 | 9560.0<br>126.6           |  |
| SUBTOTAL                                       | 990.006 | 35.J.J. 0 | 35 j. d | 126.0                     | 25J0.0  | 10526.6                   |  |
| SOUR CRUDE                                     |         |           |         |                           |         |                           |  |
| BASE CASE<br>Migh conv<br>Low conv<br>Subtotal |         |           |         | 245.0<br>2634.1<br>2529.7 |         | 245.6<br>2284.0<br>2529.7 |  |

|                                                                                                                               | u.s.                                                                              |                                              |                                                                 |                                                | 13056.3                                           |                                                                                                            |                                                                                                                    | 626 5 J. + 7   |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------|------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------|
| E²<br>Aljon Casê                                                                                                              | 2                                                                                 |                                              |                                                                 |                                                | 2560.0                                            |                                                                                                            |                                                                                                                    | 0 J + 0 0 SF   |
| D. J. T. TRAUSPORTATION SYSTEMS CIMTER<br>Refining Industry Mydel - 197, validation Case<br>Summary of Lagor (ND. Employees)  | m<br>M                                                                            |                                              |                                                                 |                                                | 2656 <b>.</b> 3                                   |                                                                                                            |                                                                                                                    | 2674.23        |
| PORTATION S<br>TRV MJDEL -<br>Labor (ND.                                                                                      | 0 M3 U<br>0 M3 U<br>0 0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0 |                                              |                                                                 |                                                | 35µ4 ° č                                          |                                                                                                            |                                                                                                                    | žŕ16°          |
| <ol> <li>Т. ТРАНБРОКТАТІОN</li> <li>Т. ТРАНБРОКТАТІОN</li> <li>INING INDUSTRY MIDEL</li> <li>Summary of Labor (но.</li> </ol> |                                                                                   |                                              |                                                                 |                                                | 3560.6                                            |                                                                                                            |                                                                                                                    | 16 494.22      |
| • त<br>ह                                                                                                                      |                                                                                   |                                              |                                                                 |                                                | . ° 006                                           |                                                                                                            |                                                                                                                    | 7+36+.6        |
| SECTION D. 12                                                                                                                 |                                                                                   | SMALL REFINERY<br>Calif Crude<br>Calif Crude | HASE CASF<br>HIGH CONV<br>LON CONV<br>SURTOTAL<br>ALASKAN CRUJE | BASÉ CASE<br>HIGH Conv<br>Lon Conv<br>Surtotal | TOTAL FOR SMALL REFINERY<br>Ingremental processes | DIESEL<br>HYDROCPACKING<br>Exist, ac for DSL.<br>Hydrotreating<br>Gaso Desulf<br>Diesel Desulf<br>Subtotal | DESULFURIZATION<br>HYDROCRACKING<br>Exist, HC FOP OSL<br>Hydrotreating<br>6650 desulf<br>Difsel desulf<br>Suatotal | יודורודע זמדאנ |

SECTION D. 13

D. D. T. TRANSPORTATION SYSTEMS GATTA

PEFINING INDUSTRY MURL - 147- VALIDATION CASE

SUMMARY OF OPER COSTS (M1/7)

LARGE REFINEPY

SWEET CRUDE

BASE CASE HIGH CONV LOM CONV Subtotal

SOUR CRUDE

RASE CASE HIGH CONV Lom Conv Subtotal

442.6 535.2 977.8

357.8

442.6

177.3

173.6 21.2 194.8

173.6 21.2

SUBTOTAL 177.3 442.6 357.8 Calif CPUDE Base Casé High Conv

BASE CASE HIGH CONV Low Conv Subtotal

ALASKAN CRUDE

RASE CASE Migh Conv Lom Conv Subtotal TOTAL FOP LARGE REFINERY 177.3 442.6 357.9 HED Refinery

1172.6

SMEET CRUDE

BASE CASE HIGH CONV Low Conv Subtotal

135°9 135°9

135,9 135,9

|                                        |                                                |                              | u.s.                                        |                |             |                                                |               |                                                | 246.6                    |                       |                                                                                                                            |                     | 8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                | 1575.88       |
|----------------------------------------|------------------------------------------------|------------------------------|---------------------------------------------|----------------|-------------|------------------------------------------------|---------------|------------------------------------------------|--------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------|---------------|
| 2<br>1<br>11                           | AFTON CASE                                     | 5<br>0<br>0<br>8<br>8<br>8   |                                             |                |             |                                                |               |                                                | 21.9                     |                       |                                                                                                                            |                     | 0<br>0<br>0<br>0<br>0<br>0<br>0                     | 216•E4        |
| VSTERS CEN                             | 1474 VALIN                                     | (U/§H)                       | -1"  <br>                                   |                |             |                                                |               |                                                | 54.7                     |                       |                                                                                                                            |                     | 0<br>0<br>0<br>0<br>0<br>0<br>0                     | 54.63         |
| PORTATION S                            | TRY MOREL -                                    | SUMMARY OF OPEP COSTS (M&/0) | ••••••••••••••••••••••••••••••••••••••      |                |             |                                                |               |                                                | 78.2                     |                       |                                                                                                                            |                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 592.72        |
| 0. Q. T. TRANSPORTATION SYSTEMS CERTER | REFINING INDUSTRY MONEL - 1474 VALIDATION CASE | SUMMARY OF OPEP COSTS (M&/)  | N                                           |                |             |                                                |               |                                                | 73.9                     |                       |                                                                                                                            |                     | 8<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 521.52        |
| •0                                     | 926                                            |                              | +4  <br> <br> <br> <br> <br> <br> <br> <br> |                |             |                                                |               |                                                | 13.6                     |                       |                                                                                                                            |                     | 0<br>0<br>0<br>0<br>0<br>0                          | 19i • 33      |
|                                        | SECTION 11. 15                                 |                              |                                             | SMALL REFINERY | GALIF CRUDE | HASE CASE<br>HIGH CDNV<br>Lom CDNV<br>Subtotal | ALASKAN CRUJE | BASE CASE<br>HIGH COVV<br>Lom Conv<br>Subtotal | TOTAL FOP SMALL REFINERY | INCREMENTAL FROCESSES | DIESEL<br>HVDROCRACKING<br>HVDROCRACKING<br>Exist. HC FOR DSL<br>HVDROTREATING<br>GASO DESULF<br>DIESEL DESULF<br>Subtotal | DFSULFURIZATION<br> |                                                     | UTILITY TOTAL |

|                                   |          | 2 CC AL BA  | •                                                                                           | -100.00                                  | -1.88<br>-1.35<br>-1.35                                         | 4.58           |        | 2.48    | • • 09<br>1 • 09  | 24.41            | 10• 36<br>9• 15   | 6.91              | 1 • 36<br>6 · 46                      | 7.88   | 15.86      | 2.77            | 1.52           | 3.06                 | 10.0             | . 14                        | . 10                     |                     | 10 3. 66 | 92            |                        | 40.8.60              | 5° 56                                        | 500.00               | 14.58                                  |
|-----------------------------------|----------|-------------|---------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------|----------------|--------|---------|-------------------|------------------|-------------------|-------------------|---------------------------------------|--------|------------|-----------------|----------------|----------------------|------------------|-----------------------------|--------------------------|---------------------|----------|---------------|------------------------|----------------------|----------------------------------------------|----------------------|----------------------------------------|
|                                   |          | 16 GRLM3    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | -136.63                                  | -1.03<br>63                                                     | 63             |        | 4 • 0 J | 1.447             | 15.21            | 16.04             | 16.03             | • • • • • • • • • • • • • • • • • • • | 00.0   | 17.93      | 3,94            | 1.23           | 40.4                 | • 4 5            | •1.                         |                          | 1                   | 105.40   | 3.85          |                        | 414.71               | 5 • t +<br>0 • 1 4                           | 500.04               | 13.64                                  |
|                                   |          | 1CGRLLC     |                                                                                             | -100.00                                  | -1.00<br>60<br>66                                               | -102.          |        | 3.04    |                   | 14.97            | 14.97             | 14.97             | , 45<br>2 , 63                        | 21.05  | 12.70      | 3.90<br>2       | 1.20           | 4 - 60               | • 45             | .13                         | .10                      |                     | 103.94   | 1.74          |                        | 392.84               | 5.74                                         | 500°30               |                                        |
|                                   |          | 16 C HL R A |                                                                                             | -106.64                                  | -1.50<br>28<br>60                                               | 1.8            |        | 3.40    | -                 | 9.               | 9°6               | 0.00              | 02.                                   | 6.30   | 17.71      | 0 0 0<br>7<br>7 | 1.20           | 5°82                 | • 4 5            | •14                         | • 1 C<br>• 1 Y           | 5 1 1<br>• 1<br>• 1 | 104052   | 2.64          |                        | 403.00               | 5.42<br>6.18                                 | =00 -CC              | 16.6.                                  |
| 1 V J 110                         | :        | 7758777     | :                                                                                           | -166                                     | - 1. 00<br>20<br>20<br>20<br>                                   | - <b>u</b>     |        | 1.45    | 3                 | à. 45            | 2 • 0 C           | Z • 45            | 1. CC                                 | 17.65  | 17.80      | 7. CL           | 1 3. 35        | 3.52                 |                  |                             | ;                        | • ;                 | 10.67    | -1.78         |                        | 234.53               | 55. • Z                                      | 1. 1. 0.             | 7.25                                   |
| STEPS CENTER<br>167. VALINATION C | •        | 11 CA SHC   | 5<br>8<br>8<br>8<br>8<br>8<br>9<br>8                                                        | 09°717-                                  | -1.60<br>- 255<br>- 613                                         | -101.8         |        | 1.45    | 3                 | 9.13             | 37°0              | 3.13              | 1.00                                  | 15.60  | 15.51      | 5<br>           | 13.30          | 3 °50                |                  |                             |                          |                     | 100.61   | -1 •3 4       |                        | -                    | 5.14                                         | 19.103               | <u>.</u>                               |
| SY                                | INPUT    |             | 8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | -106.00                                  |                                                                 | 1.85           |        | 1.45    | . 41              | 11.50            | 16°1              | 4.25              | 1.60<br>6.01                          | :      | 17.50      | 7.00            | 13.30          | m                    |                  |                             |                          | •                   | 9.68     | -2.17         |                        | 21 4.66              | 2° 6 8<br>20 6 8                             | 5. 4. 60             | 7.23                                   |
| T. TRANSPORTATION                 | NEPY UAT | 16 CALLC    | 8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | -160.30                                  | -1.<br>-29<br>-60                                               | - <del>-</del> |        | 2.74    | 03<br>09<br>09    | 2 4 ° 5 T        | 4 4 6 2 1         | 13.63             | 92°                                   | 14.66  | 19.51      | 6.11<br>2 00    | 1 • 1<br>• • 1 | 3.70                 | 0<br>*           |                             | i                        | 1.                  | 104.07   | 2.16          |                        | 335.6.2              | الله الله<br>الله الله<br>الله الله          | 560.44               | 11.64                                  |
| 0. 0. T.                          |          | 1           | 1                                                                                           | - 4 - <b>1</b> - 4 -                     | 57                                                              | -101.          |        | 3.40    |                   | 14.42            | 4 • 54<br>14 - 82 | 14.42             | . 70                                  | 9.7.6  | 19.50      | 6 • 1 C         | 1.20           | 3.75                 | • 16             |                             |                          |                     | 163.94   | 2.37          |                        | 353.15               |                                              | 5.0.6                | 5 ° 5                                  |
|                                   |          | 1.5 AL 14   | 8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | -16j.0                                   | - 1. 50<br>- 31<br>- 60                                         | -131.91        |        | 2.74    | 49°°              | 13.35            | 14.0U             | 5.63              | °75                                   | 9.70   | 13.51      | 6.13<br># 26    | <i>•</i> •     | 3.70                 | •                | .14                         | .07                      | ****                | 102.16   | • 25          | :                      | 144.21               | 10.0                                         | 534. JO              | 1 76                                   |
| SECTION 4.                        |          |             | INPUT                                                                                       | SMEFT CRHDE<br>Soup 29ude<br>Calte frude | ALAYAAN LADUE<br>Natural Gasoling<br>Isogutang<br>Normal Butang | TOTAL          | 0UTPUT | C3 LP5  | C4 LPS<br>NAPHTHA | FEGULAR GASOLINE | LOW LEAD GASOLINE | LEAD FRE GASOLINE | JP-4 JET FUEL<br>157 A 157 EUCI       | DIESEL | 2 FUEL OIL | HI SULFUR NO. 5 | LUBE STOCKS    | ESPHALT AND ROAD OIL | COKF (HI SULFUR) | CURE ILAL CRUDET<br>RENTENE | TOLUENE<br>MIXED XYLENES |                     | TOTAL    | I NPUT-OUTPUT | OPERATING COST FACTORS | ELEC. PWP (1u06KHH/D | ENEL KEUN, LIULFOEN<br>Energy Cons, (illuifo | LABOR (NO. EMPLOYEES | (1748) SISDE ADAO<br>(1748) SISDE ADAO |

D. J. T. TRANSPORTATION SYSTEMS CENTER

SECTION F. 2

REFIMING INDUSTRY MODEL - 1974 VALIDATION CASE

### REFINERY DATA INPUT

| 30CAMLC     |                                                                         | - 10 8. 00                                               | 2.50<br>1.00                                                    | -103.50  |         | . 63    | • 25   | 10.50            |                  | -4 -                                    | -               |                | 2      | -              | 2.60            | 2° 00                                   | 1.40                 | . 23 |                  | 2                           | • • •             | . 87          | 2.17    | 102.99     | 51           |                     |             | 316.36               | 5.70                                      | 500.60                                | 6                                          |
|-------------|-------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|----------|---------|---------|--------|------------------|------------------|-----------------------------------------|-----------------|----------------|--------|----------------|-----------------|-----------------------------------------|----------------------|------|------------------|-----------------------------|-------------------|---------------|---------|------------|--------------|---------------------|-------------|----------------------|-------------------------------------------|---------------------------------------|--------------------------------------------|
| 30 CAMPA    | 9<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | -100.03                                                  | 2.5<br>1.0<br>1                                                 | -103.65  |         | • 83    | .25    | 10.49            | 6 <b>0°</b> 6    | 5°53                                    | 1.93            | 7.13           | 69.61  | 10.03          | <b>.</b>        | 5.64                                    | 4                    | : 0  |                  | ú                           | 1 (F)<br>         | .87           | 2 • 63  | 9          | -7.41        |                     |             | ۳. ۱                 | 5.63                                      | - 4                                   | 10.1                                       |
| 20CBLHC     |                                                                         | -100.00                                                  | 80 M M<br>                                                      | -104.50  |         | 2 . 44  | . 54   | 27.07            | 16.07            | 13024                                   | 1.09            | 4.59           | 5.69   | 11.48          | 1.78            | 1.22                                    | A = 0.1              |      | •96•             |                             | • 1 0             | .07           | 1.40    | 105.93     | 1.42         |                     |             | . 65 . 0U            | 6.19<br>6.27                              | 500.01                                | 2 1                                        |
| 2000410     | 8<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | -100.00                                                  | 0 M M<br>• • • •<br>• • •                                       | -104.51  |         | 2044    | 111 ·  | 21.56            | 16.07            | 7.20                                    | 1.09            | 4.37           | 15.51  | 15.61          | 2.24            | 1 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 0 C                | 0    | . 67             |                             | 5 U 0<br>10<br>10 | .19           | 1.40    | C 6.       | 1.65         |                     |             | 42 4 . [ [           | 10 40 - 14<br>- 14<br>- 14                | 501.65                                | د - 0<br>- 0<br>- 0<br>- 7<br>- 7<br>- 1   |
| 2 C C BL BA | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | - 109.66                                                 | -1.8<br>-1.3<br>-1.3                                            | -164.51  |         | 2 . 44  |        | 25.39            | 10.67            | 11.64                                   | 40 04<br>1 0 34 | 4.59           | 6 • 32 | 15.61          | 2.24            | 2020                                    | 3.03                 | 9    | • 94             |                             | • •               | .19           | 1.46    | •<br>دان ا | • 92         |                     |             | 41.1.444             | له بال<br>الا به<br>الا به                | · · · · · · · · · · · · · · · · · · · | , , ,<br>, , , , , , , , , , , , , , , , , |
| 20 CA SL C  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | -10û.6J                                                  |                                                                 | -104.53  |         | 1.85    | • 4 6  | 13.01            | 40.44            | 13.41                                   | 1.20            | 46°            | 23 °96 | 17.99          | 29°2            | °.                                      | 5.72                 | •    |                  |                             |                   |               | 1.29    |            | - • 4 5      |                     |             | 267.77               |                                           |                                       | ,                                          |
| 2 DC ASHC   |                                                                         | -100.00                                                  | 1.44                                                            | -1:5.10  |         | 2.30    | • 59   | 14.              | \$               | 14.91                                   | 14.91           | 4.01           | 10.60  | 20.69          | 3° 2'           | 10.5                                    | 7.65                 |      |                  |                             |                   |               | 1.51    | 0 4 • 9C   | - 35         |                     |             | 271.60               | 5 F                                       |                                       | 1.1.1                                      |
| 20 CASBA    |                                                                         | -106.00                                                  | 2 • 4<br>1 • 4                                                  | -105.19  |         | 1001    | 64*    | 19.31            | 12.20            | 9.37                                    | 1.27            | 4.01           | 11.00  | 22.19          | 3.84            | 2007                                    | 7.65                 |      |                  |                             |                   |               | 1.37    |            | • • 2 2      |                     |             | 2 F 2 B 2 C          | i i d<br>Re C<br>Al d                     |                                       |                                            |
| 24'CALLS    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | -100.00                                                  |                                                                 | -1.1+.51 |         | 2 . 44  | ÷      | 13.4.5           | 16.17            | 7.20<br>6.51                            | 4.04<br>1.63    | 4.37           | 19.75  | 15.61          | 2°5'            | 2021<br>1.22                            | 4 0 6 6<br>7 . f 1   | . 61 |                  |                             |                   |               | 1 + 4 - | 9 °        | 2 • 1:       |                     |             | 573.1.               | τις<br>1.1.1.<br>                         |                                       | 2 + 4<br>2<br>2 - 9<br>2 + 4               |
| 20CALHC     | 0<br>0<br>0<br>0<br>0<br>0<br>0                                         | -10.0.0                                                  | - 1 • 33<br>- 1 • 33<br>- 1 • 33                                | -10 - 51 |         | 5 * 7 * | • 54   | 23.76            | 16.07            | 4C • 5                                  | 10001           | 5.36           | 1.75   | 15.61          | 1.78            | 2.13                                    | 3 ° C C              | 9    | 5                |                             |                   |               | 2.72    |            |              |                     | 0<br>8<br>9 | 3 9 3 . 1            | 5 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °   |                                       |                                            |
|             |                                                                         | SMEET JRUDE<br>Sour Crude<br>Calif Crude<br>Massan Cours | ALASKAN CRUDE<br>Natural Gasoline<br>Isonutane<br>Norhal Butane | TOTAL    | 0017917 | C3 LP5  | C4 LPG | PEGULAR GASOLIVE | PREMIUH GASOLINE | LOW LEAD GASOLINE<br>LEAD EREE LASOLINE | JP-4 JET FUEL   | JET A JET FUEL | DIESEL | NO. 2 FUEL OIL | HI SULFUR NO. 6 | LU SULFUR NU. 6<br>I LIRF STACKS        | ASPHALT AND ROAD OT! |      | COKE (HI SULFUR) | COKE (CAL CRUDE)<br>Dentent | TOLUENS           | MIXID XVLENES |         | 10141      | TNPUT-0UTPUT | SHOLDE LSCO SHILERS |             | ELEC. PWP (ICSCKWH/9 | FUTL REDE. (IC. FOR<br>ENFORM FORS, AT FE | LAND (NO. FUPLOYED                    | (0/4k) 51555 (Jay                          |

| Service         District                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SECTION E. 3                                            |                      | • U                                     | T. TRANSPORTATIO     | z z                     | 12                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                           |            |                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------|-----------------------------------------|----------------------|-------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------|------------|----------------------------|
| GFINGAR DATA TINUT           GFINGAR TATA         GEORGE         SCORAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                      | L.                                      | -                    | ייזוגר -                | ÷                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                           |            |                            |
| JUCAME         NICAUE         NICAUE<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |                      | $\gamma$ 1                              | FINERY DAT           | <br>Ndh1                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                           |            |                            |
| 194-00         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10         -101-10 <th< th=""><th>Ĩ</th><th>а с аннс<br/>210 аннс</th><th>30CAL BE</th><th>33 GALHG</th><th>3CCALLC</th><th>3 u CA S6</th><th>* C C A S HC</th><th>34 CASL C</th><th>Ĕ</th><th></th><th></th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ĩ                                                       | а с аннс<br>210 аннс | 30CAL BE                                | 33 GALHG             | 3CCALLC                 | 3 u CA S6          | * C C A S HC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34 CASL C         | Ĕ                         |            |                            |
| Image: Section (1)         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01         -101.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                      |                                         |                      |                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                           |            |                            |
| MURE         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59         -2.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LIF CRUDE<br>LIF CRUDE<br>LIF CRUDE                     | -194.GO              | ÷                                       | <sup>0</sup>         | ° U C                   | 103.6              | 1 J Ū • L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 106.0             | 100.0                     |            | 100.                       |
| at         -173.45         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -104.16         -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IVPAL FRULE<br>14Pal Gasoline<br>39utane<br>24al Butanê | - 2,59<br>79<br>16   | -2.                                     | -2.50<br>11<br>-1.13 | ~ * * *<br>~ • • •<br>• | -2 -9<br>1<br>1    | 1 - 2<br>- 3<br>- 5<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1<br>- 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2.9<br>7<br>-1.1 | - 2 • 5<br>4 • 0<br>4 • 1 | 2.5        | - 2°50<br>- 1.00<br>- 1.32 |
| RSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING<br>ASSOLING | TOTAL                                                   | -103.45              |                                         | -103.74              | 104.0                   | 1.14.8             | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 104.8             | -100.4                    | 03.5       | 104.6                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |                      |                                         |                      |                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                           |            |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L P S                                                   | .83<br>26            | . ð 3<br>25                             | . 8 3<br>2 6         | . 8 °<br>2 C            | 1.67               | 1. L 2<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.07              | 6 8 °                     | 685<br>35  | . 8 .<br>7 .               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HTHA                                                    | - CP                 |                                         | 9 2 9<br>9 2 9       | • •                     | יא<br>מים מ<br>•   | . 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 80              |                           | 1.32       | . 88                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHINE GASOLIVE                                          | 11.15                | -                                       | 14.76                | ~ 3                     | 15°('              | 11.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.63<br>3.60     |                           | 11.63      | 33                         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I LEAD GASOLINE                                         | 11.15                |                                         | 14.76                | ŝ                       | 0.0<br>Q           | 11.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.63             | 5                         |            | : -                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND FREE GASOLINE                                        | 14.15                | ٠                                       | 17.73                | å.                      | 4 • 1 U            | 11.7U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.63             | 6.10                      |            | 2.                         |
| 11.00       9.00       29.05       10.01       10.01       19.05       6.50       19.05       6.50       19.05       6.50       19.05       6.50       19.05       6.50       19.05       6.50       19.05       6.50       19.05       6.50       19.05       6.50       19.05       6.50       19.05       6.50       19.05       6.50       2.00       2.01       2.00       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01       2.01 <td< td=""><td>A JET FUEL</td><td>7.30</td><td></td><td>6.30</td><td>6.33</td><td>6 . 3 3<br/>6 . 3 3</td><td>6. U7</td><td>6.33</td><td>6.30</td><td>6.1]</td><td>6.30</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A JET FUEL                                              | 7.30                 |                                         | 6.30                 | 6.33                    | 6 . 3 3<br>6 . 3 3 | 6. U7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.33              | 6.30                      | 6.1]       | 6.30                       |
| 16.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00     13.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ESEL<br>Serus an                                        | 11.80                |                                         | 9°40                 | °° c                    | 15.51              | 10.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23.42             | 9                         | 6          | ů,                         |
| 4.20       2.80       2.80       2.80       2.80       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81       2.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SULFUR NO. 6                                            |                      |                                         | 20°00<br>2°80        | 5.                      | 27°72              | < 1 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 2 · | 11.01             | 2 0                       | v N        | 3                          |
| 6.20       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00       2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SULFUP NC. 6                                            | 4.20                 | •                                       | 2.00                 | 2.80                    | 1.66               | 4.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.92              | 4.20                      |            | (** <b>B</b> 0             |
| 1.49       1.42       1.44 $4,7$ $6,56$ $6,56$ $6,56$ $2,20$ $2,23$ $2,23$ $2,23$ $2,23$ $2,23$ $2,23$ $2,23$ $2,23$ $2,23$ $2,23$ $2,23$ $2,23$ $2,23$ $2,23$ $2,23$ $2,23$ $2,23$ $2,23$ $2,23$ $2,23$ $2,23$ $2,23$ $2,23$ $2,23$ $2,23$ $2,23$ $2,23$ $2,23$ $2,23$ $2,23$ $2,23$ $2,33$ $2,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ $6,69$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         | 6.23                 |                                         | 2.00                 | 2.65                    | 2.62               | 2 . 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.61              | 7.10                      | 6.31       | 6.07                       |
| • 59       • 24       • 24       • 24       • 57       • 57       • 57       • 57       • 59       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         | 1.49                 |                                         | 1.40                 | 1.4C<br>.47             | 6.56<br>.32        | 6.30<br>.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.56<br>.32       | 2.20                      | 2.23       | 2•20                       |
| • 59       • 24       • 24       • 24       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69       • 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CF (HI SULFU?)<br>CF (CAL CPUDF)                        |                      |                                         |                      |                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | Ň                         | Ň          |                            |
| 69       67       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       69       102:23       10:20       20       10:20       20       10:20       20       20       29       10:20       20       20       20       20       20       20       20       60       06       06       06       06       10:20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20 <t< td=""><td>17ENE</td><td>• 59</td><td>.9 I<br/>QJ 1<br/>0</td><td>~</td><td>~ ~ ·</td><td></td><td></td><td></td><td>.61</td><td>62.</td><td>• 59</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17ENE                                                   | • 59                 | .9 I<br>QJ 1<br>0                       | ~                    | ~ ~ ·                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | .61                       | 62.        | • 59                       |
| 1.61 $2.1h$ $1.52$ $1.67$ $1.63$ $2.57$ $1.63$ $1.29$ $1.12.12$ $1.1.7h$ $1.5.31$ $1.9.61$ $1.5.31$ $1.9.61$ $1.2.23$ $1.223$ $-1.41$ $-1.4k$ $-3.4t$ $-1.25$ $-1.51$ $-4.63$ $-2.11$ $-2.34$ $-2.92$ $-2.59$ $-1.41$ $-1.4k$ $-3.4t$ $-1.25$ $-1.51$ $-4.63$ $-2.11$ $-2.34$ $-2.92$ $-2.59$ $-1.41$ $-1.4k$ $-1.25$ $-1.25$ $-1.51$ $-4.63$ $-2.11$ $-2.34$ $-2.92$ $-2.59$ $1.1.47$ $-1.4k$ $-1.55$ $-4.63$ $-2.11$ $-2.32$ $-2.59$ $-2.59$ $1.1.7.07$ $1.1.7.07$ $1.1.7.07$ $1.1.7.07$ $1.1.7.07$ $5.17$ $5.17$ $5.17$ $5.17$ $5.17$ $5.17$ $5.17$ $5.17$ $5.17$ $5.17$ $5.17$ $5.17$ $5.17$ $5.17$ $5.17$ $5.17$ $5.17$ $5.17$ $5.17$ $5.17$ $5.17$ $5.17$ $5.17$ $5.17$ <td< td=""><td>LIFN:<br/>Sintings</td><td>.69</td><td></td><td>un u</td><td>เม่</td><td></td><td></td><td></td><td>.69<br/></td><td>E9°</td><td>. 69</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LIFN:<br>Sintings                                       | .69                  |                                         | un u                 | เม่                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | .69<br>                   | E9°        | . 69                       |
| 1)2.12 1.1.7° 1.1.33 1.5.01 1.1.51 ~4.64 162.71 98.36 105.69 102.23<br>-1.47 -1.56 -3.42 -1.05 -1.51 ~4.63 -2.11 -2.34 -2.92 -2.59<br>721.59 10.10 0.10 0.10 0.10 0.10 0.10 0.10 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SC. PPNOUCTS                                            |                      | ~ '                                     |                      | •                       | :                  | 1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 3               | 2.57                      | •          | 1.29                       |
| -1.64 -1.46 -3.42 -1.05 -1.51 -4.63 -2.11 -2.34 -2.92 -2.<br>-2.4 -2.92 -2.4 -1.05 -1.05 -1.05 -1.03 -2.11 -2.34 -2.92 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TOTAL                                                   |                      | 113                                     |                      |                         |                    | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 62.7              |                           | 9.)        | 2.2                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109100-10981                                            | -1.43                | -                                       | 3.4                  |                         | ۍ<br>•             | ÷.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.1               | •                         | - <b>F</b> |                            |
| Prise         Pris         Prise         Prise <thp< td=""><td>RATING COST FACTORS</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thp<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RATING COST FACTORS                                     |                      |                                         |                      |                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                           |            |                            |
| Sign         Sign <th< td=""><td>Er. PHS [LL. KHH/1</td><td></td><td>2 11</td><td>442 55</td><td>93". 88</td><td></td><td>24. 5 . 2</td><td>5 . 5 4</td><td>~</td><td>- 6.</td><td>-</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Er. PHS [LL. KHH/1                                      |                      | 2 11                                    | 442 55               | 93". 88                 |                    | 24. 5 . 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 . 5 4           | ~                         | - 6.       | -                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L 2509. (1.3.F0ch                                       | 9                    |                                         | 1.                   | در<br>بو<br>بو          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                           |            | 5                          |
| 7.63 $1.7.5$ $1.7.52$ $1.5.54$ $1.5.54$ $1.5.54$ $1.5.54$ $1.5.54$ $1.5.54$ $1.5.54$ $1.5.54$ $1.5.54$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DE THOUSE CLEAR                                         |                      | - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 | 7 4                  |                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~ · · ·           | ۍ ک<br>•                  | 5          | ہ م                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | THE REPAIRS AND     |                      | · · ·                                   |                      |                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | () #<br>() #              | א ני<br>ס  | : -                        |

9. 0. T. TRANSPORTATION SYSTEMS CENTER

SECTION 4 . 4

D. D. T. IRANSPOWTATION SYSTEMS GENIER

REFINING INDUSTRY MODEL - 1974 VALIDATION CASE

### REFINERY DATA INPUT

|                                                              |                                                          |                                      | FIRERY UAIA                             |                                         |                                           |                                                                                             |                                           |                                                                    |                                                                                                  |                                                               |
|--------------------------------------------------------------|----------------------------------------------------------|--------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|                                                              |                                                          | 3(0366                               | GAL                                     | C DL A                                  | c GA Si3                                  | ч uCASHC                                                                                    | 40CASL                                    | 4JC859                                                             | CBSL                                                                                             | 4 0CBSHC                                                      |
| I NPUT                                                       | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 000000000000000000000000000000000000000 | 0<br>0<br>0<br>0<br>0<br>0<br>0         | 6<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 6<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 6<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 6<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| SWEET CRUDE<br>Sour Crude<br>Saite Crude                     | 00.121-                                                  | -1iC.0i                              | -160.00                                 |                                         | 00.001-                                   | - 16û. u u                                                                                  | -100.00                                   | -110.00                                                            | -100 °J J                                                                                        | -100.60                                                       |
| ALLEN FULE<br>ALTUPAL GASOLIYE<br>ISONUTANE<br>NORMAL BUTANE | -2.53<br>-1.90<br>-1.53                                  | -2.51<br>82<br>-1.15                 | - 2 . 5 0<br>- 1 . 5 0<br>- 1 . 5 0     | - 10 10 - 10 - 10 - 10 - 10 - 10 - 10 - | -7.36<br>- 455<br>- 1.10                  | -7.3(<br>06<br>91                                                                           | - 5 . 8 k                                 | -7.30<br>34<br>-1.26                                               | 53<br>53<br>- 53                                                                                 | -7.36<br>67                                                   |
| TOTAL                                                        | -105.40                                                  |                                      | -115.60                                 | -103.36                                 |                                           | -108.27                                                                                     | -106.17                                   | -136.30                                                            | -104.97                                                                                          |                                                               |
| 0UTP!JT                                                      |                                                          |                                      |                                         |                                         |                                           |                                                                                             |                                           |                                                                    |                                                                                                  |                                                               |
|                                                              | , e                                                      | 5                                    |                                         | 1                                       | •                                         |                                                                                             | •                                         |                                                                    | •                                                                                                |                                                               |
| C4 LPG                                                       | • 8 5                                                    | •                                    | 500                                     | 10001                                   | 1.40                                      | 1.28                                                                                        | 1.58                                      | 1.25                                                               | 1.25                                                                                             | 1.25                                                          |
| NAPHTHA                                                      | .88                                                      | 1 . 32                               | - 40<br>- 40<br>- 40                    | . 96                                    |                                           |                                                                                             |                                           |                                                                    | •                                                                                                |                                                               |
| REGULAR GASOLINE                                             | 25.67                                                    | 12 • 9ú                              |                                         | 11.40                                   | 27.03                                     | 17.30                                                                                       | 12.15                                     | 34.62                                                              | 14.03                                                                                            | 18.87                                                         |
| PREMIUM GASOLINE                                             | 15.99                                                    | 1 · M                                | 5 . 3 B                                 | 31.06                                   | 13.6A                                     | م                                                                                           | 4.05                                      | 13.60                                                              | 4.70                                                                                             | م                                                             |
| LOW LEAD GASOLINE                                            | 0.10                                                     | 12.91                                | 16.13                                   | 6.24                                    | 5°95                                      | 15.2L                                                                                       | 12.15                                     | 5 . 95                                                             | 14.63                                                                                            | 17.50                                                         |
| LEAU FREE GASOLINE<br>10-1 151 5051                          | E.10                                                     | 12.93                                | 19.95                                   | 4.16                                    | 16.5                                      |                                                                                             | 12.15                                     | 16.2                                                               | 14.00                                                                                            | ÷.,                                                           |
| 1111 1111 1111<br>1111 - 1111 11111                          |                                                          | PC 91                                | 37 0 0 1                                | 6 ( ( A                                 | 5 ° ° 5                                   | 50 07 U                                                                                     |                                           | 20.00                                                              | 0.00                                                                                             | 2007                                                          |
| JET M JET FUEL<br>Difeei                                     | 0.5.6                                                    | 24.63                                | 0 ° 0 ° 0                               | 0.50                                    | 2000                                      | n a                                                                                         | 2000<br>1000                              | 10.4                                                               | 4 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °                                                          | 0 · · · · · · · · · · · · · · · · · · ·                       |
| NO. 2 FUEL OIL                                               | 15.33                                                    | 12.65                                | 15.87                                   | 5.52                                    | 13.20                                     | 13.20                                                                                       | 11.36                                     | 0.90                                                               | 8.60                                                                                             | 6.60                                                          |
| HI SULFUP NO. 6                                              | 2.83                                                     | 2 8                                  | 2.60                                    | 7.28                                    | 62.2                                      | m                                                                                           | 3.20                                      | 3.20                                                               | 3~21                                                                                             | 3.20                                                          |
| LO SULFUP NO. 5                                              | 2 . 30                                                   | 2 °                                  | 2.40                                    | 7.29                                    | 3.23                                      | 3.26                                                                                        | 3.20                                      | 3.20                                                               | 3.20                                                                                             | 3.20                                                          |
|                                                              | 2.03                                                     | 2.0.                                 | 2.56                                    |                                         | 400                                       |                                                                                             | .24                                       | • •                                                                | .2+                                                                                              | . 24                                                          |
| ASPHALT AND ROAD OIL                                         | 2.20                                                     | 2 ° 2 Ù                              | 2.20                                    | 2.05                                    | 5.45                                      |                                                                                             | 1.3                                       | 5.45                                                               | 5.45                                                                                             | 5.64                                                          |
|                                                              |                                                          |                                      |                                         |                                         | . 3 2                                     |                                                                                             | 3                                         | •                                                                  |                                                                                                  |                                                               |
| COKE (HI SULFUR)                                             | • • 0                                                    | . 6                                  | 1. 3.                                   | 1.55                                    |                                           |                                                                                             | •                                         | .58                                                                | .58                                                                                              | . 50                                                          |
| COKE (CAL CRUDE)                                             |                                                          |                                      |                                         |                                         |                                           |                                                                                             |                                           |                                                                    |                                                                                                  |                                                               |
| BEN7ENE                                                      | 1 t<br>1 V<br>9                                          | •                                    | * 1<br>* 1<br>*                         | • 14                                    |                                           |                                                                                             |                                           |                                                                    |                                                                                                  |                                                               |
|                                                              | .51                                                      | • 26                                 |                                         | ÷2°                                     |                                           |                                                                                             |                                           |                                                                    |                                                                                                  |                                                               |
| MIXTO XYLENES<br>MISC. PRODUCTS                              | . E 3<br>2 . 34                                          | • 71                                 | •                                       | •                                       |                                           |                                                                                             |                                           |                                                                    |                                                                                                  |                                                               |
| TOTAL                                                        | 16 - • • 0                                               | 112.13                               | 101.25                                  |                                         | 116.54                                    | 10.85                                                                                       | 104.15                                    | 106.23                                                             | 104.50                                                                                           | 105.17                                                        |
| I NPUT-OUTPUT                                                | -5.5 ()                                                  | - 3 - 45                             | -3.75                                   | - 3.78                                  | -2.31                                     | -1.42                                                                                       | -2.02                                     | - 2 • 67                                                           | - + 4 7                                                                                          | -2.80                                                         |
| OPERATING COST FACTORS                                       |                                                          |                                      |                                         |                                         |                                           |                                                                                             |                                           |                                                                    |                                                                                                  |                                                               |
| ELEC. PHF (1563KNH70                                         |                                                          | 415.67                               | 141                                     | 643.AU                                  |                                           | 24.2.67                                                                                     | 109.605                                   | 126.50                                                             | 324.14                                                                                           | 325.67                                                        |
| FUEL 2600. (1205F050                                         | 60 m                                                     |                                      | ) · 0                                   | P                                       |                                           |                                                                                             | 5.4                                       | ົ                                                                  |                                                                                                  | ŧ.                                                            |
| FNERGY COMS. (1503F0                                         | 0.6.0                                                    | ( , , )                              | 7.14                                    | 8.43                                    |                                           |                                                                                             | 6.02                                      | 6.07                                                               | £6°5                                                                                             | 6.28                                                          |
| LABOR (NO. ENPLOYEES                                         | 516.10                                                   | 5,1,6,                               | 5 . 6 C                                 | 54.2.00                                 | <b>C</b> ù. <b>ù</b> .?                   | ۲<br>۲                                                                                      | 500.60                                    | 560.03                                                             | 506.00                                                                                           | 500.00                                                        |
| OPES 20515 (M6/D)<br>Thurstments (M41)                       | 15+21                                                    | 9° 3H                                | 2 • 1                                   | 23.53                                   |                                           | 2                                                                                           | 9°71                                      | or -                                                               | 9°61                                                                                             | 13.04                                                         |
|                                                              |                                                          |                                      |                                         |                                         |                                           |                                                                                             |                                           |                                                                    |                                                                                                  |                                                               |

u SECTION

0. 0. T. TPANSPORTATION SYSTEMS SEVIES

|                  |             | 50C0LBA    |       |             | -100.00                                      |                  | -1.50         | 1 PD<br>1 PD                                                                                |         | 1.50   | 1.00         | 11.40            | 31.60            | 6.24              | 4.16               | 6 6 6 6<br>6 7 6 6               | 9.51   | 5.52           | 7.28            | 7.28            | 09 6         | A A 4 7          | 1.55             | 46.                         | . 29    | • 35                            | 99.58      | - 3, 78     |                        | 64 3. 60             | 7.22                                          | 500.00               | ň                                      |
|------------------|-------------|------------|-------|-------------|----------------------------------------------|------------------|---------------|---------------------------------------------------------------------------------------------|---------|--------|--------------|------------------|------------------|-------------------|--------------------|----------------------------------|--------|----------------|-----------------|-----------------|--------------|------------------|------------------|-----------------------------|---------|---------------------------------|------------|-------------|------------------------|----------------------|-----------------------------------------------|----------------------|----------------------------------------|
|                  |             | SUCCLHS    |       |             | -109.63                                      | -1.4]            | -1.53         | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |         | 1.51   |              | 10.11            | 6.04             | 10.11             | 22.75              | 4 0 ° 9                          | 5.92   | 3.69           | 7.25            | 7.29            | 1.02         | 60.0             | ,                | 1 • 0 ×                     | 62.     | °25                             | 106.03     | 2.53        |                        |                      | 7.30                                          | 0.0                  | 4 • 4                                  |
|                  |             | 500040     |       |             | -100.00                                      | - 2 - 4 U        |               | -103.9                                                                                      |         | 1.50   | 0 <b>1</b> 9 | 15.40            | S                | 5                 | 15.40              | 4 7 4 7<br>9 7 9 7               | 21.24  | 1 (77)         | 7.28            | 7.28            | 1.02         | 00.02            | i                | • 7 t                       | .29     | • 26                            | 106.61     | 2.71        |                        | 587.14               | 6°69                                          | 500.00               | 10.54                                  |
|                  |             | 50CCLBA    |       |             | -100.00                                      | -1.40            |               | 103.5                                                                                       |         | 1.50   | 50           | 16.30            | ം                | 6 • 2 4           | ~ "                | <b>n</b> -                       | • 3    | • ه            | <b>N</b>        | <b>N</b> (      |              | •                | 1                | . 65                        | 62.     | . 50                            |            | - • C 8     |                        | ം                    | 8.4J                                          |                      | 21.9                                   |
| NH CASE          |             | 5604560    |       | -164.60     |                                              | -1.45            | - 66          | -102.0                                                                                      |         | 1.23   | 1.30         | 5.80<br>5.80     | 2,31             | 5.00              | 5.86               | C . C4                           | •<br>• | 11.07          | ê               | 7.28            | .56<br>5     |                  | 1                |                             |         | • 54                            | 16.66      | -2.1F       |                        | 215.22               | 3.46<br>7.26                                  | F13.66               | ;                                      |
| Not Inat Inat ↔/ |             | 50 CASHC   |       | -163.63     |                                              | -1.72            | -1.84         | -103.56                                                                                     |         | 1.84   | 2.10         | 7.99             | 2 °66            | 6.76              | 2°09               |                                  | 12.63  | - 1            | 14.75           | - 21 -          | Pi 1<br>.3 C | 7 5 . 7          |                  |                             |         | 1.44                            |            | -4.57       |                        | 9                    |                                               | 2                    | 41<br>•<br>12                          |
| +791 - 1300H     | INPUT       | 50CASRA    |       | -168.80     |                                              | - 1 - 40         | - 1. 06       | 13 2.46                                                                                     |         | 1.51   | 1.00         | 4 - 5ù           | 10.50            | $\sim$            | 2°30               | C. 24                            | : ~    | 11.07          | 16.70           | ŝ.              | 1.03         | 1.5 v            |                  |                             |         | ° 5                             | 106.17     | -2.23       |                        | 215.22               | 8.3                                           | 500.03               | 7                                      |
| VG LUDUSTRY      | FINEPY DATA | 50 CALLC   |       | 07.301-     |                                              | -1.40            |               | -1(3.93                                                                                     |         | 1.50   | • 5 5<br>• 1 | 13.32            | 4.42             | 11,32             | 13,32              | 47 47<br>6 01                    | 27.62  | 3.68           | 7.28            | 7.28            | 1.02         | 2 • 5            |                  |                             | u 0<br> | .26                             | 1 . 5 . 60 | 1.76        |                        | 5 26 . 93            |                                               | 500.66               | 9 <b>.</b> 6                           |
| PEFINING         | RE          | FGCALHC    |       | -1.0.15     |                                              | -1.45            |               | -112.57                                                                                     |         | 1 . C. | •            | .6.60            |                  | ŝ                 | •                  | •                                | • •    |                |                 | •               | •            | • •              |                  | -                           | 52.     | N                               | 104.27     | 1.76        |                        | t5].21               | 7.35                                          | 5.1.6.2              | 2                                      |
|                  |             | 5 JC AL RA |       | -136.48     |                                              | -1.40            | -1.53         | -102.97                                                                                     |         | 1.50   | .91<br>01    | 13.56            | 31.56            | 6.24              | 4.15<br>           | 3 ° 3 0                          | 9.8.8  | 5.52           | 7.29            | 17.28           | 1.02         |                  |                  | <b>C F</b>                  | .29     | . 26                            | 112.34     | 93          |                        | 661.52               | 7.27                                          | 50.00                | 21.51                                  |
| SECTION L. 5     |             | •          | INPUT | SWEET CRUDE | CALTE CRUCE<br>CALTE CRUCE<br>Al ASMAN CONDE | PATUPAL GASOLINE | NORMAL BUTANE | TOTAL                                                                                       | 1117110 | C3 LP5 | C4 LPG       | PEGULAP GASOLINE | PREMIUM GASOLIVE | LOW LEAD GASOLINE | LEAD FREE GASOLINE | JP=4 J21 FUEL<br>16T A 16T 51121 | DIETEL | NO. 2 FUEL OIL | HI SULFUR NO. 5 | LO SULFUR NO. 6 | LUBE STOCKS  | COKF (LO SULFUZ) | COKE (HI SULFUR) | COKF (CAL CRUDE)<br>Benjene | TOLUENE | MIXED XYLENES<br>MISC. PRODUCTS | TOTAL      | IN9UU-IU9NI | OPERATING COST FACTORS | ELEC. PWP (16JJKHH/D | FUEL REON. (1030FOEB<br>PNERK FONS - 111. PEO | LABOR IND. EMPLOYEES | OPER COSIC (48/0)<br>Investrents (444) |

15.22.43.02 (Juritzh HAMD) - FILF ANEJI , HC 40, 51 15.22.43.191.4 eNirku ANEUC 10.10.11 (22.43.40.10.41 15.22.49.1004 5.14.03.51.3423 FROM /51 15.14.03.1P L030576 MOPDS - FILE THPUT , UC 31. 31 15.14.03.85600EN26.333. 5.18.39.LABEL (MAG2.R. VSN=P1 +276.L=PIM74BASEN12.1 5.22.43.KFWINOITAPE16,TAPE17,TAPE18,TAPE19,TAPE2 .5.14.12.LAREL (MAG1.R.VSN=P16501.L=N0V77I NUUSPL J. IS.18.39. 9.696 CP SCOMOS COMPILATION TIME IS.18.39.COPYCR(INPUT, TAPES) 3644, MOPPS ( 247246 FAX 21) 400E+448 11/L 1/77 15.19.11.MT23 VOLUME SERIAL NUMMER IS P14276 15.19.11.MT23 ASSIGNED TO M462 15.19.14.\$VSN= P14276. RD AGGESS GRANTED 15.15.44.MT22 VOLUME SERIAL NU'ARER IS PICSAI 15.15.44.MT22 ASSIGNED TO MAGI 15.15.49.\$VSN= P16561. RD ACCESS GRANTED 5.14.11. ATTENTION - PLEASE CHANGE YOUP COS NOV77INDUSPL60 15.15.52.UPD4TE(P=0L01,N=NEM1,C=COM1,0,F) RIM749ASCH12 .5.16.13.FINII=COM1.R=2.DPT=2.L=0.B=B1) IS.19.29.86.MIND(31,TAPES,TAPE12.TAPE1.3)
IS.19.28.8FL(22U)Cu) 77311 77316 6001 1000 000 000 61 15.19.14.COPYCF (MAG2.T APE13.1) 5.19.26. COPYBF (MAG2, TAPE12, 1) 17.005 900. 2.0.1r 360. 15.15.48. LA9EL READ WAS 15.15.49. Enition Numrer 15.15.48. Petention Cycle 15.22.43.COPY (TAPE16, 0UTPUT) 15.22.47.COPY (TAPE 19.00T90T) 15.22.49.COPY (TAPE 20.00TPUT) 5.22.47.COPY (TAPE18,001901) "the Lobelly I 5.22.45.COPY (TAPE 17,0UTPUT) RETENTION CYCLE 15.14.11. SUPPLIED PASSHORD. 5.15.48.COPYRIMAG1,0L01,1) 15.19.14. LABEL READ WAS 15.19.14. ENITION NUMBER IS.15.55. UPDATE COMPLETE. IS.15.55.REWIND(COM1) 5.14.09.RADP.P4.T1U6.MT1. CREATION DATE Rel number CREATION DATE 5.19.24.COPYCF (4462,0.1) HGP 500PE 3.4.3 5.15.51. COPYR COMPLETE REEL NUMBER 5.14.11.USER (JMA72WC .) 5.19.28. UNLOAD (1462) 5.15.51. UNI DAD (MAG1) 5.15.52.REWIND (DL 01) 15.22.42.RFL(15000) Ļ 5.14.12. NORING) STOP 5.18.39.0PING) 15.22.43.EXIT. F.22.49.C1L 5.19.33.01. 15.22.43.MS 5.22.43.C) 01.64.55.61 19.02.43.04 15.22.42. 15.15.48. 5.15.48. 5.15.43. 5.19.14. 5.19.14. 5.19.14.

Appendix D

INDUSTRY DATA SOURCES

201/202

#### Appendix D

#### INDUSTRY DATA SOURCES

The primary sources of refining industry data used in this work are listed below. The data are summarized in Tables D-1 through D-4.

- Refining capacity by PAD district and size class: <u>0il and</u> <u>Gas Journal</u>, pp. 100-118 (4 April 1975)
- Supply and demand by PAD districts: Bureau of Mines, <u>Mineral</u> <u>Industry Surveys</u>, "Petroleum Statement," monthly, Table 32, pp. 36-40, U.S. Department of the Interior (January 1975)
- Movements of petroleum products by pipeline: Bureau of Mines, "Petroleum Statement," monthly, Table 12, p. 13, U.S. Department of the Interior (December 1974)
- Movements by tanker and barge: Bureau of Mines, "Petroleum Statement," monthly, Table 13, p. 14, U.S. Department of the Interior (December 1974)
- Crude oil and product prices: Crude oil--Federal Energy Administration, "Monthly Energy Review" (July 1976); products--<u>Platt's Oil Price Handbook and Oilmanac</u>, 1974 prices, McGraw-Hill, New York (1975).

Table D-1

### REFINERY CAPACITY ANALYSIS

| PAD District | U.S. Total | 10 <sup>3</sup> b/cd   | 205  | 2,249 | 3,002  | 4,149   | 4,614 | 14, 819 |
|--------------|------------|------------------------|------|-------|--------|---------|-------|---------|
|              | U.9        | No.                    | 109  | 65    | 40     | 30      | 15    | 259     |
|              | V          | 10 <sup>3</sup> b/cd   | 197  | 430   | 647    | 928     | 230   | 2,432   |
|              |            | No.                    | 22   | 13    | 8      | 7       | -     | 51      |
|              | IV         | 103 b/cd               | 67   | 427   | 52     | 8       | :     | 547     |
|              |            | No.                    | 15   | 13    | 1      | 8       |       | 29      |
|              | III        | 10 <sup>3</sup> b/cd   | 228  | 604   | 915    | 606     | 3,476 | 6, 132  |
|              |            | No.                    | 35   | 18    | 12     | 7       | 11    | 83      |
|              | II         | 10 <sup>3</sup> b/cd   | 197  | 691   | 854    | 1,645   | 643   | 4,030   |
|              |            | No.                    | 22   | 19    | 13     | 12      | -7    | 68      |
|              | T          | 10 <sup>3</sup> b/cd   | 115  | 96    | 534    | 667     | 265   | 1,678   |
|              |            | No.                    | 15   | 2     | 9      | 4       | -     | 28      |
| Refinery     | Capacity   | (10 <sup>3</sup> b/cd) | 0-20 | 20-50 | 50-100 | 100-200 | 200+  |         |

Source: Oil and Gas Journal, p. 100-118 (7 April 1975)

# Table D-2

# SUPPLY, DEMAND AND STOCKS OF ALL OILS BY PAD DISTRICTS FOR YEAR 1974 (Thousands of Barrels per Day)

| III         IV           206         691           1,336         691           206         61           25         52           12         52           52         63           115         11           252         45           115         11           115         11           115         11           115         11           115         11           115         12           118         844           8,481         884           8,481         884           118         81           8,490         899           8,490         899           9,92         209           118         31           118         31           118         31           119         31           118         31           119         31           119         31           294         23           204         10           11         21           21         21           21         21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |         |                             |              |        |            |         |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------|-----------------------------|--------------|--------|------------|---------|------------|
| laaa condanata       120       915       5,959       691         gas plant liquida       2,947       2,610       206       61         and plant condanata       1,114       687       795       45         ydrogen tiput       2,046       8,481       884       23         ydrogen tiput       6,360       4,604       8,481       884         cruda ot1       6,360       4,604       8,481       884         cruda ot1       6,360       4,604       8,481       884         cruda ot1       6,360       4,773       8,570       893         of all ot1       6,344       4,741       8,670       893         of all ot1       6,434       4,741       8,670       893         of all ot1       17       10       992       209         of all ot1       13       2,44       2,11       3,102       4,23         of relatry aupply       6,434       4,741       8,670       893       21         of relatry       2,44       2,11       3,12       22       42         of relatry       2,44       2,13       3,12       24       24       24       24       24       24 <th></th> <th>I</th> <th>II</th> <th>III</th> <th>PI</th> <th>NI-I</th> <th>Þ</th> <th>U.S. Totel</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      | I       | II                          | III          | PI     | NI-I       | Þ       | U.S. Totel |
| gas plant liquida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      | 120     | 915                         | 5,959        | 169    | 7,685      | 1,080   | 8,765      |
| and plant condanate $B$ $S_2$ $$ $23$ ydrogen input- $39$ $32$ $$ $2,046$ $85$ $113$ $16$ ydrogen input- $2,046$ $85$ $113$ $16$ $1/2$ of all oil- $2,046$ $85,437$ $4,797$ $894$ $4,991$ $$ $5,434$ $4,797$ $8,92$ $496$ $12$ $$ $5,434$ $4,797$ $899$ $905$ $12$ $$ $-10$ $+56$ $4,790$ $899$ $211$ $211$ $211$ $2,1209$ $111$ $11$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$ $211$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Natural gas plant liquids                            | 2.947   | 249                         | 1,336        | 61     | 1,656      | . 32    | 1,666      |
| and plant condanate       8       92        23         ytrogen input-       2,046       85       18       16       1         ytrogen input-       6,360       4,604       8,481       884       16       12         of all oil-        138       187       10       10       10       10         of all oil-        5,434       4,797       8,582       906       12         of all oil-        138       107       935       905       10         of all oil-        10 $+56$ $+77$ 8,582       906       12         of all oil-        -       10 $+56$ $+77$ 8,592       905       12         of all oil-        -       -       0 $+56$ $+77$ 8,93       211       22         of all vividual Dist.       1       1       2       8       1       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |         |                             |              | `      |            |         |            |
| 1,174       687       795       45         39       3       52          39       3       115       11 $2,046$ 8       115       16 $2,046$ 8       115       10 $$ 58       187       10 $$ 135       866       12 $$ $-10$ $+56$ $+92$ $+7$ $6,434$ $4,774$ $8,430$ 899       10 $10$ $+56$ $+92$ $+7$ $-10$ $-21$ $0,434$ $4,774$ $8,430$ 899 $-21$ $0,434$ $4,774$ $8,430$ 899 $-21$ $0,414$ $2,110$ $2,110$ $2,110$ $2,111$ $2,111$ $2,111$ $0,103$ $2,112$ $2,120$ $2,111$ $2,120$ $2,111$ $2,111$ $0,103$ $2,112$ $2,120$ $2,120$ $2,111$ $2,111$ $2,111$ $0,103$ $2,120$ $2,120$ $2,120$ $2,120$ $2,111$ $2,111$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rts:<br>Natural easolfna and plant condansata-       | - 40    | 52                          | ;            | 23     | 83         | 9       | 88         |
| 39       39       3       52 $ydrogen$ input-       2,046       85       115       115       12 $cruda$ oil-       6,360       4,664       8,481       884       12 $cruda$ oil-       6,360       4,664       8,481       884       12 $cruda$ oil-       6,434       4,741       8,490       899       47 $cruda$ oil- $cruda$ $4,741$ 8,490       899       47 $cruda$ oil- $cruda$ $4,741$ 8,490       899       47 $cruda$ $b,434$ $4,741$ 8,490       899       47 $cruda$ $b,434$ $4,741$ $8,490$ 899       47 $cruda$ $10$ $10$ $10$ $11$ $10$ $11$ $11$ $cruda$ $11$ $2,140$ $2,120$ $118$ $21$ $21$ $cruda$ $11$ $2,120$ $2,120$ $2,120$ $21$ $22$ $cruda$ $21$ $2,120$ $2,120$ $21$ $22$ $21$ $22$ $21$ $21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Crude of 1                                           | 1,174   | 687                         | 795          | 45     | 2,701      | 776     | 3,477      |
| ydrogen input       2,046       85       115       16       1/         ydrogen input $$ 2       360 $4,604$ 8/481       884         eruda oll $$ $6,300$ $4,604$ $8,481$ 884         of all oll $$ $$ $6,304$ $4,741$ $8,490$ $899$ of primery supply $6,434$ $4,741$ $8,690$ $899$ $$ $-100$ $+,644$ $2,123$ $992$ $299$ $$ $-100$ $+,741$ $8,690$ $899$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Unfinished of la                                     | 39      | m                           | 52           | 1      |            | 27      | 121        |
| ydrogen Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rafinad products                                     | 2,046   | 85                          | 115          | 16     |            | 2/ 139  | 2,401      |
| $ \begin{array}{c} \operatorname{cruda oil} \ldots \ldots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      | 2 2     | <b>E</b> 103 1              | 18           | 1 00   | 24         | 12.     | 36         |
| 64       135       187       10         of all otl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l'harrowrad for stude of sectors.                    | 00100   | 4<br>20<br>4<br>4<br>0<br>4 | 0,401<br>-86 | 12     | 14,020     |         | //C'OT     |
| of primary supply     6,424     4,797     8,582     906       of primary supply     6,434     4,741     8,490     899       17     10     13     211     5,102     429       18     244     211     5,102     429       19     1     2     10     211     2       10     12     2     992     209       10     11     2     992     209       10     192     118     912     209       10     192     118     992     209       11     21     370     192     118     31       10     192     118     32     40     25       11     138     352     473     25       15     30     240     252     34       15     30     240     255     34       15     30     240     255     34       19     13     30     286     31       19     13     30     286     27       19     13     30     286     294       19     13     30     286     31       10     136     161     36     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Processing gein                                      | 3       | 135                         | 187          | 19     | 396        | 85      | 481        |
| of all ot1     -10     +56     +92     +7       of primary supply     6,434     4,741     8,490     899       17     10     99     21       18     2,160     2,249     1003     211       2,150     2,239     992     209       10     10     11     11     2       10     10     11     11     2       10     10     192     118     31       2,150     2,239     992     209       2,150     2,239     992     209       2,150     2,131     11     2       2,150     2,133     352     473     25       10     192     118     352     473     25       11     138     352     473     25       12     30     236     107       21     30     236     107       21     30     236     240       21     30     236     247       22     10,03     236     247       23     352     473     25       240     236     240     236       25     36     240     26       26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total supply                                         | 6.424   | 161.2                       | 8,582        | 906    | 14,908     | 2,342   | 17,042     |
| of primery supply     6,434     4,741     8,490     899       cres     -     -     3        dots     244     211     5,102     229       dots     2,44     211     5,103     211       ucts:     2,160     2,239     992     209       ucts:     2,160     2,239     992     209       10     192     118     31       ucts:     370     192     118     31       13     2,0     133     40     22       hylene)     313     40     294     1       13     2,0     2,40     23     34       14     31     4,0     286     23       15     352     4,0     28     23       15     352     4,0     28     23       10     193     10     286     23       11     10     21     30     21       21     30     21     36     40       21     30     21     36     40       22     34     28     24     27       23     36     41     26     24       24     36     46     21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Changa in stocks of all oil                          | -10     | +56                         | +92          | 4      | +145       | +34     | +179       |
| - $                                                                                                        -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total disposition of primery supply                  | \$5434  | 4 • 741                     | 067*8        | 668    | 14,763     | 2,308   | 16,863     |
| 17 $10$ $99$ $20$ $44$ $211$ $5,102$ $429$ $101$ $2160$ $2,249$ $1003$ $211$ $101$ $2160$ $2,249$ $1003$ $211$ $2,150$ $2,2349$ $1902$ $209$ $2,150$ $2,2349$ $192$ $219$ $2,150$ $2,2349$ $192$ $211$ $2,150$ $2,2349$ $192$ $209$ $2,150$ $2,2349$ $192$ $209$ $2,12$ $313$ $400$ $22$ $101$ $192$ $118$ $31$ $22$ $101$ $192$ $118$ $32$ $40$ $22$ $101$ $123$ $809$ $322$ $40$ $22$ $101$ $136$ $240$ $222$ $40$ $211$ $102$ $211$ $103$ $211$ $22$ $40$ $211$ $102$ $212$ $213$ $212$ $212$ $212$ $212$ $212$ $222$ <td>rta:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rta:                                                 |         |                             |              |        |            |         |            |
| 44       21       5,103       47         adividual Dist. 1-1V)-       1       2,160       2,249       1,003       211         ucts:       2,160       2,239       992       209       211         2       10       192       118       31       2         10       10       192       118       31       2         11       313       50       2,239       992       209         12       310       192       118       31       2         13       370       123       40       22       40       22         13       57       4,0       29,4       21       31       22         14       352       4,0       29,4       21       23       34       23         15       1,706       240       252       34       23       24       23       24       23       24       23       24       23       24       23       24       23       24       23       24       23       24       23       24       23       24       23       24       23       24       23       24       23       24       24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cruda of 1                                           | :       | 0                           | 2            | :      | <b>.</b>   | 0       |            |
| Advidual Dist. I-TV)-     Image: Constraint of the constra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rafinad products                                     | 11      | 10                          | 66           | 1 5    | 126        | 92      | 218        |
| uctes:<br>2,150 2,249 1,003 211<br>2,150 2,238 992 209<br>10 11 11 31<br>370 192 118 31<br>370 42 48 9<br>371 42 48 9<br>373 40 294 1<br>1,338 879 355 40<br>373 40 286<br>61 38 79 355 107<br>1,738 879 355 107<br>1,738 879 355 107<br>1,706 240 286<br>61 38 79 225 94<br>21 22 40 21<br>21 22 40 21<br>21 22 40 21<br>21 22 40 21<br>21 22 40 20<br>21 22 40 20<br>20 21 20<br>21 22 40 20<br>21 22 40 20<br>21 22 40 20<br>21 22 40 20<br>21 20<br>20 21<br>20 20<br>20 21<br>20 20<br>20 21<br>20 20<br>20 | ments to other utstricts                             | 1       | 117                         | 301 °C       | £ 7 #  | 10         | g -     | 51         |
| 2,160     2,249     1,003     211       2,150     2,238     992     209       370     191     11     11       371     42     48     9       373     42     48     9       373     13     250     70       370     121     11     31       373     42     48     9       373     1,38     352     40       25     352     40     3       1,338     879     355     107       1,338     879     355     107       26     240     234     23       1,338     879     355     107       2     1,338     879     355     107       2     1,338     879     355     107       2     1,36     240     252     34       2     31     30     21     21       2     136     154     84     27       2     136     154     84     27       2     136     154     84     27       2     136     16     12     26       2     11     26     12     26       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | stic demand for products:                            | •       | 4                           | 2            | •      | :          | •       | 2          |
| 2,150     2,238     992     209       10     11     11     31       37     42     48     9       37     42     48     9       37     42     48     9       313     150     294     1       313     158     352     470     25       313     53     470     284     1       1,938     879     355     107       1,938     879     355     107       2     30     206     26       2     30     286        2     30     286        2     30     286        2     30     286        2     1,706     240     286       2     30     286        2     136     11     2       2     136     122     206       2     136     122     206       3     122     206     15       2     136     16     12       2     136     469       3     10,400     15,607       2     10     10     10,00       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      | 2,160   | 2,249                       | 1,003        | 211    | 5,623      | 959     | 6,582      |
| 370     191     11     11     31       57     42     48     9       57     42     48     9       57     42     48     9       57     42     48     9       53     54     294     1       55     352     473     25       73     53     355     107       1,706     240     252     34       0     30     286        1,706     240     252     34       0     30     286        1,706     240     252     34       0     30     286        1,706     240     286        1,706     240     286        21     38     41        21     38     41        21     136     15     64       21     11      2       22     136     64     27       23     136     16     1       24     64     3,278     469       25     10     30     20       23     122     206     15 <td< td=""><td>Motor gasolina</td><td>2,150</td><td>2,238</td><td>992</td><td>209</td><td>5,589</td><td>8%6</td><td>6,537</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Motor gasolina                                       | 2,150   | 2,238                       | 992          | 209    | 5,589      | 8%6     | 6,537      |
| 57     4.2     4.8     9       57     4.2     4.8     9       57     4.0     2.94     1       58     352     4.73     25       1,336     879     355     107       1,336     879     355     107       1,336     240     252     34       0.1,706     240     252     34       0.1,706     240     286        1,706     240     286        1,706     240     286        1,706     240     286        21     38     41     2       21     38     41     2       21     38     41     2       21     38     41     2       22     136     154     84       23     136     154     84       23     136     122     206       24     39     3,278     469       25     10     30     20       26     122     206     15       27     11      2       28     3,578     3,650     2       29     66,73     3,660     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      | 10      | 11                          | 110          | 7 6    | ¥ ;        | 11      | C4         |
| jjj     150     70     22       hylene)     5     40     294     1       158     352     473     25     25       158     352     473     25       158     352     473     25       1,338     879     355     107       25     240     252     34       26     21     30     30     286       21     30     30     286        30     30     286      21       30     30     286      21       31     30     21     30     21       32     154     84     21       33     154     84     21       34     11      2       35     154     84     2       32     154     84     2       33     154     84     2       34     10      2       35     10      2       36     122     206     15       41      2     2       35     10     1        36     1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |         | 57.<br>C.1                  | 97           |        | 156        | 404     | 222        |
| hylene)     5     40     294     1       158     352     473     25       158     352     473     25       1,338     879     355     107       1,706     240     252     34       0     30     20     255     34       0     30     240     252     34       0     30     286      26       1,706     240     252     34       0     30     286        1,706     30     286        21     30     21     26       13     136     154     84       136     154     84     27       136     154     84     27       23     136     11        24     11     11        25     122     206     15       26     122     206     15       26     17      20       27     11      2       28     3,278     3,278     469       27     10     30     20       27     21     3,0600     2       28 <td< td=""><td>kerosina - typekerosina - type</td><td>313</td><td>150</td><td>70</td><td>22</td><td>555</td><td>216</td><td>111</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | kerosina - typekerosina - type                       | 313     | 150                         | 70           | 22     | 555        | 216     | 111        |
| 158     352     473     25       73     52     40     3       1,706     240     252     34       00     30     240     252     34       1,706     240     252     34       01     30     30     286        1,706     240     252     34       01     30     30     286        1,706     240     252     34       21     30     286        21     30     286        21     30     286     21       13     154     84     27       13     122     206     15       23     122     206     15       24     31     11        25     12     206     15       26     12     206     15       27     11      20       28     3,278     3,600     2       29     6,172     4,518     3,278       20400     16,664     79,553     110,400       26     27     30,600     2,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Zthana (including ethylene)                          | ~       | 40                          | 294          | 1      | 340        | 1       | 341        |
| 0     0     0     0     0     0       0     1,706     240     252     34       0     30     240     252     34       1,706     240     252     34       1,706     240     252     34       1,706     21     30     286        21     30     286     21     27       1     32     98     69     11       136     154     84     27       136     154     84     27       136     122     206     15       137     122     206     15       136     122     206     15       137     122     206     15       13     122     206     15       13     122     206     15       13     122     206     15       13     122     30     30       14      21     10       15     6,172     4,518     3,278       15     20     20     26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Liquatied gases                                      | 158     | 352                         | 473          | 25     | 1,008      | 8°      | 1,064      |
| 0.0648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kerosinator di 201                                   | 1 230   | 20                          | 40           | 201    | 201<br>201 | 8 090   | 0/1        |
| ocks     30     30     286        21     30     21     30     21       21     30     21      21       7     9     6     41     2       7     9     6     9     11       32     136     154     64     27       136     154     64     27       1     11      2       53     122     206     15       53     122     206     15       6,172     4,518     3,278     469       barrals)     16,664     79,553     110,410     15,607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Astilists fuel oil                                   | 1.706   | 240                         | 555<br>575   | 5 2    | 210.2      | 190     | 2.624      |
| 21     30     21        61     38     41     2       7     4     6     11       7     98     69     11       136     154     84     27       136     122     206     15       53     122     206     15       53     122     206     15       53     122     206     15       6,172     4,518     3,278     469       barrals)     16,864     79,553     110,410     15,807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      | 30      | 30                          | 286          |        | 346        | 17      | 363        |
| 61     38     41     2       7     4     6        7     98     69     11       136     154     84     27       1     1      2       1     11      2       1     11      2       1     11      2       23     122     206     15       24     17      2       25     122     206     15       21     17      2       21     17      2       25     17     10     30       2664     79,553     110,410     15,607       2000     15,057     15,571     10,610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      | 21      | 30                          | 21           | ;      | 72         | 15      | 87         |
| 32     98     69     11       136     154     64     27       136     154     64     27       13     12     206     15       13     12     206     15       23     122     206     15       23     12     206     15       24     17      21       25     17     10     30       26     172     4,518     3,278       27     16,864     79,553     110,410       2607     2     30     2,907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lubrican terrererererererererererererererererere     | 61      | 38                          | 41           | 61     | 142        |         | 155        |
| 136     154     84     27       1     1     1     -     2       53     122     206     15        1     17     -       21     17     -     2       21     17     -     -       21     17     -     -       21     10     30     -       21     10     30     -       21     10     30     -       21     10,410     15,607     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      | 10      | 1 4                         |              |        | 210        |         | 010        |
| 1     11     -     2       53     122     206     15       -     17     -     2       -     21     10     30       -     21     10,410     369       barrals)     16,864     79,553     110,410       condanate     15,655     27,13     36,607     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      | 136     | 154                         | 3            | 27     | 401        | 62      | 463        |
| 53     122     206     15       17      17        21     10     30        21     10     30        21     10     30        21     10     30        21     4,518     3,278     469       berrale     16,864     79,553     110,410     15,807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | load of 1                                            | 1       | 11                          | 8            | 2      | 14         | s       | 19         |
| ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Still gas for fuel                                   | 53      | 122                         | 206          | 15     | 396        | 85      | 481        |
| 6,172         4,518         3,278         469           berrale)         10,410         15,607         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000         3,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mant Condensatarrererererererererererererererererere | : 5     | 12                          | -            | :      | /1         | :       | 11         |
| barrals) [6,864 79,553 110,410 15,807 2<br>condaneata 16,864 79,553 110,410 15,807 2<br>300 2 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      | 6.172   | A. 518                      | 3.278        | 697    | 14.437     | 2.192   | 16.629     |
| condanaata 16,864 79,553 110,410 15,807 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ks of all oils (10 <sup>3</sup> barrals)             |         |                             |              |        |            | 6<br>6  |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Crude oil and lesse condensata                       | 16,864  | 79,553                      | 110,410      | 15,807 | 222,634    | 42,386  | 265,020    |
| 165 1 622 5 458 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Willingnad olls                                      | CC0, C1 | 22,143                      | 5 458        | 2,900  | 19,096     | 20,333  | 100,031    |
| - 194.129 201.596 213.178 17.705 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mefinad products                                     | 194.129 | 201,596                     | 213,178      | 17.705 | 626.608    | 68.437  | 695,045    |
| 226,213 304,914 368,646 36,630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total                                                | 226,213 | 304,914                     | 368,646      | 36,630 | 936,403    | 137,243 | 1,073,646  |

Table D-2 (Continued)

|                           |          | Naturel gas liquida | e liquide | Other 2/ |          | P 4  | DONESTIC<br>by D | T C A E C E I P T S<br>by Diatricta | 115  |      |              |         | Shimenta      |           | Inventoriae 5/ | 1ae 3/  |
|---------------------------|----------|---------------------|-----------|----------|----------|------|------------------|-------------------------------------|------|------|--------------|---------|---------------|-----------|----------------|---------|
|                           | Rafinery | at                  | produc-   | carbona  | <u> </u> | From | From             | From                                | From | From | St ock       |         | to other      | Local     | First of       | End of  |
|                           | Output   | relinery            | 110n      | blanded  | leporte  | -    | =                |                                     | 2    | >    | change       | Esporto | - Platricka - | domend    | Yeer           | YAAL    |
|                           | 688      | = ;                 | •         | ~ •      | 176      | . 3  | *                | 1,364                               |      | •    | 7 :          |         | 971           | 2,150     | 168.85         | 349.96  |
| =                         | 2        | 5                   |           |          |          | 071  | . :              | 5<br>5                              | 2    |      |              |         |               |           | 10.4.44        |         |
|                           | 2,123    |                     |           | <u>-</u> |          | •    | ž •              |                                     | • •  |      | 1            |         | 05            | 209       | 1629           | 7 402   |
| 2                         |          | 200                 | ŀ         |          | 401      |      |                  |                                     |      |      |              |         |               | 6 609     | 104 757        | 101 101 |
| A1-1                      | 8.149    | 40/                 | •         | : 2      |          |      |                  |                                     | 90   | :    | : •          |         | 22            | 846       | 23.221         | 24.219  |
| U B. Total                | 5.575    | 146                 | -         | 9        | 204      |      |                  |                                     |      |      | +24          |         |               | 6.537     | 209,478        | 218,410 |
| Aviation ganoliga -       |          |                     |           |          |          |      |                  |                                     |      |      |              |         |               |           |                |         |
|                           | -        | •                   | •         | •        | •        | •    | •                | •                                   | •    | •    | •            |         | •             | 2:        | 397            | 69      |
|                           | •        | •                   | •         | •        | •        | •    | •                | ~                                   | •    | •    |              |         |               |           | 414            | 104     |
| Ξ                         | 2.       | •                   | •         | •        | • •      | •    | •                | • •                                 |      |      | <del>,</del> |         | <u>.</u>      | =~        | 900° 1         | 472 1   |
|                           |          | ·                   |           |          |          |      |                  |                                     |      |      |              |         | ľ             | 1         | 1 240          | 1 100   |
|                           | 3 =      | • •                 |           |          |          |      |                  |                                     | •    |      |              |         | •             | :=        | 201            | 0.0     |
|                           | 17       |                     |           |          |          |      |                  |                                     |      |      | 1            |         |               | 53        | 3,939          | 1411    |
| Bachtha type lat (vel -   |          |                     |           |          |          |      |                  |                                     |      |      |              |         |               |           |                |         |
| ĕ                         | •        | •                   | •         | •        | :        | •    | •                | 30                                  | •    | •    | •            | •       | -             | 57        | 293            | 221     |
| 11                        | 41       | •                   | •         | •        | •        | -    | •                |                                     | -    | •    | Ŧ            | •       | -             | 27        | 1.214          | 1, 529  |
| 101                       | 8        | •                   | •         | •        | ~        | •    | -                | •                                   | •    | •    | •            |         | 57            | <b>70</b> | 2,254          | 2,119   |
| AI                        | 21       | •                   |           |          |          |      | •                | •                                   |      |      | •            | •       |               |           | 662            | 14      |
| Al-1                      | 291      | •                   | •         |          | 2        | •    |                  | •                                   |      |      | <b>-</b>     | •       |               | 136       | 166 6          | 4,147   |
|                           |          | •                   | ·         | •        |          | t    | •                |                                     |      | ·    |              |         | ·             |           |                |         |
| U.I. Totel                |          | •                   |           | -        | 3        | Ť    | Î                |                                     |      | T    | ·            | ·       |               | ,,,       | 1111           | 1111    |
| Kerosine Type jat tuel -  | 2.0      | •                   | ,         |          | 22       |      |                  | 214                                 | •    | •    | •            |         | 4             | 616       | 5.235          | 5.276 . |
| 11                        | 125      |                     | •         |          |          | *    | •                | 5                                   | •    | •    | 7            | •       | •             | 150       | 6.026          | 5,400   |
| III                       | 312      | •                   | •         | •        | •        | •    | •                | •                                   | •    | •    | 1            | •       | 246           | 20        | 6,178          | 1.536   |
| ~1                        | 4        | •                   | ·         | •        |          | •    | -                | 01                                  |      | -    | •            | -       |               | ~         |                |         |
| Al-1                      | 6.17     | •                   | •         | •        | 8        | •    |                  |                                     | •    |      | ¢,           |         | •             | 505       | 12.024         | 147.81  |
| ft. 9. Total              | 107      |                     |           |          |          |      |                  | +                                   |      |      | (+           |         |               | 11        | 22.945         | 21,906  |
| Rehene (Incl. ethylene) - |          |                     |           |          |          |      |                  |                                     |      |      |              |         |               |           |                |         |
| Dlatfict 1                | •        | •                   | •         | •        | •        | •    | •                | •                                   | •    | •    | •            | •       | •             | 5         | •              | •       |
|                           | -        | •                   | 40        | •        | •        | •    | •                | •                                   | •    | •    | Ŧ            | •       | •             | 9         | 1,225          | 1.530   |
| H                         | 5        | •                   | 277       | •        | •        | •    | •                | •                                   | •    | •    | -            | •       | •             | 4.        | 3,795          | 68°     |
| AI                        | -        | •                   |           | •        | •        |      | •                | •                                   | •    | •    | ·            | ·       | •             |           |                |         |
| 3-1 <b>2</b>              | 2 -      | •                   | 223       | •        | • •      | • •  |                  | • •                                 | • •  |      | 7,           | • •     |               | 091       | E20.4          | - 792   |
|                           | ŀ        |                     | 1         | ſ        |          | T    |                  |                                     |      |      | -            |         |               | 17        | 10.0           | \$.362  |
| I famelind acces          |          |                     |           |          |          |      |                  |                                     |      |      |              |         |               |           |                |         |
| District Buse District 1  | 19       | 7                   | 16        | •        | 15       |      | 29               | 4                                   |      | •    | 1            |         |               | 061       | 5.390          | 4.111   |
| 11                        | 2        | ą                   | 132       | •        | 2        | •    | •                | 207                                 | •    | •    | 01+          |         |               | 352       | 32,976         | 89°.85  |
| Ξ.                        | 3        | 10                  | 169       | •        | 92       |      | 2                |                                     | 2    | • •  | Ę            | 20      | 102           |           | CD6"26         | 4.C. M  |
|                           |          | 2006                | 100       |          | 00       |      | ŀ                | ŀ                                   |      |      | N/T          | 20      |               | 1.006     | 11.13          | 104.160 |
|                           | 3        | -                   | 1         |          | =        |      | •                | •                                   |      | •    | 1+           | 5       | •             | 96        | 1.403          | 1.792   |
| U.S. Total                | 321      | -219                | 106       |          | 172      |      |                  |                                     |      |      | +14          | 25      |               | 1,064     | 919.61         | 107,980 |
|                           |          |                     |           |          |          |      |                  |                                     |      |      |              |         |               |           |                |         |

Table D-2 (Continued)

|                            |          | Satural man llaulda | a llaulda | Othar 3/ |         | DOM  | DOMESTIC | 9 2 2 2 2 7 9 |       |      |        |           | 18        |       |            |            |
|----------------------------|----------|---------------------|-----------|----------|---------|------|----------|---------------|-------|------|--------|-----------|-----------|-------|------------|------------|
|                            |          | Blended             | Plant     | bydro-   |         |      | - 2      | lete          |       |      |        |           | Bhipmento |       | Invatories | teo 2/     |
|                            | Reflecty | at                  | produc-   | carbone  |         | From | Prom.    | From          | Prom. | Pron | 0 tock |           | to other  | Local | Virat af   | Lad of     |
|                            | output   | retinery            | 1013      | b ended  | 1 10011 |      |          |               |       |      | chong  | a stody a | Mattick   |       |            | The second |
| Kareelse - District I      | 21       | •                   | 0         | •        | •       |      | •        | 2             | •     | •    | 17     | •         |           |       |            | 104.0      |
|                            | ₹:       | •                   |           | •        | •       | -    |          | •             | •     |      |        |           |           |       |            |            |
|                            | 2        | •                   |           | •        | -       | •    | •        |               | •     | •    | 7 1    | •         | 3         | 2     | 2,016      | 78/ 6      |
|                            |          | •                   | ŀ         | •        |         | ·    |          |               |       |      |        |           |           |       | 102 00     |            |
| AI-1                       | 2        | 9                   | -         | •        | ^       | • •  | • •      | • •           |       | • •  | ;      |           | • •       |       | 414        |            |
|                            |          |                     | F         |          | -       |      |          |               |       |      | 1      |           |           | 176   | 11.03      | 19.760     |
| 10501 - 010                |          |                     |           |          |         |      | Í        |               | Ī     |      |        |           |           |       |            | T T T T    |
| Distillets ruet oil -      | ;;       |                     |           |          |         |      |          |               |       |      | -      | ,         |           | 1 110 | 20 470     | 24 210     |
| 7 10110010                 |          |                     |           |          |         |      |          |               | -     |      | 17     |           | : 2       |       | 101.10     | 41.154     |
|                            |          | •                   |           | -<br>-   | -:      | 7    |          | 8             | 2     |      |        |           | -         |       | ALA TE     | 41 676     |
| 111                        | 1.1.1    | • •                 |           | <br>     |         |      | 3 -      |               |       |      |        |           | 26        | 101   | 1130       | 1.982      |
|                            |          | ľ                   |           | -        |         |      |          |               |       |      |        | ľ         |           | 3 670 | 102 614    | 111 711    |
| AT-1                       |          | • •                 |           |          | 5       |      |          |               | 14    |      |        | ~         | , «       | 260   | 13.025     | 16.315     |
| n a forel                  | 3 66.8   |                     | F         |          | 380     |      |          |               |       |      | 01+    | -         |           | 2.939 | 196.441    | 200.060    |
| Bastdial fiel all -        |          |                     |           |          |         |      |          |               | T     |      |        |           |           |       |            |            |
|                            | 31       | •                   |           |          | 1 610   |      |          |               |       | •    | *      |           | 0         | 1.706 | 23.610     | 27.639     |
|                            |          |                     |           |          |         |      |          | 2             |       |      |        |           |           | 240   | 0.201      | A.012      |
| 1                          |          | ,                   |           |          | ;;      |      |          |               | , ,   | 1    |        | •         | 124       | 526   | 100        | 10,023     |
|                            | 100      |                     | •         |          | 76      |      | •        |               |       |      |        | •         |           | 12    | TON.       | 510        |
|                            |          | ľ                   | Ī         |          |         |      | ·        |               |       |      |        | F         |           |       |            |            |
| -1-1<br>-                  | 2.5      | 0 (                 | • •       |          |         | • •  |          |               |       |      | 53     | • =       | •         | . 201 | 11 622     | 11.016     |
|                            |          | ·                   | ľ         |          |         | ľ    | ľ        |               |       |      |        | I         |           |       | A A A A    |            |
| U.L. Total                 | 9/0-1    | •                   | ·         | 2        | 12/21   |      | Ì        |               |       | Ī    |        |           |           |       | AL IN      | 20.45      |
| Petrochemical faadatocke - |          |                     | _         |          | 0       |      |          | 9             |       |      |        | •         |           | \$    | 6.8        | 104        |
| Oterice [                  | 2:       | •                   | •         | •        | 7       | •    | •        | 2 4           |       |      |        |           |           | 2.5   | 444        |            |
|                            | 12       | •                   | •         | •        |         | •    | •        | •             | •     | •    | . :    |           |           | 2     |            |            |
| 111                        | 6.6.2    | •                   |           | •        | 2       | •    | •        |               | •     | • •  |        |           | 2         |       | 246.4      | 6, 6JJ     |
|                            | •        | ·                   | ſ         |          |         |      |          |               |       |      | 1      | 0         |           | A.A.  | 3 074      | 9 000      |
| A 9 - 7                    | Į        | • •                 | • •       | • •      | - 14    |      |          |               |       |      | : 7    |           | •         | 2     | 110        | 205        |
| U.B. Total                 | 369      | .                   |           |          | 12      |      |          |               |       |      | ¢      | 1         |           | 163   | 1 100.2    | 3,606      |
| farefall and the -         |          |                     |           |          |         |      | Ī        |               |       |      |        |           |           |       |            |            |
| District 1                 |          | •                   | •         | •        |         | •    | •        | 21            | •     | •    |        |           | •         | 21    | 24         | 1,167      |
| II                         | 2        | •                   | •         | •        | -       |      |          | •             | •     | •    | +1     | -         | •         | 8     | 104        | 1,164      |
| 111                        |          | •                   | •         | •        | •       | •    | •        | •             | •     | •    | ç      | ~         | 2         | 31    | 1,990      | 2,719      |
| 1 11                       | •        | •                   | •         | •        | •       | •    | •        | •             | •     |      |        |           | •         |       | 2          | ~          |
| A1-1                       | 76       | 0                   |           | •        | ~       | •    |          | •             | 0     | •    | \$     | 4         | •         | 22    | C00°C      | 5,072      |
|                            |          | ·                   | ·         | •        | ·       | •    | •        | •             | ·     | ·    | •      | •         | •         |       |            |            |
| 1910I . B.U                |          | •                   | ľ         | •        |         | Ī    | T        |               | T     | T    |        |           |           |       | 1177       | 14/47      |
| Looricente - District 1    | :        | ,                   | ,         |          |         |      |          | 1             |       | •    | *      | •         | •         | 63    | 3.376      | 4.932      |
|                            | 2.5      |                     |           |          |         |      |          | :=            |       |      |        |           | •         | 2     | 2.177      | 9.039      |
| 111                        | 11       | •                   | •         | 0        | -       | •    | •        |               | •     | •    | 1      | 20        | 31        | 41    | 3,229      | 444        |
| NR IN                      |          | •                   |           | •        |         | -    | •        | •             | •     | -    | •      | 0         | -         |       | THE OWNER  | 2          |
| 1-1A                       | 179      | 0                   | 0         | 0        | -       | 0    | •        | •             | •     | 4    | +10    | 2         | •         | 142   | 160,11     | 14, 504    |
|                            |          | ·                   | •         | •        | ·       | -    | -        |               |       |      |        |           |           |       |            |            |
| U.S. Total                 | 17%      | -                   | •         |          | 2       |      |          |               |       |      |        |           |           |       | 120101     | Non of     |

207

Table D-2 (Continued)

|                                       |          | Naturel ges liquids | liguide | Other <u>3</u> / |         | N O O    | ESTIC REC<br>by Districts | RECEIPT | 2    |      |       |        | Shipments             |          | Inventorles | ee 3/    |
|---------------------------------------|----------|---------------------|---------|------------------|---------|----------|---------------------------|---------|------|------|-------|--------|-----------------------|----------|-------------|----------|
|                                       | Refinery | at                  | produc- | cerbone          | 1       | From     | Frem                      | From    | From | From | Stock | Funnta | to other<br>districts | local    | Virst of    | End of   |
| Dise-las                              | ovtput   | <b>Tatinery</b>     | 100     | Plended          | 1 Jodur | +-       | ÷                         |         |      |      | -     |        |                       | -        | 204         | 222      |
| 01961144 F                            |          |                     |         |                  |         |          |                           | 4       | •    | •    |       | •      |                       | +        | 228         | 270      |
| 112                                   | •        | •                   | •       | •                |         | •        | •                         | •       | •    | •    | •     | 2      | en1                   | •        | 159         | 544      |
| AL                                    |          | •                   | -       | •                |         | •        |                           |         | •    | •    | •     | •      | ·                     | •        |             |          |
| 1-1A                                  | 91       |                     |         | •                | -       |          | •                         | •       |      | •    | 1     | 2      | •                     | 5.       | 976         | 1,099    |
| *                                     | -        |                     |         |                  | •       | •        | •                         | -       | 1    | ·    | ·     | •      | •                     |          | 26          | 2        |
| U.S. Totel                            | 61       | •                   |         | •                | 2       |          |                           |         |      | +    | 1     | 7      |                       | 02       | 066         | 1414     |
| Coite §/ -                            | ;        |                     |         |                  |         |          |                           |         | •    | •    |       | \$     |                       | 52       | 2.726       | 1.094    |
| UISCIACE                              |          | •                   |         |                  |         |          |                           |         | •    | •    | -     |        | •                     | 86       | 2.533       | 494      |
|                                       |          |                     |         |                  |         |          | •                         | •       |      | •    | -     | 1      | •                     | 69       | 561         | 244      |
|                                       | _        |                     |         | •                |         |          |                           |         | •    | •    | •     |        | •                     | 11       | 1.822       | 1.631    |
| 1-1                                   | 252      |                     |         |                  |         |          |                           |         |      |      | 6-    | 15     |                       | 210      | 7.445       | 4,283    |
| 2                                     |          |                     | •       | •                | •       | •        | •                         | •       | -    | •    | 4     | 62     | •                     | 29       | 2,529       | 751-1    |
| U.S. Jotel                            |          | •                   | ·       |                  |         |          |                           |         |      |      | -     | 611    |                       | 239      | 978.6       | 2.420    |
|                                       | _        |                     |         |                  | ç       |          |                           |         | ,    |      |       | 1      | 4                     | 136      | 4.229       | 3.335    |
| Olatrict 3                            |          | •                   | •       | •                | 2       | •        | •                         |         |      |      |       |        |                       | 154      | 4.614       | 100.7    |
|                                       |          | •                   | • •     | • •              |         |          | • •                       | 2.      |      | , ,  | : 7   | -      | 26                    |          | 2.766       | 4.172    |
|                                       |          |                     | , ,     | •                | •       | •        | •                         | •       | •    | -    | +     | •      | •                     | 27       | 1,270       | 1.631    |
| NI -1                                 | 386      |                     |         |                  | ī       |          |                           |         |      |      | +16   | -      | ·                     | 101      | 12,699      | 10,900   |
|                                       |          | •                   |         | •                | •       |          |                           |         | •    | ·    | -     | •      | -                     | 62       | 2123        | 280.2    |
| V.S. Total                            | 450      | ·                   | •       | ·                | 10      |          |                           |         |      |      |       | -      |                       | 463      | 15.024      | 21.070   |
|                                       | •        |                     |         |                  |         |          |                           |         | ,    |      |       | •      | •                     |          | 49          | •        |
| UISTICE &                             |          | • •                 | • •     | • •              |         |          |                           |         | •    | •    |       | • -    | •                     | 11       | 101         | 551      |
| 111                                   | •        | •                   | •       | •                | •       |          |                           | •       | •    |      | •     | •      | •                     | •        |             | •        |
| 1                                     | ~        | •                   | •       | •                | -       | •        | -                         | •       | •    | •    | ·     | •      | •                     | ~        |             | 9        |
| VI-1                                  | 14       |                     |         |                  |         |          |                           | •       | •    |      |       | •      |                       | <b>4</b> | 267         | 950      |
|                                       |          | -                   |         |                  | •       | ·        | •                         | •       |      | ·    |       |        |                       | 61       | 661         | 1.000    |
|                                       |          | Ī                   |         |                  |         |          |                           |         |      |      |       |        |                       |          |             |          |
| nisceriansous produce -<br>District 1 |          | 0                   |         | •                | 3       | •        | •                         | 4       | •    | -    | •     | 81     | •                     | 21       | 1001        | 229      |
| 11                                    | •        | •                   | •       | •                | •       | •        | •                         | \$      | •    | •    | Ŧ     | •      | •                     | 2        | \$12        | 5.0      |
| 11                                    | _        | •                   | ~       | •                | •       | •        | •                         | •       | •    | •    | •     | 2      | 10                    | 00       | 040         | <u>8</u> |
| 1                                     | ·        |                     |         |                  | ľ       | •        | •                         | •       | ·    | ŀ    | •     | •      |                       |          |             |          |
| AI-I                                  | 19       | • •                 | , ,     | •••              | •       | • •      | •••                       | •••     | •••  | •    |       | ,      | 1                     | 5        | 276         | 141      |
|                                       |          |                     |         |                  | ~       |          |                           |         |      |      | 1+    | 4      |                       | 66       | 466.1       | 1.025    |
| 64111 ges 1/ -                        |          |                     |         |                  |         |          |                           |         |      | •    |       | :      | :                     |          |             | 101 110  |
| rice                                  | _        | 23                  | 2.5     | ~ *              | 2,046   |          | 99                        | 2,637   | . *  | •    |       | 29     | 12                    | 4.301    | 194.630     | 201.5%   |
|                                       |          |                     | 014     | . :              | 591     | <u> </u> | 90                        | È,      | 12   |      | 28    | 1      | 000.6                 | 5.270    | 104.676     | 213,176  |
|                                       | _        |                     | 28      | :~               | 2       |          | 3 -                       | 29      | •    | 20   |       | •      | 101                   | 469      | 17.005      | 12.703   |
| AI-1                                  | 1        | 200                 | 1.220   | 32               | 2,262   |          |                           | •       |      | 35   | 26+   | 126    | 6(1                   | 14.420   | \$90,065    | 626,608  |
| >                                     | 1,976    | 2                   | 2       | 61               | 60      | •        | •                         | 2       | 9    | ·    |       | 74     | 67                    |          | 1000        | 100.00   |

Table D-2 (Concluded)

|                                 |         |         |       |       |          | SUPPLY   |          |         |             |        |         |                 |         | DISTR     | DISTRIBUTION |         |      |           | 910016  | 50               |
|---------------------------------|---------|---------|-------|-------|----------|----------|----------|---------|-------------|--------|---------|-----------------|---------|-----------|--------------|---------|------|-----------|---------|------------------|
|                                 |         |         |       |       | Domentic | Receipte |          | ┢       |             |        |         | Runs to stills  | ot1110  |           |              |         |      |           | (thoue. | (thous. berrele) |
|                                 |         |         | from  | From  |          | _        | <b>_</b> | Totel 1 | Total       |        |         |                 |         | Translars |              |         |      | -un       | Piret   | End              |
|                                 | Yroduc- |         | Olat. | Diet. |          | Dist.    | 01et.    | -       | Nev         | Stock  | Total   | Domatic Foraign | Foraign | ŝ         | to other     |         |      | accounted | lo      | of               |
|                                 | tion .  | Importe | -     | 1     | 111      | _        | -<br>>   |         | e u p p l y | change | eupply  |                 |         | producta  | Districts    | Exporte | Loss | for       | 7002    | 7001             |
| Crude oil and lases condensate- |         |         |       |       |          |          |          | _       |             |        |         |                 |         |           |              |         |      |           |         |                  |
| District 1                      | 120     | 1,174   | •     | ŝ     | 153      | -        | •        | 061     | 1.484       | -      | 1.407   | 255             | 1,175   | •         | 78           | •       | -    | •         | 10.110  | 16,044           |
| 1                               | 913     | 687     | •     | •     | 1.497    | 268      |          | 1,765   | 5, 367      | +15    | \$, 334 | 2,654           | 619     | 2         | \$\$         | •       | ~    | 95        | 67.425  | 79,553           |
| 111                             | 5,959   | 795     | 70    | 1     | •        | -        |          | 100     | 6.862       | ÷      | 6.857   | 110.4           | 786     | 5         | 1.652        | -       | -    | -06       | 100.705 | 110,410          |
| N                               | 169     | 43      | 1     | •     | ,        |          |          | •       | 736         | 11     | 729     | 576             | 44      | 1         | 515          | •       |      | 12        | 12.251  | 12.902           |
| 1-1v                            | 7.685   | 107.1   |       |       |          |          | •        |         | 990.01      | 27+    | 10, 344 | 7,562           | 2,682   | •         | 17           |         | 12   | - 16      | 207.479 | 222.634          |
| A                               | 1.080   | 776     | •     | •     | 2        | 39       | •        | 41      | 1.697       | +20 1  | 1.077   | 1.099           | 770     | -         |              | •       | -    | •         | 34.999  | 42.386           |
| U S. Toral                      | 0.765   | 1.677   |       |       |          |          |          |         | 12.242      | +62    | 12.160  | 0.691           | 3.452   | 13        |              |         | Ē    | -14       | 242.670 | 265.020          |
|                                 |         |         |       |       |          |          |          |         |             |        |         |                 |         |           |              |         |      |           |         |                  |
| Natural gasoline, leopentane    |         |         |       |       |          |          |          |         |             |        |         |                 |         |           |              |         |      | Local 2/  |         |                  |
|                                 |         | •       |       | ,     |          |          |          |         | :           | •      | -       | 10              |         | •         |              | ,       | ,    |           |         | 144              |
|                                 |         |         | ,     | ,     | ,        | ,        |          | 1       |             |        |         |                 |         |           | •            |         |      |           |         |                  |
|                                 | 2       | 25      | •     | •     | -        | •        | •        |         | 911         | -      |         |                 | •       | •         | •            | •       | •    | 11        | 8/7*2   | 1, 9/2           |
| 111                             | 361     | •       | -     | •     | •        | 5        | •        | 9       | 367         | Ŧ      | 306     | 229             | •       | •         | ~            | •       | •    | •         | 2,061   | 5,450            |
| IV                              | 5       | 23      | •     | •     |          | -        | -        | •       | 38          |        | 36      | 20              | •       | •         | •            | •       | •    | •         | 392     | 210              |
| 1-1A                            | 436     | 60      |       | •     | •        |          |          | •       | 615         | -      | 52D     | 200             | •       | •         | -            | •       | •    | 11        | 7.745   | 197'6            |
| >                               | 16      | 9       | •     | •     | •        | 16       | •        | 1       | 27          |        | 27      | 1 27            | •       | •         | •            | •       | 1 1  | •         | 06      | 0                |
| U.S. Total                      | 454     | 60      |       |       |          |          |          |         | 345         |        | 544     | 527             | ٠       | •         |              | •       | •    | 17        | 1,035   | 2.350            |
| Unfinished of is-               |         |         |       |       |          |          | _        |         |             |        |         |                 |         |           |              |         |      |           |         |                  |
| District 1                      | 16      | 59      | •     | -     | 8        | ,        |          | 31      | -           | -3     | •       | •               | •       | •         | en1          | •       | 0    |           | 15,712  | 15,055           |
| 11                              | -       | -       | •     | •     | •        | •        | •        | •       | 8           | 7      | •       | •               | •       | •         | 2            | •       | •    | •         | 20,126  | 22,145           |
| 111                             | 6-      | 52      | -     | _     | •        | ,        | •        | 2       | 65          | +9     | •       | •               | •       | •         | 53           | •       | •    |           | 36,709  | 59,600           |
| A                               | -       | •       | •     | •     | 4        |          |          | 4       | -           |        |         | •               | •       | •         | -            | •       | •    | •         | 2.195   | 2.900            |
| A1-1                            | 00      | 36      |       |       |          |          |          |         | 14          | 11+    | •       |                 | •       | •         | ~            |         | ·    |           | 75,342  | 069"61           |
| •                               | 22      | 22      | •     | •     | 1        |          | -        | 2       | 2           | 1.2+   | •       | •               | •       | •         | •            | •       | •    | •         | 22.012  | 1 26.233         |
| U.S. Totel                      | 102     | 121     |       |       |          |          |          |         | 19          | +19 1  |         | •               | •       |           |              | •       | ·    |           | 124.134 | 106.031          |
|                                 |         |         |       |       |          |          |          |         |             |        |         |                 |         |           |              |         |      |           |         |                  |

C Crude.
1/ Includes bonded maptitu jet 4, bonded beroalma jet 39, M distillate fund 19, bonded famildum fund 30, and military offahore use of residual fund 4.
1/ Includes bonded maptitu jet 1, bonded beroalma jet 33, M distillate fund 19, bonded distillate fund 1, bonded maptitu jet 1, bonded beroalma jet 33, M distillate fund 1, bonded distillate fund 1, bonded residual fund 9, and military offahore use of residual fund 4.
1/ Includes crude and transfers Dist. 1 -, Dist. 111 5, Dist. 111 5, Dist. 1V 1, Oist. V 7, U.B. Total 15.
1/ Includes crude and transfers Dist. 1 -, Dist. 111 5, Dist. 1V 1, Oist. V 7, U.B. Total 15.
1/ Includes crude and furth alignments to and Iccs Dist. V 90; V. 0. 10: 111 65, Oist. V 7, U.B. Total 15.
1/ Include and another and a Dist. 1 -, Dist. 111 2, Dist. 111 55, Dist. 1V 15, Dist. 1V 8, Dist. 1V 8, Dist. 1V 15, Dist. 24, U.B. Total 160.

Bureau of Mines, "Petroleum Statement," monthly, Table 32, pp. 36-40, Source:

U.S. Department of the Interior (January 1975)

# Table D-3

# MOVEMENT OF PETROLEUM PRODUCTS BY PIPELINE BETWEEN PAD DISTRICTS (Thousands of Barrels)

|                                                      | December        | Howmber         | December        | January - De      | camber (Incl.     |
|------------------------------------------------------|-----------------|-----------------|-----------------|-------------------|-------------------|
|                                                      | 1974            | 1974            | 1973            | 1974              | 1973              |
| rom District 1 to District 2:                        |                 |                 |                 |                   |                   |
| Gasoline, total                                      | 3,818           | 3,958           | 3,709           | 46,032            | 45,438            |
| Notor.<br>Avistica.                                  | 3,811           | 3,958           | 3,709           | 45,986            | 45,385            |
| Jet fuel, total                                      | 148             | 158             | 212             | 46                | 2,612             |
| Haphtha-type                                         | -               |                 | 35              | 302               | 595               |
| Kerosine-type                                        | 148             | 158             | 177             | 1,484             | 2,017             |
| Lerosine                                             | 37              | 30              | 50              | 270               | 403               |
| Distillets fuel oil                                  | 1,134           | 1,101           | 991             | 11,605            | 11,662            |
| rom District 2 to District 1:<br>Gasoline, totsl     | 975             | 912             | 871             | 12,440            | 10,066            |
| Notor                                                | 975             | 912             | 871             | 12,440            | 10,066            |
| Jet fuel, total                                      | _               | -               | -               |                   | 57                |
| Haphthe-type                                         | -               | -               | -               | -                 | 57                |
| Kerosins.<br>Distillste fuel oil                     | 21<br>147       | 4               | 69              | 45                | 49 980            |
| Metural gas liquids                                  | 1,403           | 770             | 1,117           | 10,351            | 11,910            |
| ton District 2 to District 3:                        |                 |                 |                 |                   |                   |
| Gesolins, total                                      | 1,659           | 1,556           | 1,555           | 19,582            | 18,591            |
| Notor                                                | 1,659           | 1,556           | 1,555           | 19,582            | 18,591            |
| Jet fuel, total                                      |                 | 30              | 1               | 520<br>513        | 47                |
| Karosine-type                                        | 1               |                 | ī               | 7                 | 6                 |
| Distillets fuel oil                                  | 484             | 44              | 452             | 5,466             | 4,743             |
| Natural gas liquids                                  | 364             | 307             | 330             | 3,886             | 3,267             |
| com District 2 to District 4:                        | 242             | 987             | 360             | 2 418             | 674               |
| Gasolins, total                                      | 242             | 257             | 360             | 2,415             | 674               |
| Distillets fuel oil                                  | 41              | 42              | 27              | 585               | 92                |
| rom District 3 to District 1:                        |                 |                 |                 |                   |                   |
| Gesolins, totsl                                      | 28,998          | 26,973          | 27,035          | 321,271           | 329,835           |
| Motor.<br>Aviatica.                                  | 28,983<br>15    | 26,973          | 27,027          | 321,065<br>206    | 329,616           |
| Jst fuel, totsl                                      | 4,815           | 5,066           | 4,952           | 51,375            | 55,504            |
| Raphthe-type                                         | 142             | 133             | 116             | 1,423             | 747               |
| Kerosine-type                                        | 4,673           | 4,933           | 4,836           | 49,952            | 54,257            |
| Kerosine                                             | 1,007           | 838             | 1,022           | 8,147             | 11,134<br>180,331 |
| Distillats fuel oil                                  | 14,932<br>2,447 | 14,110<br>1,383 | 17,591<br>1,875 | 173,417<br>15,846 | 18,112            |
| rom District 3 to District 2:                        |                 |                 |                 |                   |                   |
| Gasoline, total                                      | 4,062           | 6,333           | 5,957           | 66,521            | 64,857            |
| Hotor                                                | 3,948           | 6,217           | 5,852           | 65,254            | 63,669            |
| Avistion                                             | 114             | 116             | 105             | 1,267             | 1,197             |
| Jst fuel, total<br>Nephtha-type                      | 147             | 454             | 503             | 3,178             | 4,614             |
| Kerosine-type                                        | 147             | 452             | 503             | 3,109             | 4,611             |
| Kerosins                                             | 25              | 202             | 355             | 2,043             | 2,505             |
| Distillats fuel oil                                  | 1,925           | 2,972           | 3,097           | 25,088            | 30,938            |
| Watursl gas liquids                                  | 9,141           | 7,765           | 7,706           | 75,576            | /1,698            |
| rom District 3 to District 4:<br>Gasolina, total     | 347             | 460             | 312             | 5,305             | 4,759             |
| Hotor                                                | 336             | 452             | 297             | 5,146             | 4,499             |
| Aviation                                             | 11              | 8               | 15              | 159               | 260               |
| Jet fuel, total                                      |                 | 309             | 345             | 3,824             | 4,175             |
| Kerosine-type                                        | 340             | 309             | 345             | 3,824             | 4,175             |
| Distillats fuel oil.                                 | 61              | 46              | 68              | 562               | 688               |
| Natural gas liquids                                  | 153             | 106             | 155             | 963               | 1,259             |
| ron District 3 to District 5:                        |                 |                 |                 |                   |                   |
| Gesoline, total                                      | 1,031           | 1,028           | 1,164           | 12,190            | 11,873            |
| Hotor                                                | 241             | 1,028           | 1,104           | 2,146             | 1,708             |
| Kaphtha-type                                         | 122             | 90              | 37              | 894               | 652               |
| Lerosine-type<br>Distillats fuel oil                 | 119<br>419      | 109             | 85<br>322       | 1,252 4,481       | 1,056             |
|                                                      |                 |                 |                 |                   |                   |
| rom District 4 to District 2:<br>Gasoline, total     | 462             | 361             | 430             | 5,020             | 4,552             |
| Notor                                                | 462             | 361             | 430             | \$,020            | 4,552             |
| Jet feel, total                                      | 44              | 67              | 16              | 450               | 310               |
| llaphtha-type.<br>Kerosina-type                      | -               | 7               |                 | 61                | •                 |
| Kerosine                                             | 9               | -               | 2               | 19                | 59                |
| Distillats fuel oil                                  | 349             | 321             | 320             | 3,720             | 3,304             |
| roe District 4 to District 3:<br>Materal gas liquids | 288             | 252             | 285             | 3,751             | 3,699             |
| Tom District 4 to District 5:                        |                 |                 |                 |                   |                   |
| Casolins, total                                      | 862             | 715             | 595             | 10,540            | 7,805             |
| Hotor                                                | 862             | 715             | 595             | 10,540            | 7,805             |
| Jet fual, total                                      | 131             | 112             | 79              | 1,566             | 828               |
| Maphthe-type                                         | 72              | 59<br>53        | 69<br>10        | 704               | 477               |
| Lerosine-type                                        |                 |                 |                 |                   |                   |

Source: Bureau of Mines, "Petroleum Statement," monthly, Table 12, p. 13, U.S. Department of the Interior (December 1974)

### Table D-4

# INTERDISTRICT MOVEMENTS BY TANKER AND BARGE OF CRUDE OIL AND PETROLEUM PRODUCTS (Thousands of Barrels)

|                                                 | December | November   | December | January - Dec    | ember (Incl.)    |
|-------------------------------------------------|----------|------------|----------|------------------|------------------|
| Item                                            | 1974     | 1974       | 1973     |                  |                  |
|                                                 |          |            |          | 1974             | 1973             |
| Gulf Coast to East Coast, total:1               |          |            |          |                  | •                |
| Crude oil                                       | 2,330    | 2,914      | 4,155    | 52,337           | 56,614           |
| Unfinished oils                                 | 1,089    | 918        | 1,291    | 18,128           | 14,797           |
| Gasoline, total                                 | 16,899   | 17,571     | 17,463   | 179.888          | 207.474          |
| Motor                                           | 16,633   | 17,312     | 17,188   | 176,908          | 204,258          |
| Aviation                                        | 266      | 259        | 275      | 2,980            | 3,216            |
| Special maphthas                                | 681      | 692        | 629      | 7,646            | 7,192            |
| Kerosine<br>Distillate fuel oil                 | 1,224    | 1,076      | 1,328    | 10,879           | 15,078           |
| Residual fuel oil                               | 3,312    | 10,068     | 2,129    | 93,460<br>36,023 | 96,283           |
| Jet fuel, total                                 | 3,072    | 3,136      | 3,734    | 37,475           | 16,960<br>41,034 |
| Naphtha-type                                    | 608      | 643        | 1,226    | 9,481            | 9,480            |
| Kerosine-type                                   | 2,464    | 2,493      | 2,508    | 27,994           | 31,554           |
| Lubricating oil                                 | 1,134    | 1,402      | 1,198    | 12,922           | 12,342           |
| Wax                                             | 15       | 28         | 32       | 353              | 573              |
| Asphalt and road oil                            | 364      | 440        | 276      | 5,796            | 5,689            |
| Liquefied gases                                 | 144      | 111        | 131      | 1,541            | 1,304            |
| Petrochemical feedstocks                        | 192      | 211        | 463      | 3,757            | 3,226            |
| Other products                                  | 338      | 222        | 121      | 2,536            | 1,654            |
| Total                                           | 43,989   | 42,750     | 41.923   | 462.741          | 480,220          |
| Gulf Coast to P.A.D. District II:               |          |            |          |                  |                  |
| Crude oil                                       | 1,010    | 1,300      | 974      | 12,841           | 10,250           |
| Unfinished oils                                 | -        | -          | -        | 59               | 120              |
| Gasoline, total                                 | 2,497    | 2,659      | 3,184    | 27,890           | 32,730           |
| Motor                                           | 2,470    | 2,614      | 3,121    | 27,357           | 31,998           |
| Aviation                                        | 27       | 45         | 63       | 533              | 732              |
| Special naphthas                                | 252      | 238        | 365      | 3,275            | 3,187            |
| Kerosine                                        | -        | 96         | 144      | 764              | 956              |
| Distillate fuel oil                             | 620      | 524        | 855      | 6,449            | 9,224            |
| Residual fuel oil                               | 1,776    | 1,234      | 1,127    | 13,209           | 10,523           |
| Jet fuel, total                                 | 276      | 175        | 184      | 2,698            | 2,626            |
| Naphtha-type                                    | 276      | -          | -        | -227             | 14               |
| Kerosine-type                                   | 276      | 175<br>310 | 184      | 2,471            | 2,612            |
| Lubricating oil                                 | 329      |            | 259      | 4,125            | 3,692            |
| Wax                                             | 118      | 212        | 348      | 3,684            | 3,523            |
| Asphalt and road oil<br>Liquefied gases         | 110      | 13         | 112      | 71               | 654              |
| Petrochemical feedstocks                        | 98       | 78         | 184      | 1,381            | 1,872            |
| Other products                                  | 28       | 11         | 47       | 1,095            | 993              |
| Total                                           | 7,004    | 6,850      | 7,783    | 77,549           | 80,350           |
| Gulf Coast to West Coast:                       |          | 0,050      | 1,105    | 110,049          | 00,000           |
| Crude oil                                       | -        | -          | -        | 564              | -                |
| Unfinished oils                                 | -        | _          | -        | 288              | 372              |
| Motor gasoline                                  | -        | -          | -        | 1,392            | 675              |
| Kerosine                                        | -        | -          | -        | - '              | 36               |
| Distiliate fuel oil                             | 46       | -          | 43       | 2,279            | 687              |
| Residual fuel oil                               | -        | -          | 315      | 316              | 1,898            |
| Jet fuel, total                                 | -        | -          | 801      | 2,021            | 801              |
| Naphtha-type                                    | -        | -          | 110      | 489              | 110              |
| Kerosine-type                                   | -        | -          | 691      | 1,532            | 691              |
| Lubricating oil                                 | 251      | 35         | 199      | · 1,671          | 1,491            |
| Wax                                             | -        | -          | -        | -                | -                |
| Petrochemical feedstocks                        | 26       | -          |          | 105              | 4                |
| Other products                                  |          | -          | 8        | 15               | 105              |
| Total                                           | 323      | 35         | 1,366    | 8,651            | 6,069            |
| West Coast to East Coast:                       | _        | -          | _        | _                | _                |
| Motor gasoline                                  | -        | -          | _        |                  | 4                |
| Special naphthas<br>Distillate fuel oil         | _        | _          |          |                  | 4                |
| Residual fuel oil                               | -        | -          | -        | -                | -                |
| Lubricating oil                                 | 88       | 41         | 29       | 785              | 690              |
| Other products                                  | 22       | 16         | 11       | 324              | 242              |
| Total                                           | 110      | 57         | 40       | 1,109            | 936              |
| <sup>1</sup> Breakdown by region shown in Table |          |            |          |                  |                  |

1 Breakdown by region shown in Table 13a.

Source: Bureau of Mines, "Petroleum Statement," monthly, Table 13, p. 14, U.S. Department of the Interior (December 1974)



# Appendix E

DEMAND FORECASTS FROM SRI STUDY FOR THE ELECTRIC POWER RESEARCH INSTITUTE .

- 5

- - .
    - .
      - - - .
            - - . 10

### Appendix E

# DEMAND FORECASTS FROM SRI STUDY FOR THE ELECTRIC POWER RESEARCH INSTITUTE

The petroleum product demands used in the diesel penetration and desulfurization study cases for 1990 are based on the "low demand" projections of an SRI report\* produced for the Electric Power Research Institute (EPRI). This appendix presents the summary exhibits of primary petroleum product demands from this report.

### Table E-1

### ASSUMPTIONS

# (a) Per Capita Gross National Products (1975 Dollars)

| Case        | 1975    | 1985     | 2000     | 2025     |
|-------------|---------|----------|----------|----------|
| High demand | \$7,030 | \$11,200 | \$18,700 | \$40,600 |
| Base        | 7,030   | 10,081   | 13,783   | 20,713   |
| Low demand  | 7,030   | 8,800    | 10,100   | 9,600    |

(b) Growth in Per Capita Gross National Products

| Case        | <u> 1975-1985</u> | 1985-2000 | <u>1975-2000</u> | 2000-2022 |
|-------------|-------------------|-----------|------------------|-----------|
| High demand | 4.8%              | 3.5%      | 4.0%             | 3.1%      |
| Base        | 3.7               | 2.1       | 2.7              | 1.6       |
| Low demand  | 2.3               | 0.9       | 1.5              | 0.2       |

Source: EPRI EA-433, Vol. I, p. 3-2

Stanford Research Institute, Fuel and Energy Price Forecasts, report for the Electric Power Research Institute, EPRI Research Project 759-1 (June 1977).





FIGURE E-2 DISTRIBUTED PRODUCTS IN THE INDUSTRIAL SECTOR - LOW DEMAND CASE



FIGURE E-3 DISTRIBUTED PRODUCTS IN THE RESIDENTIAL/COMMERCIAL SECTOR --- LOW DEMAND CASE



SOURCE: EPRI EA-433, p. 3-43.



### Appendix F

### REPORT OF NEW TECHNOLOGY

A mathematical model of the U.S. oil refining industry has been developed. This model covers refining and bulk product distribution for each of the five Petroleum Administration for Defense districts. The model was validated against historical capacity and product demands and, after modification, applied to several case studies relating to desulfurization of automotive fuel and dieselization of the automotive fleet.





TRANSPORTATION SYSTEMS CENTER KENDALL GOUARE, CAMBRIDGE, MA. 02142

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE. (100

> POSTAGE AND FEES PAID U.S. DEPARTMENT OF TRANSPORTATION 613



