HE
18.5
. A34

SATISFACTION OF THE
 AUTOMOTIVE FLEET FUEL DEMAND AND ITS IMPACT ON THE OIL REFINING INDUSTRY

M. A. Moore
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

DECEMBER 1980
FINAL REPORT

DOCUMENT IS AVAILABLE TO THE PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22161

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION

NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION
Office of Research and Development
Washington, DC 20590

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange., The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse proucts or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the object of this report.

NOTICE

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policy or opinions, either expressed or implied, of the U.S. Government.

This work was performed during the 1975-1977 time period. Therefore, it predates and does not consider the possible implications of the current synfuels program.
17. Key Words (Sugganted by Author(s))

Motor fuel, refining, diesel, fuel desulfurization

18. Disrubution Screement

Document is available to the public through the National Technical Information Service, Springfield, Virginia 22151
19. Security Classif. (of this roport)

Unclassified
20. Security Classif. Iof this pege)

Unclassified

| 21. No. of Pages |
| :---: | :---: |
| 221 |$|$ 22. Price

PREFACE

This report presents the results of developing a mathematical model of the U.S. oil refining industry and applying this model in case studies of dieselization and automotive fuel desulfurization. This work was performed for the U.S. Department of Transportation, Transportation Systems Center, under Contract Number DOT-TSC-1064 during the 1975-1977 time period. It, therefore, predates and does not include any consideration of the possible implications of the current synfuels program.

The author wishes to acknowledge the contributions of Mr. Jerry Horton and Mr. Norman Rosenberg of the Transportation Systems Center and of Mr. K. Ushiba and Ms. Meera Rao of SRI.
METRIC CONVERSION FACTORS

METRIC CONVERSION FACTORS

CONTENTS

1 EXECUTIVE SUMMARY 1
2 INTRODUCTION 5
2.1 Overview and Scope 5
2.2 General Approach 6
3 MODEL DESCRIPTION AND DEVELOPMENT 7
3.1 Refinery Mode1 7
3.1.1 Petroleum Refining Overview 7
3.1.2 Description of Refinery Model 9
3.2 Refining Industry Model. 11
3.2.1 The Oil Refining Industry--Overview 11
3.2.2 Refining Industry Model--Objectives, Scope, and Conceptual Design 13
3.2.3 Validation of Refining Industry Model (RIM) for 1974 Industry Operation 18
4 CASE STUDIES 21
4.1 Base 1995 Scenario 21
4.1.1 Product Demand. 22
4.1.2 Petroleum Supply. 22
4.1.3 Facilities. 24
4.1.4 Prices of Crude Oil and Imported Products 27
4.1.5 Federal, State, and Local Regulations 27
4.1.6 Technology for Diesel Production and Sulfur Removal from Gasoline and Diesel 27
CONTENTS (Continued)
Section
Page No.
4.2 Impact of Increased Diesel to Gasoline Production Ratio on the Refining Industry 27
4.2.1 Overview 27
4.2.2 Summary and Conclusions 28
4.2.3 Discussion and Analysis 30
4.2.4 Review of Prior Studies 31
4.2.5 Technology for Increasing Diesel Availability 44
4.3 Impact of Transportation Fuel Desulfurization on the Refining Industry 53
4.3.1 Overview 53
4.3.2 Summary and Conclusions 53
4.3.3 Discussion and Analysis 55
4.3.4 Review of Previous Studies 56
4.3.5 Gasoline Desulfurization Technologies 56
5 GENERAL CONCLUSIONS 67
6 RECOMNENDATIONS 69
7 REFERENCES 71
APPENDIXES
A DESCRIPTION OF REFINERY MODEL 73
B REFINING INDUSTRY MODEL 95
C REFINING INDUSTRY MODEL VALIDATION 131
D INDUSTRY DATA SOURCES 201
E DEMAND FORECASTS FROM SRI STUDY FOR THE ELECTRIC POWER RESEARCH INSTITUTE 213
F REPORT OF INVENTIONS 221

LIST OF ILLUSTRATIONS

Figure Page No.
3.1.1-1 Typical Refinery Process Flow 8
3.1.2-1 Refining and Petrochemical LP Model 10
3.2.2-1 Refining Industry Model Conceptual Matrix for One District 17
4.2.5.1-1 Cetane Improvement by Additive 47
4.2.5.1-2 Calculated Cetane Index 49
4.2.5.2-1 Cetane Index Improvement Through Hydrotreating 50

LIST OF TABLES

1.1 Cases Studied 2
1.2 1995 Demand Scenario for Study Cases 2
1.3 Diesel Penetration Study Results 3
1.4 Fuels Desulfurization Study Results, 1995. 3
3.2.1-1 Refining Industry Geographical Distribution. 11
3.2.1-2 Refining Industry Plant Size Distribution. 12
3.2.1-3 Refining Industry Process Application. 13
3.2.2-1 Typical Refinery Modes in the Refining Industry Model for Pad District II Refinery Data Input. 16
3.2.3-1 Validation of Refining Industry Model--Total U.S. Refinery Input/Output, 1974 19
4.1.1-1 Major Petroleum Products--Demand Scenario. 23
4.1.2-1 Petroleum Supply Limits in Refining Industry Model Case Studies 24
4.l.3.1-1 Refining Capacity Limits, 1995 Base Case 25
4.1.3.2-1 Transportation Capacity Limits and Costs 26
4.2.2-1 Summary of Rim Results for Dieselization Cases 29
4.2.3-1 Dieselization Case Data Summary 32
4.2.3-2 1995, Base Refinery Input/Output Summary 33
4.2.3-3 1995, Base Product Consumption Summary 34
4.2.3-4 1995, Base Utility Summary 35
4.2.3-5 1995, 15 PCT Diesel Refinery Input/Output Summary 36
4.2.3-6 1995, 15 PCT Diesel Product Consumption Sumary. 37
4.2.3-7 1995, 15 PCT Diesel Utility Summary. 38
4.2.3-8 1995, 30 PCT Diesel Refinery Input/Output Summary 39
4.2.3-9 1995, 30 PCT Diesel Product Consumption Summary 40
4.2.3-10 1995, 30 PCT Diesel Utility Summary. 41
4.2.4-1 Comparison of Dieselization Studies. 43
4.2.4-2 Product Distribution 45
4.2.5.2-1 Economics of Incremental Hydrotreating for Upgrading Heating Oil Stocks to Diesel Quality 51
LIST OF TABLES (Continued)Table
Page No.
4.2.5.3-1 Incremental Hydrocracking for Diesel Production 52
4.3.2-1 Fuels Desulfurization Summary 54
4.3.3-1 Fuels Desulfurization Case Data. 57
4.3.3-2 1995, 30 PCT Diesel, with Gasoline Desulfurization=- Case 5--Refinery Input/Output Summary. 58
4.3.3-3 1995, 30 PCT Diesel, With Gasoline Desulfurization-- Case 5--Product Consumption Summary 59
4.3.3-4 1995, 30 PCT Diesel, With Gasoline Desulfurization-- Case 5--Utility Summary. 60
4.3.3-5 Refinery Input/Output Summary--Case 6. 61
4.3.3-6 Product Consumption Summary--Case 6. 62
4.3.3-7 Utility Summary-=Case 6 63
4.3.4-1 Comparison of Desulfurization Cost 64

b	barrel
b/d	barrels per day
BERC	Bartlesville Energy Research Center
BuMines	U.S. Bureau of Mines
cd	calendar day
D/G	diesel-to-gasoline ratio
DOE	U.S. Department of Energy
DOT	U.S. Department of Transportation
EPRI	Electric Power Research Institute
ERDA	U.S. Energy Research and Development Administration (now DOE)
FCC	fluidized catalytic cracking
FOB	free on board
FOE	fuel oil equivalent
gal	gallons
HDS	hydrodesulfurization
LP	linear programming
LPG	liquefied petroleum gas
M	$10^{3} ; 1,000$; one thousand
MM	$10^{6} ; 1,000,000$; one million
min	minute
MON	motor octane number
PAD	Petroleum Administration for Defense
\%	percent
ppm	parts per million
RIM	Refining Industry Model (SRI)
RON	research octane number
sd	stream day
TSC	Transportation Systems Center (DOT)
VFR	vehicle-fuel-refinery
VGO	vacuum gas oil
vol\%	volume-percent
wppm	parts per million by weight

1 EXECUTIVE SUMMARY

A number of actions proposed to improve the fuel economy and reduce air-polluting emissions of the automotive fleet will involve changes in the quality or quantity of the fuel being used. Such changes, in turn, will affect the refining industry, because automotive fuels are predominantly refined petroleum products.

To assess the extent of the potential impacts in terms of cost and energy efficiency, a mathematical (linear programming--LP) model was developed to simulate the U.S. refining industry. This model covers refining and bulk product distribution for each of the five Petroleum Administration for Defense (PAD) districts. The refinery sector simulation in the industry model was developed through the use of the detailed SRI refinery and petrochemical LP model.

Two series of case studies were performed with the Refining Industry Model (RIM):
(1) An assessment of the impact of increased penetration of the diesel-powered vehicle into the automotive market (dieselization study)
(2) An assessment of the impact of a mandated reduction of sulfur content of both gasoline and diesel fuel (desulfurization study).

Both studies were performed within the framework of a 1995 scenario characterized by extensive petroleum conservation. Estimates of 1995 demand for gasoline and diesel fuel were provided by the U.S. Department of Transportation, Transportation Systems Center (DOT/TSC). Estimates of demand for other refined products were adapted from a concurrent SRI study for the Electric Power Research Institute (EPRI). The resulting 1995 scenario should be viewed as a plausible basis for analysis rather than as a forecast resulting from this project.

In this scenario, the total demand for gasoline plus diesel fuel, 7.3 million barrels per day (b/d), is about 78 percent of the 1978 total of about 9.4 million b / d. Six cases, as defined in Table l-1, were analyzed. Quantitative results for these cases are summarized in Tables $1-2$ through $1-4$. The cost analyses shown in the summary tables have been updated to 1979 dollars from the 1974 values used in the original work. The W. L. Nelson construction and operating cost indices, published periodically in the Oil and Gas Journal, were used to adjust the refining costs to 1979 values.

Table 1-1

CASES STUDIED

Case No.	Description
Case 1	RIM validation with 1974 industry data
Case 2	1995 base case for dieselization study
Case 3	1995 scenario with 15 percent diesel penetration of the automotive fuel market
Case 4	1995 scenario with 30 percent diesel penetration of the automotive fuel market
Case 5	Case 4 with desulfurization of all gasoline to 100 ppm (by weight) sulfur content
Case 6	Case 5 with addition of diesel fuel desulfurization to 200 ppm (by weight) sulfur content

Table 1-2
1995 DEMAND SCENARIO FOR STUDY CASES

Case
1995 base case
Gasoline
5.4

42
Jet fuel
2.3

18
Diesel
Distillate fuel oil
Residual fuel oil
Total major fuel products
Case 3--15\% diesel penetration
Gasoline
4.7

Diesel
2.5
7.2

Case 4--30\% diesel penetration
Gasoline
4.0

Diesel
*Barrels per calendar day.

	$\begin{gathered} 1974 \\ \text { Case } 1 \\ \hline \end{gathered}$	1995		
		Case 2	Case 3	Case 4
Dicsel penetration, \%	-	Base	15	30
Diescl/gasoline ratio	$0.17 / 1$	0.32/1	0.53/1	$0.80 / 1$
Dicsel production, \% refinery output	8.7	14.2	20.5	27.0
Gasoline production, \% refinery output	50.7	43.8	38.9	33.8
Cost differential, $\$ / \mathrm{b}$ (gasoline + diesel)*	Base	-0.92	-0.78	± 0.075
New investment, 10^{6} \$*	--	72.4	131	1,967
Energy consumption, \% of domestic products (FOE)	6.31	6.25	6.17	7.30

[^0]
Table 1-4

FUELS DESULFURIZATION STUDY RESULTS, 1995
Case 4 Case 5 Case 6

Diesel Penetration, \% 30
Gasoline desulfurization, \% (100 ppm S)
0.0100100

Diesel desulfurization, \% (200 ppm S)
Incremental cost, $c / g a l$ desulfurized gasoline* Base $3.0 \quad 3.0$
Incremental cost, c/gal desulfurized diesel* Base 4.5
Incremental investment, $10^{9} \$$ *
For gasoline desulfurization Base 2.7
For diesel desulfurization
Base 4.8
Incremental energy consumption, \% of domestic product (FOE basis)

For gasoline desulfurization 1.1
For diesel desulfurization

[^1]The major conclusions of the dieselization study are summarized as follows.

- If the demand for diesel fuel increases while demand for other distillate fuel oils is maintained at the projected level, a shortage of middle distillate products (jet fuel, diesel, and No. 2 fuel oil) tends to occur when gasoline production equals demand. Conversely, if crude oil runs are increased to meet demand for middle distillates, excess gasoline is produced.
- For the 15 percent diesel penetration case, the incremental cost of refining gasoline plus diesel increased by 0.3 cent per gallon (14 cents per barrel) as the volumetric production ratio of diesel-to-gasoline increased from the 1995 base case (Case 2) ratio of $0.3 / 1$ to a ratio of $0.5 / 1$. At a diesel/ gasoline ratio of $0.8 / 1$, the refining cost rises sharply as new hydrocracking capacity is required, reaching about 2.0 cents per gallon of diesel plus gasoline more than the cost for the 0.5/1 ratio case.
- Refining energy consumption reaches a minimum value of 6.17 percent of domestic product output (fuel oil equivalent basis) at the $0.5 / 1$ diesel/gasoline ratio, a decrease of 0.08 percentage points below the 1995 base case.

Two fuels desulfurization cases were examined with the RIM:
(1) Desulfurization to 100 ppm sulfur of all gasoline produced in the 30 percent diesel penetration case (Case 5).
(2) Desulfurization to 200 ppm sulfur of all diesel produced in the 30 percent diesel penetration case, as well as desulfurization of gasoline to 100 ppm sulfur (Case 6).

The RIM indicates that desulfurization of all gasoline to 100 ppm sulfur will cost about 3.0 cents per gallon and requires a refining industry investment in new facilities of about $\$ 2.7$ billion. Refinery energy consumption for this case increases to 8.4 percent of domestic refinery output, 1.1 percent more than consumption for Case 4.

The addition of diesel desulfurization to 200 ppm sulfur adds about 4.5 cents per gallon to the cost of diesel fuel and increases energy consumption by 0.4 percent of total domestic refined products over Case 5 consumption. The incremental investment for diesel desulfurization is $\$ 4.8$ billion.

The cost estimates for both cases assume that new hydrodesulfurization (HDS) facilities will be required. Thus, the costs may be reduced to the extent that existing $H D S$ facilities are operable by 1995 and are technologically adequate for meeting the severe requirements. The industry model will facilitate the future examination of these parameters and will permit the analysis of numerous variations from the cases presented in this report.

2 INTRODUCTION

2.1 Overview and Scope

The interactions of the U.S. transportation system and the oil refining industry are extensive. Nearly half of U.S. refinery output by volume is motor gasoline, and substantial quantities of automotive diesel fuel, jet fuel, and bunker fuel are also produced. Virtually all of the energy consumed in U.S. transportation is currently derived from petroleum products. A few exceptions exist, such as electric transit systems, and some potential exists for replacement of petroleum-based fuels with alcohols or other substances that may be derived from nonpetroleum sources. However, for the next 10 to 20 years, petroleum fuels for transportation are unlikely to be extensively displaced by nonpetroleum alternatives. Thus, the petroleum refining industry is expected to continue to play a critical role in supplying the basic energy requirements of the U.S. transportation system.

Concern for environmental quality and energy conservation in recent years has focused on the automobile as a major source of air pollutants and as an inefficient fuel user. A number of changes in the automobile intended to lessen its detrimental effects on the environment and to increase its energy-efficiency are in various stages of implementation. Some changes alleviate one problem only at the expense of exacerbating the other; one example is the requirement for unleaded gasoline to reduce ambient lead concentrations, which increases the amount of crude oil required to produce a gallon of gasoline. Other potential changes in the automobile or in the required quality of automotive fuel could have equally profound effects on the oil refining industry. Two such changes addressed in this study are increased use of automotive diesel fuel and reduction of the allowable sulfur content of automotive fuels.

To provide a sound basis for assessing the effects on the oil refining industry of such changes, the objectives of this project are two fold.
(1) Develop a mathematical modeling system of the U.S. petroleum refining industry, consisting of:
(a) A detailed refinery model
(b) A refining industry model.
(2) Use the models to analyze the impact on the refining industry of the following hypothetical changes in the fuel requirements for the 1995 automotive fleet:
(a) Two levels of displacement of gasoline by diesel fuel: 15 and 30 percent of automotive fleet fuel requirements
(b) Reduction of the sulfur content of gasoline and diesel fuel to 100 ppm and 200 ppm by weight, respectively, in the context of a 30 percent diesel penetration of the automotive fuel market.

2.2 General Approach

The steps required in the case study method used in this work are summarized below. These topics are discussed in greater depth in the appropriate sections of the report.

- Define the specific hypothetical issues to be studied (i.e., increased diesel penetration of the automotive fuel market and desulfurization of automotive fuels). These definitions provide a basis for defining specific cases to be studied and indicate the types of information required. They also provide guidelines for making a number of decisions related to the type of model required, as discussed in the next step.
- Select a type of model that can adequately simulate the system under study, and construct the model. In this case, the petroleum refining industry was judged to be adequately simulated by LP techniques. This implies that the important characteristics of the U.S. petroleum refining industry may be mathematically described by linear equations. As constructed for this study, the RIM represents the domestic refining industry aggregated geographically by PAD districts.
- Validation of the RIM is the next logical step. This was performed by operating the model with data on historical industry capacity and product demands to match refinery output and product imports.
- The validated RIM is then modified with case-specific technological options and hypothetical product requirements and exercised to determine optimal industry operations.
- Finally, the case study results are interpreted by applying knowledge of industry practice, economics, and technology. An important aspect of this interpretation is the identification of possible consequences, both economic and noneconomic, for each type of refinery.

3 MODEL DESCRIPTION AND DEVELOPMENT

3.1 Refinery Model

3.1.1 Petroleum Refining Overview

The key element in the petroleum refining industry is, of course, the refinery. The term refinery is used generically to describe any process plant that converts crude oil and other hydrocarbon feedstocks into the various petroleum products. Ideally, these products should be produced in the volumes and qualities required by the market, but the indigenous fractions of crude oil do not, in general, match either the quantities or qualities of the products in demand. Thus, the combination of process units called a refinery is required.

Over the years the petroleum refining industry has evolved the process technology to produce marketable volumes of products meeting various specifications from crude oils of varying quality. Although no two refineries in the United States are identical, there is considerable uniformity in the types of refining processes used.

As shown in the flow chart of a typical refinery depicted in Figure 3.1.1-1, catalytic reforming is the major process used to increase the octane number of low-octane naphthas. Catalytic cracking is the major process used to convert heavy distillate oils to gasoline. The light olefins--propylene and butylene--that are by-products of catalytic cracking are generally reacted with isobutane in a process called alkylation to produce a high-quality gasoline blend stock. Hydrocracking, a process commercialized in the 1960 s , is used in many refineries to supplement catalytic cracking in the production of additional gasoline and jet fuel.

Residual oil processing in U.S. refineries has been directed primarily at converting much of this residual fraction to lighter, more valuable products. Thermal cracking processes ranging in severity from visbreaking to coking are the major processes in general refinery use for residual reduction, although solvent deasphalting is used in some cases. As the prices of low-sulfur residual fuel oil have moved closer to prices of distillates and gasoline, considerable interest has developed in residual HDS technology, and the first installations that use this type of process have recently started operating. In refineries that process high-sulfur (sour) crudes, hydroprocessing is extensively applied for sulfur removal from both naphtha and distillate streams.

SOURCE: R. M. DeVierman, Presentation at FEA-NPRA Conference, September 1974.
FIGURE 3.1.1-1 TYPICAL REFINERY PROCESS FLOW

3.1.2 Description of Refinery Model

This subsection briefly describes the LP refinery model used to develop the refinery sectors of the RIM. A more detailed description of the refinery model is included as Appendix A to allow interested readers to judge the level of detail considered in this work.

The LP refinery model used in this study is a generalized model that may be constrained and calibrated to simulate a specific existing refinery or used to simulate typical refineries in assessments of refining industry economics. A block flow diagram of the model is shown in Figure 3.1.2-1. The model is comprehensive in process coverage, including virtually all modern commercial petroleum refining processes, and in coverage of specifications for blending fuel products. It is capable of handling multiple crude oils and other hydrocarbon feedstocks. In addition, the model includes the process options for the production of basic olefin and aromatic petrochemicals. The investment, operating cost, product blending quality, and yield factors are modeled in sufficient detail to permit budgeting and scheduling of existing refinery operations, planning of new facilities, and determination of feedstock values and product pricing.

In specific mathematical terms, the model consists of a number of simultaneous linear equations and inequalities in the form of a matrix. The specific size of the matrix may vary with the problem being assessed and is thus influenced by such factors as the number of crude oils under study, the number of process options allowed, and the number of products or grades of products under study. The version used for the major part of this work covers four crude oils and a typical set of products; it requires 476 equations with 1,169 variables.

The specific processes included in the model are considered to be representative of the types most prevalent in the industry. Each process is represented in the LP model as an entity defined in terms of an investment, utility requirements, catalyst cost, feedstock requirements, yield streams as generally produced in the industry, and the blending qualities of each of these streams that pertain to the appropriate product options. If the operating severity of a process may vary in practice, the model has multiple sets of yields, utility, and feedstock requirements corresponding to the various severity levels. Each severity implies a set of process variables--temperature, pressure, space velocity, recycle ratio, and the like--that is not explicitly stated in the refinery model.

The refinery processes in which variation in operating severity is most critical are catalytic reforming and fluidized catalytic cracking (FCC). Multiple severity options are included in the proposed refinery for both of these processes. The catalytic reformer has five severities, ranging from 91 to 103 research octane number (RON). FCC conversion*

[^2]
FIGURE 3.1.2-1 REFINING AND PETROCHEMICAL LP MODEL
varies from 60 to 90 percent. In addition, the hydrocracking process has options for maximum gasoline, turbofuel, and diesel operations.

3.2 Refining Industry Model

3.2.1 The Oil Refining Industry--Overview

On 1 January 1979, the U.S. oil refining industry consisted of 289 operating refineries of various sizes distributed unevenly throughout the country. Table 3.2.l-1 shows that the largest number of refineries and the greatest share of capacity are situated in PAD District III, which includes the Gulf Coast states. A significant portion of the PAD III refinery output is transported to East Coast markets by coastal tankers and product pipelines.

Table 3.2.1-1

REFINING INDUSTRY GEOGRAPHICAL DISTRIBUTION

Region	$\begin{gathered} \text { PAD } \\ \text { District } \\ \hline \end{gathered}$	Number of Refineries*		Capacity$\left(10^{3} \mathrm{~b} / \mathrm{d}\right)$		$\begin{aligned} & \text { Percent } \\ & \text { of U.S. } \\ & \text { Capacity } \end{aligned}$	
		1974	1977	1974	1977	1974	1977
East Coast	I	28	28	1,678	1,732	11	11.2
Midwest	II	68	69	4,030	4,145	28	26.1
Gulf Coast	III	83	96	6,132	6,837	41	43.1
Rocky Mountain	IV	29	29	547	546	4	3.4
West Coast	V	51	51	2,432	2,550	16	16.1
Total		259	273	14,819	15,862	100	100.0
Average				57.2	58.1		

*Reported as operating.
Source: Bureau of Mines, Petroleum Refineries, U.S. Department of the Interior (1 January 1974, and 1 January 1977).

The distribution of refineries by size is also a significant parameter in a study of the industry. Significant economies of scale are realized in petroleum refining, and the larger plants are generally more flexible in adjusting to changes in the feedstock qualities and product demand. On the other hand, some of the small refiners efficiently serve market
areas outside of the economic marketing areas of the large refiners. As shown in Table 3.2.1-2, the 42 percent of U.S. refineries with capacities less than $20,000 \mathrm{~b} / \mathrm{d}$ produce 5 percent of U.S. petroleum products. On the other hand, about 60 percent of U.S. refining capacity exists in plants with capacities greater than $100,000 \mathrm{~b} / \mathrm{d}$, though such size plants account for only 18 percent of U.S. refineries.

Table 3.2.1-2
REFINING INDUSTRY PLANT SIZE DISTRIBUTION

Class	$\begin{gathered} \begin{array}{c} \text { Number } \\ \text { of } P l a n t s * ~ \end{array} \\ \hline \end{gathered}$		Percent of Plants		Capacity (103 b/d)		Percent of Capacity	
$\left(10^{3} \mathrm{~b} / \mathrm{d}\right)$	1974	$\underline{1977}$	1974	1977	1974	1977	$\underline{1974}$	$\underline{1977}$
0-20	109	112	42	42	805	860	5	5
20-50	65	62	25	23	2, 249	2,113	15	13
50-100	40	45	15	17	3,002	3,269	21	19
100-200	30	31	12	11	4, 149	4,352	28	26
200+	15	19	6	7	4,614	6,156	31	37
Total	259	269	100	100	14,819	16, 750	100	100

*Refineries operating on 1 January of given year.
Source: "Annual Refining Surveys," Oil and Gas Journal (l April 1974 and 28 March 1977)

Comparison of the 1974 and 1977 data in this table indicates that the number of refineries in each size class has changed little. However, the continuing trend to larger refineries is evident; about 80 percent of the 2 million b / d increase in capacity has come from refineries in the $200,000 \mathrm{~b} / \mathrm{d}$ class. This suggests that refiners are generally expanding by adding capacity at existing sites rather than by building new refineries in other areas.

A third characteristic that has a significant impact on the flexibility of the industry in adjusting to changes in product mix or product quality is the application of "downstream" processes. As shown in Table 3.2.1-3, the major processes downstream of the primary crude distillation are the vacuum distillation of the residual stream from the primary crude unit, FCC, catalytic reforming, and the various applications of hydroprocessing. Because several of these processes are used in sequence, the percentages do not add up to 100 percent.

REFINING INDUSTRY PROCESS APPLICATION

Process	Process Capacity as Percent of Crude Oil Capacity	
	1974	1977
Atmospheric distillation	100.0	100.0
Vacuum distillation	35.6	36.7
FCC	30.2	29.2
Catalytic reforming	22.4	21.7
Alkylation	5.6	5.2
Hydrocracking	5.7	5.4
Hydroprocessing	38.5	43.6
Coking	6.7	7.6
Lube production	1.4	1.4
Asphalt production	4.4	4.7

Source: "Annual Refining Surveys," Oil and Gas
Journal (1 April 1974 and 28 March 1977)

3.2.2 Refining Industry Model--Objectives, Scope, and Conceptual Design

The basic objective of the industry model is to assess the effects on the oil refining industry of potential changes in the automotive fleet. The model is intended to permit assessment of:

- The ability of the industry to produce fuel products in amounts or qualities different from those currently produced
- The capital and energy requirements for such changes
- Effects of such changes on various sectors of the industry by geographic and refinery size classification
- The effects of supplies of supplemental feedstocks such as natural gas liquids.

The model covers the entire U.S. refining industry and is aggregated by PAD district. (Product transportation modes include major product pipelines and marine transportation.) Aggregation by PAD districts was
selected for consistency with the data base developed by Bureau of Mines (BuMines) ${ }^{\text {\% }}$ on refinery yields and crude oil and product movements.

LP was selected for this modeling effort for several reasons. From a theoretical standpoint, most of the quantifiable characteristics of the petroleum refining industry may be adequately expressed as linear quantities. Product output, capacity limitations, and product distribution are essentially material balance equations, which are inherently linear. Investment, though it is nonlinear for a single refinery, tends to approach linearity when it is calculated for an industry of several hundred refineries. Refinery operating costs that are not investmentrelated are generally linear, insofar as small process units can be designed with the same utility and catalyst requirements per barrel of capacity as larger units.

LP modeling has a number of advantages.

- The structure of an LP model is relatively simple, compared with that of heuristic, dynamic, stochastic, or other types of models
- LP modeling is widely used in the oil refining industry, and thus the advantages and limitations of the model are generally known
- Elaborate LP systems have been developed, and these are accessible to the public through several computer service vendors. The Control Data Corporation Apex III system was used in this work. The availability of an existing system for performing the mathematical procedure obviates the need for a considerable amount of programming needed to use other modeling techniques.

This discussion is not intended to be a comprehensive comparison of the advantages and disadvantages of LP with those of other modeling techniques. Such a comprehensive comparison is beyond the scope of the project. More detailed discussions of mathematical modeling as applied to the oil refining industry may be found in numerous sources. ${ }^{1-3}$

The objective function selected for optimization in the case studies is that of minimizing industry costs of products delivered to hypothetical bulk terminals in each of the PAD districts. This quantity was judged to be an acceptable indicator of the effects of a given change on the industry.

The generally good agreement of the RIM results with industry data shown in the validation work appears to support the use of cost minimization to reflect industry behavior. However, it may be of interest in further studies to examine other quantities for optimization. Energy used in refining and capital for new facilities are monitored in the model and could be selected for optimization.

[^3]Structurally, the model comprises a refining submatrix (Table 3.2.2-1) and a distribution submatrix (Figure 3.2.2-1) for each PAD district. The refining submatrix is defined by equations that sum each product, feedstock, and resource used, and variables that represent each mode of refinery uperation and the lotal of each product. As shown, the singledistrict refining industry matrix includes large and small refineries with sweet and sour crude operations, each of which has base conversion, low conversion, and high conversion operating modes. In our analysis of PAD district III refineries, an intermediate size class was observed that differed in process configuration from the average configurations for small and large retineries. A medium capacity refinery mode was added to District IIl to account for this. Each of the refining modes in the model is derived from an optimal solution of the detailed Refinery Model described in bection 3.1. This approach assures that the yields and costs will accurately retlect the refinery process technology used.

New refining facilities that did not exist in 1974 are modeled as incremental fetining modes. These incremental modes include the parameter of investment in addition to the operating cost parameters of the existing refinery modes. The existing incremental refinery modes are case-specific, as in the case of additional hydrotreating or hydrocracking for diesel fuel production and hydrotreating for gasoline and diesel desulfurization. Twenty-two types of refinery products are represented in the model, in. cluding aromatic chemicals.

The possible need for additional refining and pipeline capacity is allowed for in the aggregate total for a given facility in a given district, and the appropriate investment is included. The distribution submatrix in each district is defined by a second set of equations, one for each product and cost item. The variables in these equations are (I) the total production of a given product within the district; (2) the product volumes transferred in and out of the district; and (3) the consumption within the district. The submatrices for the various districts are lanked by the transfer of the various products from one district to another. Two transportation modes--marine and pipeline--are available to all applicable product movements between the $P A D$ districts and the foreign sector. Transfers that are physically improbable, such as marine transport from or to the Rocky Mountain district (PAD IV), have been excluded from the model.

The major user input data are the delivered product requirements in each PAD district, in thousands of barrels (42 gallons) per calendar day (b/cd). Output of the RIM consists of the Apex system listing of row and colum values, plus a FORTRAN report providing tabular analyses of the optimal inter-PAD product movements, refining capacity utilization, utility and energy requirements, labor, operating costs, and investment.

[^4]Table 3.2.2-1
TYPICAL REFINERY mODES IN THE REFINING INDUSTRY MODEL FOR PAD DISTRICT II REFINERY DATA INPUT

	20 CALHC*	20 CALLC	20 CASBA	20 CASHC	20 CASLC	20 CBLBA	20 CBLLC	20 CBLHC
Input								
Sweet crude	-100.00	-100.00	-100.00	-100.00	-100.00			
Sour crude						-100.00	-100.00	-100.00
California crude								
Alaskan crude								
Natural gasoline	-1.85	-1.85	-2.14	-2.14	-2.01	-1.85	-1.85	-1.85
Isobutane	-1.33	-1.33	-1.48	-1.48	-1.39	-1.33	-1.33	-1.33
Normal butane	-1.33	-1.33	-1.48	-1,48	-1.13	-1.33	-1.33	-1.33
Total	-104.51	-104.51	-105.10	-105.10	-104.53	-104.51	-104.51	-104.50
Output								
c_{3} LPG	2.44	2.44	1.97	2.30	1.85	2.44	2.44	2.44
C_{4} LPG	0.54	0.54	0.49	0.59	0.46	0.54	0.44	0.54
Naphtha	0.88	0.88				1.08	0.88	0.88
Regular gasoline	20.78	19.45	19.31	14.91	13.01	25.39	21.56	27.07
Premium gasoline	16.07	16.07	12.20	4.97	4.34	16.07	10.07	16.07
Low-lead gasoline	9.01	7.20	8.37	14.91	13.01	11.04	7.20	13.24
Lead-free gasoline	13.31	9.54	7.27	14.91	13.01	9.54	9.54	12.40
JP-4 jet fuel	1.34	1.09	1.27	1.27	1.20	1.34	1.09	1.09
Jet A jet fuel	5.36	4.37	4.01	4.01	0.94	4.59	4.37	4.59
Diesel	7.75	18.75	11.00	10.00	23.96	6.32	15.51	5.69
No. 2 fuel oil	15.61	15.61	22.19	20.69	17.99	15.61	15.61	11.48
High-sulfur No. 6	1.78	2.24	3.89	3.54	3.65	2.24	2.24	1.78
Low-sulfur No. 6	2.73	2.24	3.89	3.54	3.65	2.24	2.24	1.78
Lube stocks	1.22	1.22				1.22	1.22	1.22
Asphalt and road oil	3.01	3.01	7.65	7.65	5.72	3.01	3.01	3.01
Coke (low-sulfur)	0.63	0.61						
Coke (high-sulfur)						0.94	0.87	0.94
Coke (California crude)								
Benzene						0.14	0.14	0.14
Toluene						0.10	0.10	0.10
Mixed xylenes						0.19	0.19	0.07
Miscellaneous products	2.72	1.40	1.37	1.51	1.29	1.40	1.40	1.40
Total	105.18	106.66	104.88	104.80	104.08	105.43	106.12	105.93
Operating cost factors								
Purchased electric power	398.00	379.00	262.90	270.00	267.72	447.00	424.00	465.00
Total fuel required	5.86	5.62	4.70	4.88	4.62	5.85	5.85	6.09
Refinery energy consumption	6.59	6.33	5.20	5.39	5.12	6.69	6.64	6.97
Labor	500.00	500.00	500.00	500.00	500.00	500.00	500.00	500.00
Operating costs	16.04	14.01	11.27	12.00	9.38	16. 0	14.90	18.57

[^5]

FIGURE 3.2.2-1 REFINING INDUSTRY MODEL CONCEPTUAL MATRIX FOR ONE DISTRICT

A complete equation listing of the RIM is presented in Appendix B, along with the naming conventions used. An example of the procedure for operating the RIM is provided in the validation work described briefly in the following section and in greater detail in Appendix C.

3.2.3 Validation of Refining Industry Model (RIM) for 1974 Industry Operation

In principle, the procedure for validating the RIM is straightforward; it consists of matching the output of the constrained model with actual industry data for a given base period. The RIM is exercised with the product demands, refining capacities, and prices presented in Appendix C to obtain an optimal solution. This gives values by PAD district for crude oil and other feedstocks used, refinery output, interPAD district product transfers by pipeline or marine modes, and products exported or imported. The corresponding actual industry values are reported in Appendix D.

A comparison of the total U.S. refinery input and output of major products of the RIM with BuMines data is summarized in Table 3.2.3-1. In general, the RIM has a tendency to minimize imported products by processing additional crude oil. This tendency may be explained by the relative price structure of domestic crudes versus that of imported products. Domestic crude oil prices are, on the average, lower by several dollars per barrel than international crude prices. This difference is largely the result of the regulation of domestic prices and volume allocations by the federal government. The order of magnitude of the resulting crude oil price differentials has ranged from $\$ 4$ to $\$ 5.50 / b$, as indicated in the following tabulation.

	Average Crude Oil Refiner Acquisition Cost					
	dollars per barrel)					
	$\underline{1974}$	$\underline{1975}$	$\underline{1976}$	$\underline{1977}$	$\underline{1978}$	
Foreign	12.52	13.93	13.48	14.53	14.57	
Domestic	$\underline{7.18}$	$\underline{8.39}$	$\underline{8.84}$	$\underline{9.55}$	$\underline{10.61}$	
Difference	5.34	5.54	4.64	4.98	3.96	

The imported product prices used in this study reflect the higher foreign crude oil prices plus the product import fee of $\$ 0.63 / \mathrm{b}$. In addition, some of the product volumes reported in the import statistics come from U.S.-owned refineries in U.S. possessions in the Caribbean, such as the Amerada-Hess refinery on St. Croix. Because essentially all of the crude oil processed by these refineries is foreign, these refiners benefit from

Table 3.2.3-1

VALIDATION OF REFINING INDUSTRY MODEL-TOTAL U.S. REFINERY INPUT/OUTPUT, 1974 (Thousands of Barrels per Calendar Day)

Percent Difference From RIM BuMines RIM-BuMines (BuMines base)

Inputs

Crude oil
Natural gas liquids

12,530	12,133	397
512 13,042	$\frac{746}{12,879}$	$\frac{-234}{163}$

$$
\begin{array}{r}
+3.2 \\
-31.4 \\
\hline 1.3
\end{array}
$$

Products

Liquefied refinery gas	277	320	-43	-13.4
Naphtha	198	262	-64	-24.4
Gasoline (includes	6,582	6,401	181	2.8
Avgas)	181	195	-14	-7.2
Naphtha-type jet fuel				19.0
Jet fuel (includes	947	796	151	9.1
kerosene)	2,911	2,668	243	-0.6
Distillate fuel oil	1,063	1,070	-7	1.4
Residual fuel oil	216	213	3	-9.6
Lubes and waxes	424	469	-45	-41

Imported products (net)

Gasoline	0	201	-201	-100
Jet A/kerosene	0	138	-138	-100
Distillate fuel oil	51	278	-227	-82
Residual fuel oil	1,472	1,558	-86	-5.5

[^6]the DOE entitlements program. * This program allows these refiners to charge lower prices than other foreign refiners charge, which could explain why volumes of imports are larger than the optimal amount indicated by the RIM.

The RIM/BuMines refining input/output comparison by PAD district is shown in Appendix C. Note that the demand limits were set only for the major fuel products--gasoline, Jet-A, diesel, No. 2 fuel oil, and No. 6 fuel oil. The minor products are produced in proportion to the crude processed, at average 1974 yields.

Similar comparisons of RIM/BuMines data for inter-PAD transfers for gasoline, Jet-A, distillate fuels, and residual fuels are given in Appendix C. The RIM estimates of product movements from PAD III to PAD I and PAD II are generally in accordance with the reported statistics. A complete set of RLM output tables for the 1974 validation case is also included in Appendix C.

[^7]
4 CASE STUDIES

The application of the RIM to the quantitative evaluation of the effects on the refining industry of diesel penetration of the automotive fleet and reduction of the sulfur content of automotive fuels is described in this section. The general scenario (base case) used for the studies and the detailed analyses is described first.

4.1 Base 1995 Scenario

The development of a scenario for an industry as complex as the petroleum refining and distribution industry requires consideration of a large number of variables, which can be outlined as follows:
(1) Product demand by product and region
(2) Petroleum supply

- Domestic crude--high- and low-sulfur
- Alaskan crude
- Foreign crude--high- and low-sulfur
- California crude
(3) Facilities
- New domestic capacity compared with product imports
- Modifications for diesel production, desulfurization
- Transportation--pipeline, marine
- Construction cost inflation
- Site considerations for new capacity
(4) Prices (domestic product prices are not required for cost minimizing objective)
- Crude oil
- Product imports
(5) Federal, state, and local regulations
(6) Technology for diesel production and sulfur removal.

4.1.1 Product Demand

The estimates used for the first of these factors--demand for major petroleum products by product and by region--are presented in Table 4.1.1-1. The gasoline and diesel demand forecasts were supplied by DOT/TSC. ${ }^{5}$ These projections were reasonably consistent with those developed by SRI in a recent study ${ }^{5}$ sponsored by EPRI for a high-conservation, low-demand growth case (see Appendix E). The projections for demand for fuel products other than gasoline and diesel fuel were, therefore, derived from the study for EPRI performed with the SRI National Energy Model. In brief, this model is a dynamic programming model that determines equilibrium prices for energy products needed to meet estimated energy demands for primary consumption such as vehicle miles traveled, space heating, and so on. The scope of the model covers the entire energy industry, from the primary energy resources through a network of conversion, refining, transportation, and transmission facilities.

A separate model is used to develop estimates of the primary energy demands over time by sector and region, and to determine price elasticities of demand. See the SRI report ${ }^{6}$ on the EPRI study for detailed descriptions of these models. The basic assumptions used for the energy forecasts and the SRI energy model demand projections for the low-demand case are presented in Appendix E for the transportation, industrial, residential/commercial, and electric power sectors.

4.1.2 Petroleum Supply

The RIM includes four types of crude oil:

- Low-sulfur, as typified by a South Louisiana crude
- High-sulfur, as typified by a West Texas sour crude
- California, a blend of Wilmington and West Texas sour
- Alaskan North Slope.

For the high- and low-sulfur crudes, the RIM does not distinguish between domestic and foreign sources. The implicit assumption is that refiners will selectively buy foreign crudes similar to the domestic crudes represented in the model.

The upper limits of crude availability in the RIM apply primarily to the low-sulfur crudes, as shown in Table 4.1.2-1. Alaskan crude is limited to the expected maximum of 2 million b / d. Total crude oil throughput is controlled by the refining capacity limits discussed in the following subsection.

Table 4.1.1-1
MAJOR PETROLEUM PRODUCTS*--DEMAND SCENARIO (Millions of Barrels per Calendar Day)

PAD District
I II III IV V

Total
United States

1995 base case

Gasoline	1.85	1.92	0.645	0.170	0.790	5.375
Avgas and military (est.)	$\underline{0.02}$	$\underline{0.02}$	$\underline{0.020}$	$\underline{0.005}$	$\underline{0.020}$	$\underline{0.085}$
\quad Total gasoline	1.87	1.94	0.665		0.175	0.810
Jet fuel (Jet A)	0.773	0.386	0.242	0.048	0.628	2.080
Kerosene fuel oil	$\underline{0.070}$	$\underline{0.050}$	$\underline{0.040}$	$\underline{0.003}$	$\underline{0.008}$	$\underline{0.171}$
\quad Total kerosene-type fuel	0.843	0.436	0.282	0.051	0.636	2.251
Diesel, No. 1	--	\ldots	\ldots	\ldots	\cdots	-
Diesel, No. 2	0.605	0.630	0.210	0.055	0.260	1.760
Distillate fuel	0.870	0.608	0.242	0.091	0.180	1.991
Residual fuel	0.784	0.131	0.131	0.044	0.217	1.307

1995--15 percent diesel
penetration

Gasoline	1.610	1.680	0.580	0.155	0.700	4.735
Diesel, No. 1	0.250	0.260	0.085	0.020	0.110	0.725
Diesel, No. 2	$\underline{0.605}$	$\underline{0.630}$	$\underline{0.210}$	$\underline{0.055}$	$\underline{0.260}$	$\underline{1.760}$
Total diesel	0.855	0.890	0.295	0.075	0.370	2.485

1995--30 percent diesel

penetration

Gasoline	1.370	1.420	0.495	0.130	0.595	4.010
Diesel, No. 1	0.500	0.520	0.170	0.045	0.215	1.450
Diesel, No.2	$\underline{0.605}$	$\underline{0.630}$	$\underline{0.210}$	$\underline{0.055}$	$\underline{0.260}$	$\underline{1.760}$
Total diesel	1.105	1.150	0.380	0.100	0.475	3.210

[^8]Table 4.1.2-1

PETROLEUM SUPPLY LIMITS IN REFINING INDUSTRY MODEL CASE STUDIES

PAD District	$\begin{gathered} \text { Maxima } \\ \left(10^{3} \mathrm{~b} / \mathrm{cd}\right) \end{gathered}$			
	Low-Sulfur	High-Sulfur	California Blend	Alaskan
I	690	NL*	--	--
II	1,920	NL	--	--
III	3,132	NL	--	NL
IV	240	NL	--	--
v	680	NL	NL	2,000
Total	6,662			

4.1.3 Facilities

4.1.3.1 Refining. The value for the upper limit on domestic refining capacity is based on the 1977 level of about 16 million b/d. These limits are presented in Table 4.1.3.1-1. New capacity is allowed for large refineries at an average investment level of $\$ 4,000$ per daily barrel and for small refineries at $\$ 6,000$ per daily barrel. These expansion options have been added to the aggregate total for each district to allow flexibility in the selection of any of the available refining modes. The issue of additional domestic refining capacity may be of limited significance in this study, because the conservation demand scenario requires little expansion beyond current capacity if U.S.-owned Caribbean capacity is included.
4.1.3.2 Transportation. Transportation capacity limits and costs used in the study cases are presented in Table 4.l.3.2-1. Major product pipeline capacities are modeled with an option to expand at investment costs appropriate for the estimated sizes of required lines and distances. In making these estimates, it is assumed for this study that no major changes from the 1974 base pattern will occur.

Installation of new refining and pipeline capacity is allowed to occur at the optimal locations determined by the model. Marine transportation of products, where feasible, has unrestricted capacity.
Table 4.1.3.1-1

United States Total
10,310
12,645
12,055
13,453
15,561

PAD District				
I II III IV V 1,337 2,425 4,226 410 1,912 1,693 3,937 6,497 518 2,422 1,647 3,801 4,226 469 1,912 1,590 3,610 5,733 443 2,078 1,466 4,172 5,827 561 2,588.				

Lower $^{\dagger} \dagger$
Upper †
Model usage
1976 reported runs ${ }^{\dagger}$
1976 reported capacity ${ }^{\oint}$

> *rude oil throughput.
REFINING CAPACITY LIMITS, 1995 BASE CASE (Thousands of Barrels per Calendar Day*) Products, and Natural Gas Liquids (March 1977).
Source: Federal Energy Administration, Trends in Refinery Capacity and Utilization (June 1976).
Table 4.1.3.2-1

4.1.4 Prices of Crude $0 i 1$ and Imported Products

For the current studies, the RIM is being operated on the assumption that the objective is to meet projected regional product demands at minimum total cost. Because crude oil transportation facilities are not currently included in the model, estimated crude oil transportation costs are included in the total cost of crude in each region. Imported products are assumed to come from a Caribbean supply source at prices FOB refinery plus shipping cost. These prices are summarized in Appendix C.

The set of price and cost parameters used in the 1974 case has produced a reasonable simulation of actual 1974 refining and product transportation patterns. Therefore, the study cases are defined in terms of constant 1974 dollars.

4.1.5 Federal, State, and Local Regulations

The RIM is currently structured to take into account regulations related to transportation fuels--fuel efficiency and vehicle sulfur emissions. Variations in regulations concerning the quality or use of residual fuels are beyond the scope of this study. However, the refinery model could readily be modified to develop additional refining options to conform with such regulations.

4.1.6 Technology for Diesel Production and Sulfur Removal from Gasoline and Diesel

The technology applied in this study for diesel production and desulfurization is commercially mature; however, the extension of the diesel desulfurization to very low levels has not been practiced commercially. The estimates of the costs of this operation are thus less certain than those for the other processes. The specific processes used for additional diesel production and for desulfurization (hydrocracking and HDS) are discussed in greater detail in later subsections.

4.2 Impact of Increased Diesel to Gasoline Production Ratio on the Refining Industry

4.2.1 Overview

The superior fuel efficiency of the diesel engine over the conventional spark-ignited gasoline engine has created widespread interest in diesel engines as a means of improving the fuel economy of the nation's automotive fleet. The possibility of significant penetration of the diesel into the automotive market raises questions of fuel supply and effects on the refining industry. This study addresses these impacts in terms of product mix, refining and transportation costs, energy consequences, and potential new investment required.

4.2.2 Summary and Conclusions

The effects of increased diesel-to-gasoline ratios have been studied over the range of $0.17 / 1$ to $0.8 / 1$. The major results are summarized in Table 4.2.2-1. Detailed model output is presented in Appendix C for Case 1. Summary output for Cases 2, 3, and 4 of the dieselization study are presented at the end of this section.

The major conclusions drawn from the output of the RIM runs for the study cases are as follows.

- Given the conservation-oriented scenario selected for this study, a significant increase in diesel fuel consumption when production of other middle distillate products is held constant will tend to produce a shortage of domestic output of middle distillates. Even at the 1995 base case (Case 2) ratio of $0.3 / 1$ diesel to gasoline, imports of No. 2 fuel oil will reach the maximum allowed for this study. At 15 percent diesel penetration (Case 3, 0.5/1 diesel-to-gasoline ratio), No. 2 fuel imports remain at the maximum, and jet fuel imports of 174,000 $b / c d$ are required. At the maximum diesel penetration of 30 percent (Case 4, $0.8 / 1$ diesel-to-gasoline ratio), the maximum allowed import volumes of $400,000 \mathrm{~b} / \mathrm{cd}$ each of No. 2 fuel oil and jet fuel are reached. The required volumes of diesel fuel are provided by increased hydrocracking, although options exist in the RIM for refining No. 2 fuel oils to diesel fuel by hydrotreating or the use of a cetane-improving additive.
- At the $0.3 / 1$ ratio (Case 2), the model indicates that about half of existing hydrocracking capacity $(907,000 \mathrm{~b} / \mathrm{d}$ as of 1 January 1977^{7}) would be shifted to diesel production from gasoline. Refining industry investment for Case 3 is $\$ 90$ million, compared with $\$ 54$ million for the 1995 base case (Case 2). Case 3 uses all of the existing hydrocracking capacity. At the Case 4 diesel penetration of 30 percent ($0.8 / 1$ diesel-to-gasoline ratio), the need for new hydrocracking capacity raises the required investment sharply to $\$ 1.5$ billion.
- Refinery energy consumption for Cases 2 and 3 decreases from the 1974 industry operation by about 0.06 percent and 0.14 percent, respectively. The Case 4 requirement for new hydrocracking capacity increases the refining energy consumption to 7.3 percent of domestic refinery output, or 1.13 percent more than the minimum for Case 3.
- The refining industry cost savings over Case l are greatest for Case 2, $\$ 0.61 / b$ of domestic production of gasoline plus diesel. The cost saving is less for Case 3 , $\$ 0.52 / b$ of gasoline plus diesel. At 30 percent diesel penetration, the cost for Case 4 is $\$ 0.05 / b$ greater than the 1974 cost.
Case 3--1995
15
Case 2--1995
Base
Case 1--1974

(FOE basis)
 output.
Base

$$
6.31
$$

Base
Case $4--1995$
30
$3,211(27.0)$
$4,010(33.8)$
$0.80 / 1$
400^{\neq}
400^{\ddagger}
433
12,083
+0.05
1,479
7.30
+0.992,492(20.5)4, 734 (38.9) 1,767(14.2) 5, 460(43.8) $0.32 / 1$ 400^{\neq}
273
12,539
-0.61
54.4
6.25
-0.06 Base -0.06

$$
\begin{aligned}
& 51 \\
& 1,971 \\
& 13,042
\end{aligned}
$$

*Substitution of light diesel for motor gasoline, as forecast by DOT/TSC.
Percent reduction from base
Percent diesel penetration Diesel production, $10^{3} \mathrm{~b} / \mathrm{cd}$ Gasoline production, $10^{3} \mathrm{~b} / \mathrm{cd}$ Diesel/gasoline ratio Imported products, $10^{3} \mathrm{~b} / \mathrm{cd}$ Jet A, $10^{3} \mathrm{~b} / \mathrm{cd}$ No. 2 Fuel Oil, $10^{3} \mathrm{~b} / \mathrm{cd}$ No. 6 Fuel Oil, $10^{3} \mathrm{~b} / \mathrm{cd}$ Domestic Crude runs, 10^{3} Cost differentials, $\$ / b$ gasoline + diesel ${ }^{\S}$ New investment, 10^{6} \$

Energy consumption, percent of domestic products Mineral Industry Surveys, Fuel Oil Sales (1975). Values in parentheses are percent of domestic refinery output (1975). Values in parentheses are percent of domestic refinery

Maximum allowed in study cases.
${ }^{8}$ Computed from RIM objective function for total U.S. fuels refining industry; includes 20 percent beforetax simple return on new investment; constant 1974 dollar values for costs, including crude oil and imported products.

$$
0.53 / 1
$$

$$
\begin{aligned}
& 174 \\
& 400^{\ddagger} \\
& 338 \\
& 12,284 \\
& -0.52 \\
& 98.8 \\
& 6.17
\end{aligned}
$$

$$
-0.14
$$

- Case 4 approaches the lower limit of gasoline production if naphtha is used only for gasoline blending, as it now is. This is a limit of the model. Under an option for alternative uses for naphtha (e.g., as a petrochemical feedstock or in turbine fuel), the industry could show a preference for running additional crude to reduce the imports of middle distillates and selling the excess naphtha at a potential premium price.
- The proportion of crude oil used for petroleum products other than the major fuel products is assumed to be the same in 1995 as it was in 1974. This assumption is not intended to be a prediction. The use of refining facilities specifically for production of petrochemicals and other nonfuel products could add significantly to the crude oil requirements indicated in the cases shown in this study.

4.2.3 Discussion and Analysis

The effect of increasing the diesel-to-gasoline ratios in U.S. refining and distribution industries depends on several critical factors:

- Demands for other refined coproducts
- The extent of the change
- Refining facilities and process technology available
- Crude oil availability
- Product import policy.

Diesel fuel is one of the several fuels called middle distillates that have distillation temperatures in the range of about 400 to $650^{\circ} \mathrm{F}$. No. 2 heating oil has virtually the same boiling range as No. 2 diesel, and kerosene (No. 1 heating oil) and commercial jet fuel (Jet-A) are similar to No. l diesel fuel. In many instances, the products sold as fuel oils will also meet diesel specifications.

In the current demand pattern, these distillate products are, as the name implies, produced from crude oil primarily by the distillation process; hydrotreating is required only for the stocks derived from sour crudes. In general, the volume demands for these products are in balance with the corresponding yield fractions of the crude oil processed, as implied in the previous statement. However, the United States, with its emphasis on gasoline production, is an exception to the pure "straightrun" distillate content of these products. Some cracked distillate byproducts of the FCC and coking processes are blended into No. 2 fuel oil. The cracked stocks tend to have a high content of aromatic components, which results in low cetane* quality, and they are therefore not suitable

[^9]stocks for diesel fuel unless hydrotreated. Hydrocracking, used primarily in the United States for gasoline production, may be operated at lower severity to produce excellent diesel or jet fuel blend stocks. The cost of this process is substantially greater than that of FCC.

The effect on cost of changing the diesel-to-gasoline ratio may be analyzed as a function of the extent of change. When demand figures for Jet A and No. 2 heating oil are "protected" (i.e., held constant), the first increment of additional diesel fuel is the volume of distillate oil in the crude that exceeds distillate demand. In the United States, this material is generally fed to the FCC unit for conversion to gasoline; it could be made available for diesel blending at the expense of reducing the production of gasoline. The next increment of diesel production is made by operating existing hydrocracking at reduced severity; again, the result is a reduction in gasoline production. This approach is carried further by adding new hydrocracking capacity to process vacuum gas oil $\left(650-1000^{\circ}\right.$ F) feed currently being cracked in FCC units for gasoline production. The FCC units are also operated at low severity, and the distillate product is hydrotreated to improve cetane ratings.

The quantitative effects of these changes on an industry-wide basis for several diesel-to-gasoline ratios were studied with the RIM. Results were summarized in the preceding section. The RIM output for the diesel study cases is summarized in Table 4.2.3-1, and the RIM summary output for each of the dieselization cases is shown in Tables 4.2.3-2 through 4.2.3-10. Changing the proportions of gasoline and diesel fuel produced should have little effect on the distribution and marketing sectors through 1995 because both products are compatible with existing facilities.

Production of U.S. cars requiring premium gasoline (98-100 RON) virtually ceased in 1971.8 At the historical scrapping rate for cars of about 10 percent per year, virtually all of the pre-1971 models will no longer be in use by 1995. If production of higher compression-ratio engines is not resumed, the need for three gasoline grades will not exist in 1995. Thus, the retail system that now provides three grades of gasoline can be adapted to provide two grades of gasoline and one grade of diesel. Our projections assume that leaded gasoline will be phased out entirely by 1995.

4.2.4 Review of Prior Studies

Several other studies of possible changes in gasoline-to-distillate ratio have been published. All have used a refinery LP model to evaluate "typical" refinery cases for various levels of diesel penetration, but they have been based on different scenarios, which, predictably, yield different absolute values for the effects of diesel penetration on the refining industry. For comparison with this study, it is particularly significant to note that these studies do not explicitly quantify the effects of the substantial regional differences in relative distillate product demands, crude oil qualities, and product imports.

Table 4.2.3-1
dieselization case data summary

	Case 1--1974 Validetion Case		$\begin{gathered} \text { Case } 2=-1995 \\ \text { Base } \\ \hline \end{gathered}$		```Case 3--1955, 15 Percent Diesel Penecration```		```Case 4-0-1995, 30 Percent Diesel Penetration```	
Refining industry $\operatorname{cost}^{\text {t }}$ ($10^{3} \mathrm{\$} / \mathrm{d}$)	149,026		135,145		135,817		139,913	
Total refinery input ${ }^{\dagger}$ ($10^{3} \mathrm{~b} / \mathrm{cd}$)	13,042		12,539		12,284		12,083	
Domestic refinery production, $10^{3} \mathrm{~b} / \mathrm{cd}(\mathrm{vol} \%)^{\ddagger}$								
Gasoline	6,582	(50.7)	5,460	(43.8)	4,734	(38.9)	4,010	(33.8)
JP-4	181	(1,4)	165	(1.3)	166	(1.4)	171	(1.4)
Jet-A	947	(7.3)	1,350	(10.8	1,176	(9.6)	950	(8.0)
Diesel	1,127	(8.7)	1,767	(14.2)	2,492	(20.5)	3,211	(27.0)
No. 2 fuel oil	I, 784	(13.7)	1,591	(12.8)	1,591	(13.1)	1,591	(13.4)
No. 6 fuel oil	1, 063	(8.2)	1,001	(8.0)	936	(7.7)	841	(7.1)
Other	1,301	(10.0)	1.141	(9.1)	1,083	(8.9)	1,106	(9.3)
Total production	12,985	(100.0)	12,475	(100.0)	12,179	(100.0)	11,280	(100.0)
Imported products								
Jet fuel (Jet A)	--		--		174		400	
No. 2 fuel oil	51		400		400		400	
No. 6 fuel oil	1,471		273		338		433	
Total imports	1,522		674		$\because 12$		1,233	
Total domestic demand	14,507		13,149		13,090		13,113	
Energy consumed by domestic refining ($10^{3} \mathrm{~b} / \mathrm{cd}$, FOE)	820		780		751		867	
Incremental investment ($10^{6} \$$, 1974)	--		54.4		90.8		1,479	
Facilicies for diesel ($10^{3} \mathrm{~b} / \mathrm{cd}$)								
Existing hydrocracker conversion	--		486		811		856	
New hydrocracking	--						325	

[^10]

IPPORT
$\because \quad 0: 0$
074.0
5.
2
7
0
0
0
0

- 12539.3 12539.3
196.2

0
i
c
i
i
i
i
i
0
Table 4.2.3-2

0. 0. T. TRANSPORTATION SYSTEMS CENTER
PEFINING INDUSTRY MODEL - 1995, BASE
REFINEPY INPUT/OUTPUT SUMMARY P.A. D. DISTQICT
U.S.

5239.2
5382.7
249.4
135.0
99.9 0

$0 M N M$
$\bullet \bullet-\infty$ 2 CO 4.0

101.2

98.5
454.0
772.0
105.7
42.7
29.6
$\begin{array}{rrr}1675.3 & 3980.8 & 4403.9 \\ & & \\ 51.7 & 85.1 & 26.9 \\ 14.3 & 15.9 & \\ 1.8 & 21.3 & 37.2\end{array}$

$\begin{array}{lll}1 & 0 & \sim \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & \end{array}$

0
$-\quad 00$
000
000
$\stackrel{\circ}{\circ}$
Toble 4.2.3-3
0. O. t. transportation systems centea
refining inoustry mootl - 1995. base

Exp ror
EXPORIS
-s.n

5460.0
166.5
350.0
767.3
991.0
637.0

○…
13.3
37.3
37.3
10.6
10.6
20.2
$3 ? .7$
39.2
34.6
90.4
13149.1

ㄱㅇㅇㅇㅇㅇ․ ロ~Nr:

$\cdot{ }^{\circ} \mathrm{O} \tau$

~~~: 2050.3


Nomionnion ion
\(m \left\lvert\, \begin{array}{cc}i \\ \dot{\sim} & \vdots \\ i\end{array}\right.\)
665.0
30.0
170.0
217.0
242.0
65.0
65.0
04.3
73.3
9.1
10.6
13.7
23.7
25.3
22.3
----------


\(\stackrel{8}{i}\)
 0
0
0
0
0
\begin{tabular}{c}
1 \\
\hdashline\(-\therefore\) \\
14.7 \\
1.3
\end{tabular}
\(\begin{array}{r}1870.0 \\ 42.8 \\ 506.0 \\ 6050 \\ 870.0 \\ 392.0 \\ 392.0 \\ 40.8 \\ 63.9 \\ 1.9 \\ 4.3 \\ 1.3 \\ .9 \\ \hline .7 \\ 12.9 \\ \hline-2972.2\end{array}\) P. A. D. OISTRICT .

talal
\begin{tabular}{|c|c|c|c|c|}
\hline \(7{ }^{18}\) & \(L^{\circ} \mathrm{E}\) & \(2^{\circ} 0 \varepsilon\) & \(\varphi \cdot{ }^{\circ}\) &  \\
\hline を06クI & \(9{ }^{\circ} 0 \varepsilon\) & \(8 \cdot 962\) & \(9^{\circ} \mathrm{T} 6 \%\) & T•9ET \\
\hline \(0^{\circ} \mathrm{C} 756\) & 8・モりをて & O．DETİ & 199006T & \(0^{\circ} \mathrm{GEz8}\) \\
\hline T \({ }^{\text {e }}\) を！ & \(0 \cdot 82\) & \(L \cdot 162\) &  & \(7 \cdot 56\) \\
\hline I＇\(£\) IT & £・をて & ぐとらて & だらつて & \(9 \cdot 91\) \\
\hline を・コウクロ & 9・モりクI & L．ST991 & T• OO6EL & \(5 \cdot 7509\) \\
\hline 5 & 4 & \(\varepsilon\) & 2 & \(\tau\) \\
\hline
\end{tabular}
ELEC．PWR（1000KWH／D）
FUEL REQD．（1000FOEB／D）
ENERGY CONS．（100OFDEB／D
LABOR（NO．EMPLOYEES）
LPER COSTS（MS／D）
INVESTMENTS（MM\＄）
Table 4.2.3-5
0. 0. T. TRANSPORTATION SYSTEMS CENTEQ
REFINING INOUSTRY NUDEL - 1995, 15 PCT OIESEL
A甘VWwns lndinoilndil lajnlizy P. A. O. DI;TRICI
 s2•ท NOII 335
INPUT
SHEET CRUOE
SOUR CRUDE
CALIF CRUDE
ALASKAN CRUOE
NATURAL GASOLINE
NORAAL OUTANE
ISOQUTANE
TOTAL INPUT
OUTPUT


\section*{}
？
10.6
\(1 \geqslant .4\) いがった。 13090.3

 \begin{tabular}{r}
11.5 \\
\hdashline 173.5 \\
19.4
\end{tabular}
oncncogennopornm
\[
\begin{array}{ll}
1 \\
1 & 0 \\
1 & 0 \\
1 & 2 \\
1 &
\end{array}
\]

pruouct consumption sumary

\[
S
\]



27.2
42.2
\(42 \cdot 2\)
580.0
36.0
170.0
295.0
242.0
65.0
65.0
85.6
76.3
11.6
6.0
13.8
25.4
27.6
30.0 11993.4
2
79.4
7.8
21.3 4005.4
\[
2028.5
\]

\(8^{\circ} 1\)
\(8^{\circ} 6\)
\(E \cdot 6 \varepsilon\)
\(---\infty\)
1

\(\because 0 \sim \sim!\)
7
\(\vdots\)
0
0
5
II •日 nolloヨs

\[
\text { SECTION C. } 4
\]
\[
\begin{aligned}
& \text { ELEC. PWR ( } 1000 \mathrm{KWH/O)} \\
& \text { FUEL REOD. (100OFDEB/D) } \\
& \text { ENERGY CONS. (1COOFOFB/D } \\
& \text { LABOR (NO. EMPLOYEES) } \\
& \text { OPER COSTS (M\$/D) } \\
& \text { INVESTMENTS (MM\$) }
\end{aligned}
\]
Table 4.2.3-7
D. O. T. TRANJPOKTATION SYSIEMJ CENTER
\[
\text { REFINIVG INDUSTRY HODEL - } 1995,15 \text { PCT OIESEL }
\]
UTILITY SUMNARY
Table 4.2.3-8
O. U. T. IHANSPORTATION SYSTEMS CENTER
REFINING INOUSTRY MUOEL - 1995, 30 PCT. DIESEL
REFINERY INPUT/OUTPUT SUMMARY
P. A. D. DISIRICT

---------
SUEET CRUDE
SOUR CRUDE
ALASKAN CRUDE
NATURAL GASOLIME Natural gasolime
normal sutane ISOBUTANE total input output

indino triol
outputisnput,pet
Table 4.2.3-9
D. U. T. transpjatation systems center
REFINING INDUSTKY MODEL - 1995, 30 PCT. DIESIL
PRODUCV CGNSURPTION SUTMARY


FXPORIS
\begin{tabular}{|c|c|}
\hline \(\sim\) a.o. &  \\
\hline ¢0: &  \\
\hline & \\
\hline - &  \\
\hline & \\
\hline
\end{tabular}
5
\(\sim\)
\(\sim\)
\(\sim\)
\(\sim\)

\(-\left\{\begin{array}{l}0 \sim \\ 10\end{array}\right.\)
 427.2 n


1942.5
II - 8 NOIIJ3S

\[
\begin{aligned}
& \text { ELEC. PWR ( } 1000 K W H / D) \\
& \text { FUEL REQD. (1JOOFOEB/D) } \\
& \text { ENERGY CONS. (100OFOEB/D } \\
& \text { LABOR (NO. EMPLOYEES) } \\
& \text { OPER COSTS (MS/D) } \\
& \text { INVESTMENTS (MMS) }
\end{aligned}
\]
\[
\begin{gathered}
U \cdot S \\
-0-0-0-1 \\
56758 \cdot 1 \\
594 \cdot 0 \\
967 \cdot 2 \\
58395 \cdot 0 \\
788 \cdot 4 \\
1478.7
\end{gathered}
\]
\[
y
\]

The studies reviewed in the following discussion are the major ones that were available to the author when this report was written. The omission of a study implies no value judgment about their quality or validity. Comparisons of cost and energy savings estimates for various studies are presented in Table 4.2.4-1.

A 1974 Exxon study \({ }^{9}\) for EPA indicates a maximum saving of about \(\$ 0.50 / \mathrm{b}\) of automotive fuel (diesel plus gasoline) at a \(1 / 1\) ratio of diesel to gasoline. This is compared with a base case of a \(1 / 10\) diesel-togasoline ratio. The corresponding process energy savings is about 2 percent of the total process energy consumption. This study was based on a new, 100,000 barrels per stream day (b/sd) refinery that would come onstream between 1990 and 2000. Thus, much of the cost saving is attributable to the smaller investment required for a refinery specifically designed to produce the \(1 / 1\) ratio of diesel to gasoline. This differs from SRI's model, which recognizes no investment credit for idle facilities. Investment and operating costs are in 1973 dollars.

A 1976 study released by Bonner and Moore Associates, Inc., \({ }^{10}\) also based on a refinery LP model, is somewhat more comprehensive in its coverage of multiple demand scenarios derived from an earlier SRI report. \({ }^{11}\) The comparable diesel scenario from this study provides cases covering a range of diesel/gasoline ratios from \(0.1 / 1\) to \(1.2 / 1\). The consumer cost effects for these cases result from changes in costs of refining, marketing, and distribution. Distribution costs are based on the assumption that three grades of gasoline will continue to be marketed until 1990, so that additional facilities will be required for diesel marketing. This study indicates a maximum net saving of \(\$ 2.34 / \mathrm{b}\) ( \(\$ 0.056 / \mathrm{gallon}\) ) of gasoline plus diesel in 1990 dollars* at a gasoline/diesel ratio of about \(0.7 / 1\). The maximum refinery and distribution energy saving of about 1.1 percent below the baseline case occurs at the \(1.2 / 1\) ratio.

The approach of optimizing the vehicle-fuel-refinery (VFR) system was analyzed in a study by Wilson and Tierney of Texaco. \({ }^{12}\) This study also used a single refinery LP model. A base case representing the U.S. refining industry in 1972 included process capacities typical of the industry configuration for that year. Parametric cases were developed in which only production of highway transportation fuels was allowed to vary, with other products held stable at base case volumes. These cases were:
- An all unleaded 91 RON gasoline case with base case diesel production
- A maximum diesel case
- Two maximum broadcut fuel ( \(100-650^{\circ} \mathrm{F}\) ) cases with base case diesel volume.

\footnotetext{
*Escalated from the 1975 base year at the various rates given in Reference 11.
}


Table \(4 \cdot 2 \cdot 4-1\)
COMPARISON OF DIESELIZATION STUDIES
\begin{tabular}{c}
\begin{tabular}{c} 
Maximum Refinery \\
Energy Saving, \\
Percent of
\end{tabular} \\
\begin{tabular}{c} 
Domestic Products \\
(FOE)
\end{tabular} \\
\hline Base \\
\hline 6.31 \\
Saving \\
9.1
\end{tabular}

For the maximum diesel case, the diesel/gasoline ratio was about \(0.36 / 1\), compared with \(0.18 / 1\) in the base case. The refinery fuel requirement decreased from 8.6 percent of crude in the base case to 7.2 percent in the maximum diesel case. Cost data were not presented. Only existing process unit capacities were considered, and it is not clear whether the option of hydrocracking for maximum distillate production was permitted.

A study by Shearer and Wagner \({ }^{13}\) of Amoco showed that raw material and variable operating costs increased for all cases of increased diesel/ gasoline ratios. In this study, based on a single refinery model with Arabian light crude, the increase in feedstock cost more than offset the reduction in refinery fuel requirement. The base refinery configuration did not include hydrocracking and did not produce residual fuel oil.

As shown in Table \(4.2 .4-1\), the cost and energy savings estimates developed in these studies vary considerably. The major difference between the SRI study and the others is that SRI applied an industry-wide model, whereas the others used single refinery models. In particular, the SRI model's flexibility in balancing regional product demands with imported products and interregional transfers leads to more moderate estimates of changes required in the domestic refinery sectors. The effect of this feature is particularly evident in SRI's lower estimates of energy savings for dieselization. The numerous other differences in scenarios also undoubtedly contribute to the differences in results of various studies. The major source of these variations is probably differences in the product mixes (see Table 4.2.4-2) used in the studies. The projected demand for jet fuel is especially critical because the major components of this product are also the major components of automotive diesel fuel.

Beyond this general discussion, a detailed quantitative reconciliation of the study results is probably not feasible. The differences among the studies may be considered useful as a measure of the range of uncertainty in quantifying effects of dieselization on the refinery industry. The maximum refinery energy saving found in any study is only about 2 percent, \({ }^{9}\) and that saving was calculated for a new refinery optimally designed to handle a product mix different from today's demand pattern. Existing U.S. refining capacity, supplemented by U.S.-owned Caribbean refineries, may be sufficient to obviate the need for any substantial amount of new U.S. refining capacity. Thus, the economics of new refineries are probably not a realistic reflection of the industry-wide impact of changes in the product mix.

\subsection*{4.2.5 Technology for Increasing Diesel Availability}

As discussed in the preceding section, a number of steps may be taken in a refinery to increase diesel fuel production at the expense of reductions in output of other products. The effects of reductions in light gas oil feed to FCC units and reduced conversion severity of FCC units are implicitly accounted for in the low-conversion refinery modes in the RIM.
Stearer and \(: \begin{aligned} & 1 \\ & 1 \\ & \\ & \\ & \\ & \text { in }\end{aligned}\) ñ 100.0 Bonner and
\[
\begin{array}{r}
3.2 \\
57.0 \\
9.2 \\
5.6 \\
17.9 \\
7.2 \\
\hline-2 \\
\hline 100.0
\end{array}
\]

NOILOAI\&LSIO LOnCOYd

\section*{\(\mathrm{SRI}^{1 I^{*}}\) \\ Kant et al. \({ }^{11^{\dagger}}\)}
**

100.0
0.0
25.0
27.3
\(\begin{array}{r}94.9 \\ 5.1 \\ \hline 100.0\end{array}\) § Case of maximum energy savings. ** LPG included in "Other" product category. Produced coke instead of residual fuel oil. Domestic products (volume percent of refinery output) Liquid propane gas Gasoline Jet fuel
Diesel -
Heating
Residual
Other
Imported products (volume percent of corresponding refinery product)
Jet fuel
Heating oil
Residual
All products (volume percent of
total domestic demand)
Domestic
Imported
* Case 2, 1995 base domestic refinery
output.
Low fuel oil case.
Baseline scenario for 1995.
\[
\begin{array}{r}
* * \\
33.03 \\
18.42 \\
8.92 \\
14.28 \\
12.69 \\
12.66 \\
\hline 100.00
\end{array}
\]
\[
100.0
\]

The following discussion describes explicit incremental options in the RIM for increased diesel production.

Any significant increase in the proportion of diesel fuel produced is likely to require the use of refinery streams that are deficient in cetane quality. Cetane quality improves as the aliphatics content of the blend stocks increases and the aromatics content decreases. Therefore, increasing the hydrogen content of the stock (e.g., by hydrotreating or hydrocracking) improves cetane quality. Additives such as amyl or hexyl nitrates also increase cetane quality.
4.2.5.1 Additives for Cetane Improvement. Amyl and hexyl nitrates produce cetane number improvement, as shown in Figure 4.2.5.1-1. The cost of a four-point cetane index improvement resulting from additives is about 0.22 cents/gallon of diesel fuel, based on a recent price of 45 cents per pound in tank-car quantities. \({ }^{14}\) According to the response curve in Figure 4.2.5.1-1, this quality increase corresponds to an additive requirement of 0.06 volume-percent.

This level of cetane improvement was selected for inclusion in the RIM for the sake of consistency with the hydrotreating option described in the following section. If this option for incremental production of diesel fuel at the expense of No. 2 fuel oil were to be studied in depth, several levels of cetane improvement could be developed from the response curve and cost data.

However, a basic problem exists in assessing cetane improvement methods in evaluations of incremental diesel production. The volume of marginal cetane quality blend stocks that could be added to the national diesel pool by upgrading is not explicitly known. Production of FCC light cycle oil and light coker gas oil may be estimated from published capacity data for the two relevant cracking processes, but such estimates were not made for this study because the chosen scenarios indicated that No. 2 fuel oil would be in short supply.

Surveys of the qualities of No. 1 and No. 2 fuel oils produced in the l'nited States are published annually by the DOE (formerly ERDA) Bartlesville Energy Research Center (BERC). \({ }^{15}\) The available quantities corresponding to the reported sample qualities are noted only by classes of volumes produced. It is thus only possible to estimate roughly the extent of cetane improvement requi.ed and the corresponding volume of incremental diesel fuel produced.

Note also that the average cetane values reported in the annual survey of diesel fuel quality by \(\operatorname{BERC}^{j o}\) exceed the American Society of Testing and Materials (ASTM) minimum of 40 by \(5-10\) points. This study has not established whether the apparent excess cetane quality is the result of the need to meet specifications required for market competition, or is simply characteristic of the distillate stocks of the crude oils currently processed in U.S. refineries. Some indication supporting the latter

\title{
 \\ - Mixture of Primary Hexyl Nitrates \\ SOURCE: Ethyl Corporation, "Diesel Fuel Additives," Brochure PCD417872 (Undared)
}

FIGURE 4.2.5.1-1 CETANE IMPROVEMENT BY ADDITIVE
explanation is obtained by calculating the average cetane index of No. 1 and No. 2 heating oils from data reported in the annual BERC fuel oil survey. Using the ASTM D-613 correlation of cetane index versus API gravity and mid-boiling point (Figure 4.2.5.1-2), the sample averages are well above 40 cetane index. This suggests a general availability of excess cetane quality in the U.S. refining industry distillate pool at current levels of diesel production.
4.2.5.2 Hydrotreating for Cetane Improvement. The traditional commercial application of distillate hydrotreating has been in sulfur removal required to meet \(\mathrm{SO}_{2}\) emission regulations. In this application, some degree of aromatic ring saturation occurs, and this saturation improves the cetane quality of diesel blend stocks. In the refinery model, an allowance of a four-point cetane number improvement is provided for hydrotreated kerosene stocks and a two-point improvement is provided for light gas oils. More severe hydrotreating with catalysts designed for aromatic ring saturation could provide a considerably greater cetane improvement than the four point improvement allowed in the Refinery Model, but published data on this particular type of operation are scarce, probably because of the previously discussed traditional lack of incentive for applying such severe hydroprocessing. However, an analogy may be drawn to hydrotreating for jet fuel smoke point improvement, which is practiced to a limited extent in the refining industry. \({ }^{17}\) Using the increase in gravity ( \({ }^{\circ}\) API) as a measure of aromaticity reduction, several examples given in this reference show a \(2-4^{\circ} \mathrm{API}\) increase between feed and product. Applying this to the D976 correlation presented in Figure 4.2.5.2-1 at a constant mid-boiling point of, say \(440^{\circ} \mathrm{F}, 36^{\circ} \mathrm{API}\), the calculated cetane index increases from 39 to 47 for a \(4^{\circ} \mathrm{API}\) increase in gravity.

The economics of this process as represented in the RIM as an option for incremental diesel production were adopted from the distillate hydrotreating data in the Refinery Model, as summarized in Table 4.2.5.2-1. The problem of estimating the limits of potential application are the same as those discussed for the additive option.

\subsection*{4.2.5.3 Hydrocracking for Diesel. Of the three options developed} for the production of incremental diesel fuel, only hydrocracking produces diesel fuel at the sacrifice of gasoline production. The rationale is that heavy gas oil feedstocks currently being cracked in FCC units for gasoline production may alternatively be charged to hydrocracking for production of high-quality diesel fuel. It should be noted that the FCC process may be operated at low cracking severity to produce a lower gasoline-to-cracked-distillate ratio. However, the cetane quality of the cracked distillate is poor, so this stock is usually blended into the No. 2 fuel oil pool. As mentioned previously, severe hydrotreating may be used to upgrade cracked distillates to diesel or even jet fuel quality, but this option has little commercial application with the traditional product mix. If extensive diesel penetration occurs, this approach will probably be explored by the refining industry.

\section*{CALCULATED CETANE INDEX}


GASEO ON EQUATIONS:



\section*{CORRECTIOM FOR BAROMETRIC PQE SSURE}



Note-The Calculated Cetane Index equation represents a useful tool for estimating cetane number. Due to inherent limitations in its application. Index values may not be a valid substitute for ASTM Cetane Numbers as determined in a test engine.

FIG. 1 Vomograph for Calculated Cetane Index (ECS-1 Meter Basis-Method D 613).

\footnotetext{
By publication of thus standard no position is taken with respect to the validity of anv patent rights in connection therewith. and the Amencan Soctetv for Testing and Materials does not undertake lo insure anvone utilizing the standard against liabiliti for infringement of ant Letters Patent nor assume anv such liabilitv.
SOURCE: 1974 Annual Book of ASTM Standards, Petroleum Products and Lubricants (1), Part 23 (1974).
}

FIGURE 4.2.5.1-2 CALCULATED CETANE INDEX


 teve engine

FIG. I Vomograph for Calculated Cetane Imbex IECS-1 Moter Basis-Method D 613).

\footnotetext{




SOURCE: 1974 Annual Book of ASTM Standards, Patroleum Products and Lubricants (1), Part 23 (1974).
}

FIGURE 4.2.5.2-1 CETANE INDEX IMPROVEMENT THROUGH HYDROTREATING

ECONOMICS OF INCREMENTAL HYDROTREATING FOR UPGRADING HEATING OIL STOCKS TO DIESEL QUALITY
\begin{tabular}{ll} 
Yields (barrels) & \\
No. 2 fuel & -1.0 \\
Diesel & +1.0 \\
Refinery fuel (FOE b) & -0.022 \\
Electric power (kWh/b of incremental diesel) & 0.008 \\
Labor (No. \(10^{3} \mathrm{~b} / \mathrm{d}\) ) & 0.50 \\
Operating cost (\$/b diesel) & 0.0125 \\
Toṭal energy (FOE b/b of diesel) & 0.025 \\
Investment \(\left(10^{3} \$ / \mathrm{b} / \mathrm{d}\right)\) & 0.510
\end{tabular}

Hydrocracking is a versatile, if relatively costly, process for converting heavy gas oils to lighter products ranging from diesel fuel to gasoline and even lighter fuels. Most of the hydrocracking capacity now installed is intended to operate in the maximum gasoline mode, but may be used to produce additional jet fuel or diesel, as the particular refiner's market requires.

To quantify the incremental effects of using hydrocracking to produce diesel at the expense of gasoline produced by FCC, the Refinery Model was run in (1) a high gasoline demand mode with limited hydrocracking capacity available, and (2) in a high diesel demand mode with unlimited hydrocracking capacity available. The differences in yields and costs between these two operations represent the incremental effects used in the RIM. Table 4.2.5.3-1 summarizes the two refinery model runs described. As shown in this table, the yield and cost differences are normalized on a quantity per barrel of gasoline reduction for inclusion in the RIM. The investment requirement for this operation is based on requirements for incremental capacity only; no credit is allowed for unused process capacity.

The units per barrel of gasoline values are the coefficients used in the RIM, as shown in Table 4.2.5.3-1, with the exception of gasoline. The 1.0 value for gasoline is based on a reduction weighted to reduce production of leaded premium and regular grades in greater proportion than low-lead and unleaded grades, as is consistent with existing trends.

A separate set of hydrocracking options is included in the RIM to represent the conversion of existing gasoline hydrocracking capacity to the maximum diesel mode. The upper limits of these options are set at 1.3 times the existing capacity to allow for the potential of higher

Table 4.2.5.3-1
INCREMENTAL HYDROCRACKING FOR DIESEL PRODUCTION

\section*{High Gasoline High Diesel Difference Barrel of Geper}

Yields, volume percent of crude
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathrm{C}_{3}\) LPG & 0.83 & 0.83 & - & -- \\
\hline \(\mathrm{C}_{4}\) LPG & 0.25 & 0.25 & - & - \\
\hline Naphtha & 0.88 & 0.88 & -* & - \\
\hline BTX & 2.85 & 2.85 & - - & - \\
\hline Gasoline & 44.01 & 32.69 & -11.32 & -1.0 \\
\hline JP-4 & 1.80 & 1.80 & -* & -- \\
\hline Kerosene & 1.40 & 1.40 & - & -* \\
\hline Jet-A & 4.70 & 4.70 & -- & -- \\
\hline Diesel & 17.40 & 31.38 & +13.98 & +1.235 \\
\hline No. 2 fuel & 12.00 & 12.00 & - & - \\
\hline No. 6 fuel & 9.89 & 5.60 & -4.29 & -0.379 \\
\hline Lubes & 2.00 & 2.00 & -- & -- \\
\hline Asphalt & 1.40 & 1.40 & -- & - \\
\hline Coike & 0.29 & 0.29 & -- & * \\
\hline Refinery fuel & 5.67 & 6.38 & 0.89 & \(0.078{ }^{*}\) \\
\hline \multicolumn{5}{|l|}{Utilfties} \\
\hline Electricity \(\left[\left(\mathrm{kWh} \times 10^{3}\right) / \mathrm{d}\right\}\) & 337.95 & 713.38 & 375.43 & 33.16 \\
\hline Operating cost ( \(10^{3} \mathrm{\$} / \mathrm{d}\) ) & 3.78 & 3.36 & -0.432 & -0.0382 \\
\hline Labor (no. people/103 b/d) & & & & 0.8 \\
\hline Energy consumption (FOE b/b gasoline) & & & & 0.520 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Incremental facilities ( \(10^{3} \mathrm{~b} / \mathrm{d}\) )} & & & & Investment 1061973 \\
\hline & & & & \\
\hline Vacuum still & 37.5 & 40 & 2.5 & 0.22 \\
\hline Gas recovery & 3.0 & 4.4 & 1.4 & 0.46 \\
\hline Gasoline reformer & 16.0 & 18.5 & 2.5 & 1.6 \\
\hline Distillate merox & 1.4 & 4.2 & 2.8 & 0.12 \\
\hline Hydrogen plant & -- & 0.88 & 0.88 & 7.04 \\
\hline Isomerization unit & 0.25 & 1.23 & 0.98 & 0.43 \\
\hline Hydrocracking & 0.90 & 19.5 & 18.6 & 16.6 \\
\hline Electrical distribution (M) & 12.66 & 29.7 & 17.02 & 1.6 \\
\hline Steam ( \(10^{3} \mathrm{lb} / \mathrm{hr}\) ) & 141 & 164 & 23 & 0.23 \\
\hline Cooling water (gal/min) & 24.0 & 35.8 & 11.8 & 0.33 \\
\hline & & & & 28.63 \\
\hline
\end{tabular}

\footnotetext{
Notes: Correction for inflation: \(\$ 28.6 \times 10^{6} \times 1.54^{\dagger}=\$ 43.0 \times 10^{6}\).
Investment per barrel of gasoline reduction: \(\$ 43.0 / 11.32=\$ 3.8 \times 10^{3} \mathrm{~b} / \mathrm{day}\).
*Included with No. 6 fuel reduction.
Based on Nelson Inflation Index, published periodically in Oil and Gas Journal.
}
throughput at the lower severity required for diesel operation. A nominal investment of \(\$ 100 / \mathrm{b} / \mathrm{d}\) is allowed for minor process modification. The yield and utility differentials used in this option are based on the values for the gasoline and diesel options in the refinery model.

\subsection*{4.3 Impact of Transportation Fuel Desulfurization on the Refining Industry}

\subsection*{4.3.1 Overview}

The primary impetus for further reduction of sulfur in gasoline is the finding that the catalytic converters applied to 1975 and later model cars for reduction of undesirable exhaust emissions convert sulfur to sulfuric acid and sulfate particles. Catalyst systems now used in the catalytic converters require an essentially lead-free gasoline. Coincidentally, the major refinery processes used to provide the octane quality previously provided by tetraethyl lead produce blend stocks with a very low sulfur content. This has resulted in current lead-free gasoline sulfur levels of about 300 ppm . Although other approaches to the automobile emission reduction problem could be used, this study analyzes only the effects of reducing the sulfur in gasoline to 100 ppm .

Further sulfur removal from distillate (diesel) fuels is related to concern for sulfur emissions because the diesel exhaust inherently contains low concentrations of hydrocarbons and CO without converters. Control of \(\mathrm{NO}_{\mathrm{x}}\) emissions is a complex issue that is excluded from this study.

\subsection*{4.3.2 Summary and Conclusions}

For gasoline desulfurization, it is assumed for this study that all gasoline produced in 1995 will be lead-free, and that the predominant process used for gasoline desulfurization will be HDS of light straight-run stocks and FCC feedstock. These assumptions are supported by the studies cited in Section 4.3.3. The costs and investments in this study are based on the total cost of desulfurizing all gasoline produced to 100 parts per million by weight (wppm) sulfur and all the diesel production to 200 wppm sulfur, using presently known commercial catalytic FD S technology.

The base case for the desulfurization studies is Case 4, the 30 percent diesel penetration case. Table 4.3.2-1 summarizes the RIM results for Case 5. The reduction of the sulfur content of \(4,010 \mathrm{~b} / \mathrm{cd}\) of gasoline production to 100 wppm costs \(\$ 0.834 / \mathrm{b}\), or about 2 cents/gallon of gasoline produced. The facilities investment required is about \(\$ 2\) billion, and the energy increase in refining is indicated to be 1.1 percent above the base, or 7.3 percent of total domestic refinery output.

Table 4.3.2-1

\section*{FUELS DESULFURIZATION SUMMARY}
\begin{tabular}{|c|c|c|c|}
\hline & Case 4 & Case 5 & Case 6 \\
\hline Percent diesel penetration & 30 & 30 & 30 \\
\hline Percent of gasoline desulfurized* & Base & 100 & 100 \\
\hline Percent of diesel desulfurized \({ }^{\dagger}\) & Base & Base & 100 \\
\hline Incremental cost, \$/b desulfurized product & Base & \(0.834^{\ddagger}\) & \(1.01{ }^{\text {8 }}\) \\
\hline Incremental cost, \$/b desulfurized product & -- & Base & 0.18 \\
\hline Incremental investment, \(10^{6} \$^{* *}\) & Base & 1,940 & 5,580 \\
\hline Incremental investment, \(10^{6}\) \$ & -- & Base & 3,640 \\
\hline Energy consumption (FOE basis), percent of domestic production & 7.3 & 8.4 & 8.8 \\
\hline Incremental & Base & 1.1 & 1.5 \\
\hline Incremental & -- & Base & 0.4 \\
\hline ```
*From Case 4 sulfur level (about }300\mathrm{ wppm)
\daggerFrom Case 4 sulfur level (600-1,700 wppm)
#$/b gasoline.
$$/b gasoline plus diesel.
``` & \[
\begin{aligned}
& \circ \text { an } \\
& \text { o an }
\end{aligned}
\] & rage of rage of & \begin{tabular}{l}
00 wppm. \\
00 wppm.
\end{tabular} \\
\hline ** Investment based on constant 1974 dollars & & & \\
\hline
\end{tabular}

Reducing the sulfur content of the Case 4 production of \(3,210 \mathrm{~b} / \mathrm{cd}\) of diesel fuel to 200 wppm adds about \(\$ 0.18 / \mathrm{b}\) of gasoline plus diesel output. Applied to diesel only, the incremental cost above Case 5 is \(\$ 1.22 / \mathrm{b}\), or about 3 cents/gallon of diesel. The increase in energy consumption for diesel desulfurization over Case 5 is 0.4 percent of total domestic refined products.

For both the gasoline and diesel desulfurization cases, the costs shown represent the maximum cost case, which assumes that all new facilities will be required by 1995. To the extent that existing facilities for desulfurization will be operable and technologically adequate by 1995, the costs presented may be higher than actual costs. Estimates of the potential for adapting existing facilities is beyond the scope of this study, as is estimation of the effects of potential new developments in technology.

\subsection*{4.3.3 Discussion and Analysis}

Reduction of sulfur in leaded gasoline to current levels has long been practiced to minimize the unfavorable effect of sulfur on octane improvement by tetraethyl-lead. \({ }^{18}\) Lead-free gasoline has a higher concentration of very low-sulfur, high-octane components than leaded gasoline. The major gasoline components that are not already desulfurized for refinery process requirements are the light straight-run ( \(\mathrm{C}_{5}-175^{\circ} \mathrm{F}\) ) stocks, coker gasoline, and FCC gasoline, an important component for improving octane rating and increasing volume. Because we expect only lead-free gasoline to be produced by 1995, this analysis of the major technological options for further sulfur reduction focuses on these blend stocks. Naphtha for catalytic reformer feed is currently desulfurized to a level of 1-2 wppm to protect the reformer catalyst.

FCC gasoline desulfurization does, however, present several technological options for consideration. These are summarized briefly here and discussed in detail in Section 4.3.5.
(1) The full range of FCC gasoline may be desulfurized using existing commercial processes, with a potential loss of octane quality resulting from the concommitant saturation of olefins. The octane loss may be a minimal problem if the recently announced "Selective Ultrafining" process \({ }^{19}\) developed by Amoco proves to be comercially feasible.
(2) The FCC feed may be desulfurized to provide low-sulfur gasoline and low-sulfur fuel oil blend stocks with the additional benefits of improved FCC yields and reduced FCC sulfur emissions.
(3) As proposed in a recent study by Bonner and Moore, Inc., \({ }^{20}\) for BERC, the FCC gasoline octane loss problem in HDS may be ameliorated by prior fractionation of the FCC gasoline into a light fraction containing most of the olefins and little sulfur and applying \(H D\) to the heavier fraction containing more sulfur and less olefins.

The process economics selected for inclusion in the RIM for this study are based on a 1974 study by Pullman-Kellogg \({ }^{21}\) sponsored by EPA. This study concluded that FCC feed \(H D S\) plus light naphtha \(H D S\) were economically preferable to the alternatives mentioned.

Analyzing the possibility of reducing the sulfur content of diesel fuel from the current averages of \(600-1,000 \mathrm{wppm}\) to about 200 wppm presented a problem of data availability. Because specific data on this operation could not be developed within the time frame allowed for this phase of the study, the economics used in the RIM for this operation were assumed to be similar to those for vacuum gas oil desulfurization (VGO) for 95 percent desulfurization. This assumption may overstate the cost of HDS of diesel fuel to 200 wppm, but perhaps our cost estimates represent a maximum-cost case.

The availability of hydrogen for fuels HDS is another issue that requires further investigation. Our analyses of both gasoline and diesel sulfur removal assumed that the incremental \(H D S\) facilities would be supplied with hydrogen available from existing refinery sources, primarily the catalytic reformers. Because the actual situation may be characterized by reduced gasoline consumption, and thus perhaps by less gasoline reforming and greater HDS hydrogen requirements, the hydrogen balance requires further analysis.

The RIM output for the study cases is summarized in Table 4.3.3-1. Detailed results by PAD district are presented in Tables 4.3.3-2 through 4.3.3-7 for Cases 5 and 6.

\subsection*{4.3.4 Review of Previous Studies}

The Bonner and Moore, Inc., study \({ }^{20}\) provides a detailed analysis and critique of prior assessments of gasoline desulfurization costs. The comparison summary from Volume II of that study is presented in Table 4.3.4-1, with the SRI results added, adjusted to first-quarter 1976 dollars with the same factors indicated in the table for mid-1974. As shown in Table 4.3.4-1, the cost values derived from the RIM are at least within the range of the reported values that could be explained by the widely varying scenarios used in the different estimates. A detailed reconciliation of these figures with those of one or more of the other studies cited is beyond the scope of this study.

\subsection*{4.3.5 Gasoline Desulfurization Technologies}

Two basic refining approaches can be used to achieve the required gasoline sulfur reductions. One is to desulfurize individual gasoline blending stocks. The other is to desulfurize feedstocks for process units such as the cat cracker that produce gasoline blending stocks. Specific operations belonging to these two different approaches are listed below. All of these operations are comercially feasible, and some are already practiced.
(1) Option 1: Desulfurize Gasoline Blending Stocks
(a) Hydrotreat cat gasoline.
(b) Hydrotreat straight-run gasoline.
(c) Hydrotreat coker gasoline.
(d) Hydrocrack coker gasoline.
(e) Cat crack straight-run gasoline, coker gasoline, or cat gasoline.
(f) Merox-extract sulfur compounds in gasoline.
Table 4.3.3-1
fuels desulfurization case data
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Case } 5(1995)-- \\
\text { Csse } 4 \\
\text { with Gasoline } \\
\text { Desulfurizstion }
\end{gathered}
\]} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Case 6 (1995)Gasoline and Diesel \\
Desulfurization
\end{tabular}} \\
\hline 143,157 & & 147,185 & \\
\hline 12,090 & & 12,090 & \\
\hline 4,010 & (33.9) & 4,010 & (33.9) \\
\hline 172 & (1.4) & 172 & (1.4) \\
\hline 950 & (8.0) & 950 & (8.0) \\
\hline 3,210 & (27.2) & 3,210 & (27.2) \\
\hline 1,591 & (13.5) & 1,591 & (13.5) \\
\hline 786 & (6.6) & 786 & (6.6) \\
\hline 1,100 & (9,3) & 1,100 & \((9,3)\) \\
\hline 11,819 & (100.0) & 11,819 & (100.0) \\
\hline 400 & & 400 & \\
\hline 400 & & 400 & \\
\hline 488 & & 488 & \\
\hline 1,288 & & 1,288 & \\
\hline 13,107 & & 13,107 & \\
\hline 990 & & 1,035 & \\
\hline 1,941 & & 5,581 & \\
\hline 385 & & 385 & \\
\hline 3,031 & & 3,031 & \\
\hline & & 1,670 & \\
\hline
\end{tabular}
Includes feedstock costs, Imported product costs, refinery operations costs, and capital recovery costs
for new facilities ( 1974 dollars).
\({ }^{\dagger}\) Crude oll sid natural gas 11 quids.
\({ }^{7}\) Imports of Jet A snd No .2 as shown are at maximum value allowed.
Table 4.3.3-2
D. o. f. ikansportation ststems center
REFINERY INPUTIOUIPUI SUMMARY
P. A. D. DISTRICT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & U.S. & IPPORT & EXPOPT & JOTAL \\
\hline 690.0 & 1920.0 & 3132.0 & 240.0 & 478.0 & 6460.9 & & & C46C.5 \\
\hline 647.0 & 1292.1 & 1231.4 & 228.8 & & 3699.3 & & & 3694.3 \\
\hline & & & & 1434.0 & 1434.0 & & & 1434.C \\
\hline 13.4 & 61.7 & 118.5 & 22.1 & 26.8 & 263.0 & & & 243.0 \\
\hline 8.8 & 45.6 & 44.7 & 1.6 & 27.1 & 127.7 & & & 127.7 \\
\hline E.b & 22.5 & 46.0 & 3.3 & 18.2 & 125.7 & & & 125.7 \\
\hline 1364.9 & 3371.9 & 4872.5 & 496.3 & 1984.1 &  & & & 12089.8 \\
\hline 39.3 & 67.1 & 30.6 & 5.0 & 24.2 & 166.1 & & & \(1+6.1\) \\
\hline 9.8 & 5.8 & & . 2 & 1.7 & 17.4 & & & 17.4 \\
\hline 1.8 & 21.3 & 46.1 & & 24.9 & 04.0 & & & 24.0 \\
\hline 546.9 & 1221.0 & 1516.3 & 167.0 & 558.0 & 4010.0 & & & 4010.0 \\
\hline 8.3 & 36.4 & 70.6 & 13.7 & 42.4 & 171.8 & & & 171.4 \\
\hline 93.2 & 137.5 & 307.3 & 30.0 & 3*2.J & 450.0 & 480.0 & & \(13 \pm 0.0\) \\
\hline 222.3 & 974.6 & 1347.8 & 166.3 & 499.0 & 3210.0 & & & 3210.0 \\
\hline 225.5 & 547.1 & 771.1 & 43.8 & 3.6 & 4591.0 & 4 Cc. 0 & & 1498.0 \\
\hline 68.9 & 44.9 & 149.2 & 15.0 & 184.2 & 502.3 & 134.7 & & \(637 . C\) \\
\hline 勺7.5 & 9.9 & 65.0 & 15.0 & 136.6 & 293.4 & 3:3.6 & & E37.0 \\
\hline 37.1 & 29.6 & 46.8 & 1.1 & 19.6 & \(1{ }^{1+4} 2\) & & & 184.2 \\
\hline 51.3 & 133.2 & 100.1 & 25.5 & 66.8 & 377.0 & & & 377.0 \\
\hline 1.9 & 3.9 & 8.6 & 1.1 & 1.3 & 19.9 & & & 19.9 \\
\hline 2.9 & 11.2 & 9.2 & 1.3 & & 24.6 & & & 24.6 \\
\hline & & & & 10.6 & 10.6 & & & 16.0 \\
\hline -9 & 1.8 & 13.9 & & 1.7 & 29.3 & & & 14.3 \\
\hline -6 & 1.2 & 25.4 & & 4.2 & 31.5 & & & 31.5 \\
\hline -3 & 2.5 & 27.9 & & 3.1 & 34. 5 & & & 34.5 \\
\hline 10.4 & 44.7 & 64.9 & & 2.4 & 12'.4 & & & 122.4 \\
\hline 1379.1 & 3327.0 & 46:9.9 & 484.9 & 1606.7 & \(1 \pm 17 . ?\) & 12 +8.3 & & 13107.5 \\
\hline 101.0 & 99.0 & 45.5 & 97.7 & १9.1 & c 7.9 & & & lut. 4 \\
\hline
\end{tabular}





PRUDUCT CENSUAPIIUN SUMPARY
EXPOPTS
13107.5
\[
\begin{array}{c:c}
- \\
b \\
\infty \\
\infty \\
s
\end{array}
\]
D. u. t. fransportation systems center
refining industry mjeel - 179\%, 3G pCt. diesel. w/Gaso. d: Sif f.--case 5 -

EXP VOI

\[
\begin{gathered}
5 \\
\hdashline-. . . \\
24.2 \\
11.7 \\
24.9
\end{gathered}
\]

\section*{5.0
.2}
 1876.7427 .2


\(\begin{array}{r}1.8 \\ 1.2 \\ 2.5 \\ 44.7 \\ \hline\end{array}\) 392 h .9
2 -
\(\begin{array}{ll}07.1 & 30.4 \\ 5.8 & 46.1 \\ 21.3 & 4\end{array}\)

13.9
25.4
27.9
64.9


\[
\begin{array}{r}
1370.0 \\
42.8 \\
506.19 \\
1105.0 \\
470.0 \\
392.0 \\
392.0 \\
37.1 \\
51.3 \\
1.9 \\
2.9
\end{array}
\]

\section*{LPG}

NAPGCLIAR GASOLINE
REGELAR GASOLINE
PREMUN GAS GASOLINE
LUW LEAO GASLIN

JP-4 JET FUEL
JETESEL JET FUEL
NO. 2 fUEL OIL
SUl ful No.
SULFUR NO. 6
\(\stackrel{5}{0}\)
HALT AND ROAD
sulfurs
Cal cruoel
O XILENES total
\[
\begin{array}{r}
: 9 \\
: 6 \\
10.4 \\
\hline
\end{array}
\]
\[
\begin{array}{r}
10.6 \\
1.7 \\
4.2 \\
3.7 \\
2.4 \\
\hline
\end{array}
\]
\[
2 c 42.5
\]

S10n00yd
Table 4．3．3－4
D．O．T．TRANSPORTATION SYSTEMS CENTER
REFINING INDUSTRY MODEL \(=1995\) ， 30 PCT．DIESEL，W／GASO．DESU F．－－CASE
UTILITY SUMMARY
\[
\rightarrow \text { • NOIL } 33 \mathrm{~S}
\]
OPER COSTS (MS/D)
INVESTMENTS（MMS）
\[
\begin{aligned}
& \text { (0189050001) - 003y 73n」 } \\
& \text { 0/830」0COI) •SNOJ 人9女ヨN3 } \\
& \text { LABOR (NO. EMPLOYEES) }
\end{aligned}
\]
Table 4.3.3-5
D. 0. T. TRANSPORTATION SYSTEMS CENTER

\footnotetext{
QEFINING INIOUSTHY MUUEI

. A. D. OISTKICT
}


Table 4.3.3-6
11. .j. t. thanspohtation ststems cemter


Table 4.3.3-7
n. D. T. THANSDORTATTOIS SYSTFIAS CENTER

DFFFINING INDUSTRY MODEL
गTILTTY SIिMĀ̄ॅ--CASE 6


COMPARISON OF DESULFURIZATION COST
\begin{tabular}{cc} 
Investment & Increased Gasoline \\
(millions of & Cost, c/gal \\
first-qusrter & (first-quarter \\
1976 s)* & 1976)
\end{tabular}
Investment
(millions of
first-qusrter
3,270
455
580
975
1,181
2,963
4,460
2,520
780
Study
SRI/DOT: total United States
Bonner and Moore/ERDA,
United States Including California
Primary study
Total desulfurizstion
Restricted Cat gasoline splitting
(United States excluding California only)
NPRA survey
Pullman Kellogg/RPA study
adL/EPA

\section*{Battelle/API study}
This is the additional energy consumed by the additional facilities, as opposed to the net energy requirement, which includea a
credit for increased product yields.
\(\begin{array}{ll}8,440 & \text { to } 12,060 \\ 9,650 & \text { to } 13,270 \\ 5.46 & \text { to } 6.00 \\ 6.80\end{array}\)
January 1974 dollars, 1.24 ; mid-1974 dollars, 1.17 ; 1975 dollsrs, 1.11.
\({ }^{\ddagger}\) Respondents questioned the feasibility of this.

\section*{Texaco EPA testimony}
*All of the cost data have been converted to first-quarter 1976 dollars using the following inflation factora: 1974 dollars, \(1.21 ;\) \(\dagger\) January lis
** Texaco referred to the 100 sind 50 wppm sulfur level as specif
Texaco referred to the 100 and 50 wpm sulfur level as specifications, not as the average sulfur level of production referred to in
the rest of the data.
Source: Reference 20
\(\begin{array}{ll}\text { Source: } & \text { Reference } 20 \\ & \text { SRI International }\end{array}\)
\[
\begin{aligned}
& \text { Percent of } \\
& \text { Total Gssoline } \\
& \text { Desulfurlzed } \\
& \hline
\end{aligned}
\]
\[
\begin{gathered}
\text { Net Energy } \\
\text { Requirement, } \\
10^{3} \text { FOE b/cd } \\
\hline 123^{\dagger} \\
\\
\\
23 \\
26 \\
36 \\
52 \\
\\
94.1 \\
100-200 \\
\\
82 \\
18 \\
68 \\
42 \\
160 \\
82 \\
287 \\
84 \\
292 \\
180 \\
211
\end{gathered}
\]
\(18^{\circ} 1\)
\(98^{\circ} 0\)
\(\varepsilon 2^{\circ} 1\)
\(67^{\circ} 0\)
\(888^{\circ} 0\) o丁 \(86^{\circ} 1\)
\({ }^{8}\) The incressed cost increases with decreasing refinery size.
(2)

\section*{Option 2: Desulfurize Process Feedstocks}
(a) Desulfurize regular cat-cracking feed.
(b) Desulfurize, demetallize, and saturate asphaltenes in residual oil for cat cracking.
(c) Desulfurize, demetallize, and saturate asphaltenes in whole crude oil.

Note that Options \(I(a)\) through \(I(c)\) are not the same as the naphtha pretreatment used in connection with reforming. Although the process schemes for both are the same, the extent of sulfur removal differs: The reformer pretreatment reduces sulfur levels to l-2 wppm, whereas gasoline hydrotreating reduces it typically to 80-200 wppm.

Gasoline hydrotreating is already in commercial use, and its application has been growing rapidly in the past several years. According to the annual refining capacity survey conducted by \(0 i 1\) and Gas Journal, naphtha desulfurization capacity, in which desulfurization of gasoline stocks is the principal operation, was about \(710,000 \mathrm{~b} / \mathrm{d}\) in January of 1977, but in 1972, it was only \(148,000 \mathrm{~b} / \mathrm{d}\).

One drawback of hydrotreating is the potential for loss of octane numbers resulting from saturation (hydrogenation) of high-octane components in the feed, such as olefins and aromatics. Such losses are particularly likely with light, cat-cracked gasoline. Therefore, the refiner may be required to increase the reforming capacity to make up the octane losses.

Option \(1(d)\) refers to the use of hydrocracking for desulfurization. Although the process is normally used to convert gas oils into light boiling products, it can be used for desulfurizing high-sulfur gasoline stocks, such as coker naphtha. However, hydrocracking is much more expensive than hydrotreating, and use of hydrocracking solely for gasoline desulfurization is not generally cost-effective. Refiners may choose to use it only when they have excess capacity.

The cat cracker can be used to desulfurize gasoline stock because about 50 percent of feed sulfur is converted to hydrogen sulfide by cracking reactions. Some volume losses due to cracking are unavoidable, but these are partially compensated for by the probable increase in octane rating in the desulfurized gasoline and the ability to use light gases from cracking in alkylation for the production of premium gasoline.

Option l(f), Merox Treatment, is widely practiced today. The process is basically a deodorizing scheme; the odor-causing sulfur compounds in gasoline, called mercaptans, are extracted or converted into odorless compounds by Merox Treatment. Active mercaptans are extracted by the Merox solution, whereas less active mercaptans are catalytically dimerized to disulfides and remain in the gasoline. Because nonmercaptan sulfur compounds, which account for a large fraction of the total sulfur in gasoline, are unaffected in Merox Treatment, the process is not a primary desulfurization process.

Unlike the schemes in Option 1 , which feature desulfurization of individual gasoline stocks, Option 2 features desulfurization of catcracker feedstocks. When feedstocks are pretreated, cracked gasoline will be low in sulfur and can be blended directly into low-sulfur gasoline pool. Pretreatment processes are already used commercially, and according to the Oil and Gas Journal annual survey, current cat-cracker feed pretreatment capacity is about \(530,000 \mathrm{~b} / \mathrm{d}\) (in 1972, it was about 300,000 \(\mathrm{b} / \mathrm{d}\) ). Desulfurization of feedstocks will not only eliminate the need for downstream desulfurization of cat gasoline, but will also improve cat cracker operation by increasing gasoline yield, decreasing sulfur content of cycle oil and slurry oil, decreasing catalyst consumption, decreasing sulfur emissions, and so on.

If consumption of diesel fuel increases, as a proportion of gasoline, it appears that the existing refining industry can achieve roughly a threefold increase in the diesel/gasoline production ratio while reducing costs and improving energy efficiency. Our results, like those of other studies of this issue, suggest that the elimination of gasoline production is not cost- or energy-effective. Desulfurization of gasoline and diesel fuels to very low sulfur contents would require major capital outlays by the refining industry. However, the cost of desulfurization per unit of product is only a few cents per gallon.

Given the conservation premises of this study, the crude oil runs required to meet the projected 1995 requirements for the major fuel products could be less than current levels if demand for other petroleumderived products (e.g., petrochemicals) is reduced as demand for the major fuel products declines. Because reductions in demand for petrochemicals do not appear likely, significant petrochemical production facilities will presumably be integrated with existing refining capacity.

The sharp reduction in residual fuel requirements and the short supply of middle distillates indicated by this scenario could lead to changes in the current residual fuel emphasis in the product mix of the Caribbean export refineries. Like fuel desulfurization, this change would require major capital outlays, but it would probably add only a few cents per gallon to product costs.

\section*{6 RECOMIENDAT IONS}

In a sense, the use of the word "conclusions" in previous sections of this report is not precisely appropriate. The results reported here are based on a complex set of inputs. Although these inputs are mathematically explicit in the model, they reflect numerous assumptions, approximations, and omissions of indirect factors that could alter the outcomes reported. The assumptions, approximations, and indirect factors that could significantly affect the reported results are outlined in the following paragraphs.
(1) The conservation scenario may reflect realistic possibilities in the transportation sector, but be overly optimistic in estimating the potential for conservation of other petroleum products. Hence, future studies should consider the effects of higher demand levels for other fuel products.
(2) Similarly, the petrochemical industry, the natural gas liquids industry, and the fuel products portion of the petroleum refining industry may become even more closely integrated in the future. A more explicit treatment of this possibility should be included in future work.
(3) Demand levels for the major fuel products were forecast separately and input to the model as explicit requirements. It is possible, with an optimizing model, to structure demand as a function of primary requirements, such as vehicle miles of travel, and use the model to determine the optimal product mix where alternatives exist. Future work should explore this option.
(4) Synthetic fuels and fuels without octane or cetane requirements were not included in this study. By the end of the century, both of these kinds of fuel could become significant sources of energy for the transportation sector. Further study should observe these technological possibilities, especially in post-2000 scenarios.

\section*{7 REFERENCES}
1. H. J. Lane, "Development of a Linear Transportation Model for Oil," Stanford Research Institute Report prepared for the Bureau of Land Management (September 1974).
2. A. S. Manne, "A Linear Programming Model of the U.S. Petroleum Refining Industry," ECONOMETRICA 26:1, 67-106 (January 1958).
3. P. L. Rice and U. K. Smith, "ORNL--An Econometric Model of the Petroleum Industry," paper presented at the American Econometric Society Conference, Dallas, Texas (December 1975).
4. U.S. Department of Energy, "Monthly Energy Review" (various issues).
5. J. Horton, DOT/TSC, written communication to K. Ushiba, SRI International (10 June 1977).
6. SRI International, "Fuel and Energy Price Forecasts," prepared for Electric Power Research Institute (June 1977).
7. Oil and Gas Journal, p. 98 (28. March: 1977).
8. National Petroleum News, Annual Factbook Issue, p. 28 (May 1977).
9. F. H. Kant et al., "Effects of Changing the Proportions of Automotive Distillate and Gasoline Produced by Petroleum Refining, " EPA-460/3-74-018 (July 1974).
10. F. P. Frederick et al., "The Impact of Automotive Fuel Changes on the U.S. Refining Industry," Bonner and Moore Associates, Inc., for Energy Research and Development Administration, Contract No. E(49-18)-2216 (February 1976).
11. Stanford Research Institute, Recommendations for a Synthetic Fuels Commercialization Program, Vol. II, "Cost/Benefit Analyses of Alternate Production Levels" (June 1973).
12. R. V. Wilson and W. T. Tierney, "Optimization of Vehicle--Fuel-Refinery System, " paper presented at the 41st Midyear Meeting of the American Petroleum Institute, Los Angeles, California (May 1976).
13. H. A. Shearer and T. O. Wagner, "Economics of Manufacturing Automotive Diesel Fuel," paper presented at the 42nd Midyear Meeting of the American Petroleum Institute, Chicago, Illinois (May 1977).
14. Ethyl Corporation, "Diesel Fuel Additives," brochure, PCD417872 (undated).
15. E. M. Shelton, Fuel Oils, Bartlesville Energy Research Center, Energy Research and Development Administration (1976).
16. E. M. Shelton, Diesel Fuel Oils, Bartlesville Energy Research Center, Energy Research and Development Administration (November 1976).
17. E. T. Tregilgas and D. M. Crowley, "Need More Jet Fuel? Hydrotreat," Atlantic Richfield Co., HPPR, Pp. 120-123 (May 1969).
18. W. L. Nelson, Petroleum Refinery Engineering, 4th edition, McGrawHill, New York (1958).
19. R. Coates et al., 'Desulfurization of Cracked Naphtha with Minimum Octane Loss," paper presented at the National Petroleum Refiners Association meeting, San Antonio, Texas (17 March 1978).
20. Bonner and Moore Associates, Inc., Motor Gas Desulfurization Study, for Energy Research and Development Administration, Contract \(\mathrm{E}(34-1)-0041\) (December 1976).
21. W. F. Hoot, "Production of Low-Sulfur Gasoline," Pullman-Kellogg for U.S. Environmental Protection Agency (July 1974).

\section*{Appendix A}

DESCRIPTION OF REFINERY MODEL

\section*{Appendix A}

\section*{DESCRIPTION OF REFINERY MODEL}

\section*{A. 1 General Product and Process Specifications}

This appendix provides additional description of the refinery model first mentioned in Section 3.1. A flow sheet of the model is provided in Figure \(A-1\), and a schematic representation of a generalized LP system is presented in Figure A-2. General specifications for products and processes are shown in Tables \(A-1\) through \(A-4\). More specific processes are detailed in later subsections.

\section*{A. 2 Crude Fractionation}

Before distillation, crude oil is treated in a desalter to remove brine and solids that are usually present in the form of a suspension or an emulsion. The desalted crude is then heated to \(650-670^{\circ} \mathrm{F}\) and charged to the distillation column for separation into light ends, naphthas, kerosene, gas oil, and topped crude. Distillation occurs at near atmospheric pressure ( \(4-10 \mathrm{psig}\) ), and hence the unit is frequently referred to as an atmospheric unit. The model specifications for the process are outlined in Table A-5.

\section*{A. 3 Hydrotreater}

Catalytic hydrogen treating, often called hydrotreating, is used to remove sulfur compounds, nitrogen compounds, and other undesirable im= purities in petroleum fractions. The process is extremely flexible in dealing with many types of feedstocks and achieving widely varying product qualities. By far the greatest application is in hydrotreatment of reformer feedstocks. Also, applications for desulfurization of middle distillates and heavy fuel oil fractions, improvement of lube oil oxidation stability, and jet fuel smoke point improvement are widespread. Yields for the process are given in Tables \(A-6\), and hydrogen consu pption is given in Table A-7.

\section*{A. 4 Catalytic Reforming}

Catalytic reforming is a continuous process to upgrade low-octane naphthas to high-octane premium blending stock for gasoline. The process is also used for the production of aromatics for use in petrochemicals. The model inputs for the gasoline reformer are shown in Table A-8; and those for the aromatics reformer are shown in Table A-9.

FIGURE A-1 REFINING AND PETROCHEMICAL LP MODEL


FIGURE A-2 LINEAR PROGRAMMING SYSTEM

Table A－1
CRUDE OIL YIELDS AND PROPERTIES
CRUDE MAME：Dolta－Ostrica
FIELD，LOCATION Plaquemine，Las．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{JOTAL CRUDE，MAPHTHAS，AND DISTILLATES} \\
\hline वf MAME & Total Crude & Light Gasolion & LIght Gasoline & Medum
Naphtha & Medium Manhtha & Heavy Manatha & Kerosene & \[
\begin{gathered}
\text { Light Gas } \\
\text { Oll } \\
\hline
\end{gathered}
\] \\
\hline －9PCut Points，F & & C5／160 & C5／175 & 160／295 & 175／295 & 295／375 & 375／530 & 530／650 \\
\hline yleld，LV8 & 100．00 & 3.6 & 4.6 & 28 & 8，8 & 7.5 & 19.1 & 15.1 \\
\hline Yield Wt，\％ & 100，00 & 2.72 & 3.59 & 8.53 & 7.66 & 6.91 & 18.53 & 15.24 \\
\hline Gravity，\({ }^{\text {a }}\) API & 33.6 & 86.9 & 80,3 & 58.2 & 58.1 & 476 & 38.7 & 32.1 \\
\hline Density，Los／801 & 299.8 & 226.6 & 233.6 & 260.9 & 261 & 276.3 & 290.8 & 302.5 \\
\hline Soeciflic Gravity & 0.8571 & 0.6472 & 0.6682 & 0.7459 & 0.7464 & 0.7901 & 0.8314 & 0.8649 \\
\hline Cnaracterization factor，vop K & & 12.93 & 12.64 & 11.83 & 11.87 & 11.72 & 11.66 & 11.75 \\
\hline Sulfur Content，Wt． 8 & 0.356 & 0.021 & 0.202 & \(0 \times 11\) & 0.012 & 2.027 & 0.061 & 0.171 \\
\hline RVP，psio & 3.5 & 10.3 & 2， 5 & 22 & 21 & 2.3 & 0.1 & \\
\hline RVP Index & & 16.0 & 150.0 & 28.3 & 26.9 & 10.5 & 0.9 & \\
\hline Research Octane，Clear & & 72.0 & 70.8 & & & & & \\
\hline ＋0．5 gm Pb／gal & & 78.7 & 78.6 & & & & & \\
\hline ＋1．0 gm Pb／gal & & 83.7 & 82.7 & & & & & \\
\hline \(+2.0 \mathrm{gm} \mathrm{Pb} / \mathrm{gal}\) & & E9，2 & 37.3 & & & & & \\
\hline \(+3.17 \mathrm{gm} \mathrm{Po} / \mathrm{gol}\) & & 91.1 & 30.2 & & & & & \\
\hline Motor Octane，Clear & & 6.92 & 68.8 & & & & & \\
\hline ＋0．5 gm Pb／gol & & 36.9 & 26.7 & & & & & \\
\hline ＋1．0 gm Pb／gal & & 91.5 & 2 Cr 8 & & & & & \\
\hline ＋2．0 gm Pb／gal & & 57.2 & 360 & & & & & \\
\hline ＋3．17 gm Po／gal & & 21.1 & 32.2 & & & & & \\
\hline Total Paratins，LVI & & 12002 & 39.7 & \(4{ }^{2} 9\) & 43.4 & 412 & & \\
\hline Total Naphthenes．LV\％ & & 2.2 & 8.3 & － & 47.1 & \(3{ }^{3} 3\) & & \\
\hline Total Aromatics，LV\＆ & & 0.2 & 2.5 & 7a & 3.5 & 15，\({ }^{2}\) & 22.0 & \\
\hline Freeze Point，\％f & & & & －10500 & \(-1050\) & －39，0 & －43．0 & \\
\hline Freeze Point Index & & & & 15.2 & 16.0 & 25.0 & 105.0 & \\
\hline Pour Point，\({ }^{\circ} \mathrm{F}\) & －40， 0 & & & & & & －60．0 & 0.0 \\
\hline Pour Doint Index & & & & & & & \(5{ }^{2}, 0^{2}\) & 360.0 \\
\hline Smoke Point，mm & & & & & & 21.7 & 15,4 & \\
\hline Aniline Point，\({ }^{\circ} \mathrm{F}\) & & & & & & 130.0 & 145，0 & 164．0 \\
\hline Diesel Number & & & & & & & & \\
\hline Cetane Number & & & & & & & & \\
\hline & & & & & & & 47.5 & 55.0 \\
\hline Viscosity，cs हो \(122^{\circ} \mathrm{F}\) & & & & 275 & 0.77 & \(1 \times 3\) & 1.75 & 4.1 \\
\hline \[
\text { . cs } 210^{\circ} \mathrm{F}
\] & & & & & & & & \\
\hline \[
\text { viscosity Index e } 122^{\circ} \text {. }
\] & & & & 73.2 & 72，2 & 70.2 & 52.3 & 48.2 \\
\hline Nitrogen Content， Wt .8 & & & & & & & & \\
\hline Nickel Content，ppmmt． & & & & & & & & \\
\hline Vanadium Content，ppm \(\quad\) t． & & & & & & & & \\
\hline AStid Jistillation Temp．．\({ }^{\circ} \mathrm{F}\) ．I I P & & 93. & \(3:\) & 179 & 191 & 300 & 408 & \(5 \cdot 7\) \\
\hline 10\％ & & 135 & 109 & 10 ？ & 304 & 32.5 & 423 & 570. \\
\hline 308 & & 113 & 119 & ごき & 218 & 325 & 439 & 539 \\
\hline \(50 \%\) & & 121 & 130 & \(2=3\) & 229 & 332 & 454 & 601 \\
\hline 70\％ & & 15 & 115 & 734 & 241 & 337 & 471 & cild \\
\hline \(90 \%\) & & \(15=\) & 171 & 353 & \(2 \times 1\) & 351 & 498 & 634 \\
\hline \(E^{\circ}\) & & 173 & 278 & 232 & 390 & 362 & 529 & 556 \\
\hline VABP，\({ }^{\circ} \mathrm{F}\) & & 128 & \(1: 3\) & 227 & 235 & 335 & 452 & 590 \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}


\section*{Table A-2}

REFINERY PRODUCTS AND FEEDSTOCKS
```
Products
    C
    C4 LPG
    Propylene
    Propane
    Butylenes
    Isobutane
    Normal butane
    Benzene
    Toluene
    Mixed xylenes
    C
    Regular gasoline
    Premium gasoline
    Low-lead gasoline
    Lead-free gasoline
    Naphtha-type jet fuel (JP-4)
    Kerosene
    Kerosene-type jet fuel (Jet A)
    Diesel fuel
    No. 2 heating oil
    High-sulfur fuel oil
    Low-sulfur fuel oil
    Ethylene
    Butadiene
    Coke (low-sulfur)
    Coke (high-sulfur)
Feedstocks
    Louisiana sweet crude
    West Texas sour crude
    California heavy crude
    Alaskan North Slope crude
    Normal butane
    Isobutane
    Natural gasoline
    Ethane
    Propane
```

\section*{REFINERY MODEL FRODUCT SPECIFICATIONS}

\section*{Gasoline Specification}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Density } \\
& (1 b / b)
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Sulfur } \\
& \text { (wt\%) }
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { RVP } \\
& \text { Index }
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { TEL } \\
(\mathrm{G} / \mathrm{ga1}) \\
\hline
\end{gathered}
\]} & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \text { Vaporization } \\
& \text { (vol\%) }
\end{aligned}
\]} & \multirow[b]{2}{*}{RON*} & \multirow[b]{2}{*}{MON*} \\
\hline & & & & & \(\underline{130^{\circ} \mathrm{F}}\) & \(\underline{235}\) & \(356^{\circ} \mathrm{F}\) & & \\
\hline \multicolumn{10}{|l|}{Regular} \\
\hline Minimum & -- & -- & 87.5 & *- & 10 & 50 & 90 & 94 & 86 \\
\hline Maximum & 265 & 0.1 & 166.0 & 3.17 & -- & 70 & -- & -- & -- \\
\hline \multicolumn{10}{|l|}{Premium} \\
\hline Minimum & -- & -- & 87.5 & \(\cdots\) & 10 & 50 & 90 & 100 & 92 \\
\hline Maximum & 265 & 0.1 & 166.0 & 3.17 & -- & 70 & -- & -- & -- \\
\hline \multicolumn{10}{|l|}{Low lead} \\
\hline Minimum & -- & -- & 87.5 & -- & 10 & 50 & 90 & 92 & 84 \\
\hline Maximum & 265 & 0.1 & 166.0 & 0.5 & -- & 70 & -- & -- & - \\
\hline \multicolumn{10}{|l|}{Lead-free} \\
\hline Minimum & -- & -- & 87.5 & 0 & 10 & 50 & 90 & 91 & 83 \\
\hline Maximum & 265 & 0.1 & 166.0 & 0 & -- & 70 & -- & -- & -- \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Density & RVP & Sul fur & Aromatics & Smoke & \multicolumn{6}{|c|}{\[
\begin{gathered}
\text { Vaporization } \\
\text { (vol\%) } \\
\hline
\end{gathered}
\]} \\
\hline & (1b/b) & Index & (wt\%) & (vol\%) & Point & \(290^{\circ} \mathrm{F}\) & \(350^{\circ} \mathrm{F}\) & \(370^{\circ} \mathrm{F}\) & \(400^{\circ} \mathrm{F}\) & \(450^{\circ} \mathrm{F}\) & \(470^{\circ} \mathrm{F}\) \\
\hline JP-4 & & & & & & & & & & & \\
\hline Minimum & 262.5 & 25.5 & -- & -- & -- & 20 & -- & 50 & -- & -- & 90 \\
\hline Maximum & 280.3 & 40.1 & -- & 25.0 & -- & -- & -- & -- & -- & -- & -- \\
\hline Kerosene & & & & & & & & & & & \\
\hline Minimum & 271.1 & - & -- & - & 20 & -- & -- & -- & \(\cdots\) & -- & -- \\
\hline Maximum & 290.2 & -- & 0.3 & 25 & -- & -- & 10 & -- & 50 & -- & -- \\
\hline Jet A & & & & & & & & & & & \\
\hline Minimum & -- & -- & -- & -- & 25 & -- & -- & -- & 10 & 50 & -- \\
\hline Maximum & 288.5 & -- & 0.3 & 20 & -- & -- & -- & -- & -- & -- & -- \\
\hline
\end{tabular}

\section*{Distillates and Fuel Oil Specifications}
\begin{tabular}{cccccc}
\begin{tabular}{c} 
Density \\
\((1 \mathrm{~b} / \mathrm{b})\)
\end{tabular} & \begin{tabular}{c} 
Sulfur \\
\((w t \%)\)
\end{tabular} & \begin{tabular}{c} 
Pour Point \\
Index
\end{tabular} & \begin{tabular}{c} 
Cetane \\
Index
\end{tabular} & \begin{tabular}{c} 
Visc \\
Index
\end{tabular} & \begin{tabular}{c} 
Vaporization \\
\((\) vol \(\%)\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Diesel} \\
\hline Minimum & -- & -- \\
\hline Maximum & 297.2 & 0.5 \\
\hline \multicolumn{3}{|l|}{No. 2} \\
\hline Minimum & -- & -- \\
\hline Maximum & 306.4 & 0.5 \\
\hline \multicolumn{3}{|l|}{No. 6 (low sulfur)} \\
\hline Minimum & -- & -0 \\
\hline Max imum & 350 & 1.0 \\
\hline \multicolumn{3}{|l|}{No. 6 (high sulfur)} \\
\hline Minimum & -- & -- \\
\hline \multirow[t]{2}{*}{Maximum} & 350 & 3.0 \\
\hline & \[
\begin{aligned}
& \text { Densficy } \\
& (1 b / b)
\end{aligned}
\] & \[
\begin{gathered}
\text { RVP } \\
\text { (psia) }
\end{gathered}
\] \\
\hline \multicolumn{3}{|l|}{C3 LPG} \\
\hline Minimum & 104.4 & -- \\
\hline Maximum & -- & 215.0 \\
\hline \multicolumn{3}{|l|}{C4 LPG} \\
\hline Minimum & 104.4 & -- \\
\hline Maximum & -- & 85.0 \\
\hline \multicolumn{3}{|l|}{Refy F.G.} \\
\hline Minimum & 104.4 & -- \\
\hline Maximum & -. & -- \\
\hline
\end{tabular}

Table A-4
PROCESS UNITS IN REFINERY LP MODEL
\begin{tabular}{|c|c|}
\hline Process & Type \\
\hline Crude (atmospheric fractionation) & Conventional distillation \\
\hline Saturates gas recovery plant & Fractionating absorber with debutanizer and depropanizer \\
\hline Vacuum tower & Conventional vacuum distillation \\
\hline Fluid catalytic cracker & Riser cracking, zeolite catalyst \\
\hline Catalytic reformer--gasoline manufacture & Cyclic regeneration, bimetallic catalyst \\
\hline Catalytic reformer--aromatics manufacture & Cyclic regeneration, bimetallic catalyst \\
\hline Aromatics extraction & Sulfolane \\
\hline Aromatics recovery & Distillation and clay treat \\
\hline Benzene tower & \\
\hline Toluene tower & \\
\hline Xylene tower & \\
\hline Toluene dealkylation & Noncatalytic hydrodealkylation \\
\hline Treating and sweetening & Merox \\
\hline LPG & \\
\hline Gasoline & \\
\hline Naphtha & \\
\hline Kerosene & \\
\hline Diesel & \\
\hline Hydrodesulfurization & Fixed bed CoMo catalyst \\
\hline Naphtha (catalytic reformer feed preparation) & \\
\hline Kerosene & \\
\hline Distillate & \\
\hline Vacuum gas oil & \\
\hline Residuum hydrodesulfurization & \\
\hline Hydrocracking--gas oil & 2 stage, fixed bed \\
\hline Alkylation & HF Acid catalyst \\
\hline Propylene & \\
\hline Butylene & \\
\hline N-paraffin separation & Molecular sieve \\
\hline \(\mathrm{C}_{5} / \mathrm{C}_{6}\) isomerization & Fixed bed catalytic \\
\hline Unsaturated gas recovery & Same as Satgas plant \\
\hline Hydrogen manufacture--steam reforming & High temperature fixed bed \\
\hline Fuel gas & \\
\hline Refinery fuel gas & \\
\hline Naphtha & \\
\hline Olefins manufacture & Pyrolysis, cryogenic recovery \\
\hline Butadiene extraction & Extraction distillation \\
\hline Pyrolysis naphtha hydrotreater & 2-stage catalytic \\
\hline Delayed coking & \\
\hline
\end{tabular}

Table A-5
FRACTIONATION OF LOUISIANA CRUDE
(Barrels per Barrel of Feed)
\begin{tabular}{lcccc} 
Operating Mode & \begin{tabular}{c} 
Atmospheric \\
Distillation
\end{tabular} & \begin{tabular}{c} 
Vacuum \\
Distillation
\end{tabular} & & \\
Crude (b/d) & & & \\
Sros Recovery
\end{tabular}

Table A-6
CATALYTIC HYDROTREATER YIELDS
(Barrels per Barrel of Feed)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Feedstock & Kerosene & \[
\begin{gathered}
\text { Atmospheric } \\
\text { Gas Oil } \\
\text { (AGO) } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Light Cycle } \\
\text { Gas Oil } \\
\text { (LCGO) } \\
\hline
\end{gathered}
\] & VGO & Atmospheric Residual \\
\hline Hydrogen (FOE) & -0.0056 & -0.0076 & -0.0094 & -0.0198 & -0.0208 \\
\hline Hydrogen sulfide (FOE) & 0.0002 & 0.0006 & 0.0021 & 0.00363 & 0.0075 \\
\hline Methane (FOE) & 0.00004 & 0.00008 & 0.00008 & 0.0025 & 0.0031 \\
\hline Ethane (FOE) & 0.00005 & 0.00009 & 0.00009 & 0.0027 & 0.0027 \\
\hline Propane & 0.0001 & 0.0003 & 0.0003 & 0.0069 & 0.0072 \\
\hline Isobutane & 0.0001 & 0.0001 & 0.0001 & 0.0014 & 0.0020 \\
\hline Normal butane & 0.0 & 0.0001 & 0.0001 & 0.0026 & 0.0032 \\
\hline C5/375 Hydrotreated (HT) Naphtha & & & & 0.0091 & 0.0346 \\
\hline 375/650 Hydrotreated (HT) Distillate & & & & 0.0085 & 0.1131 \\
\hline Desulfurized kerosene & 1.0010 & & & & \\
\hline Desulfurized AGO & & 1.0000 & & & \\
\hline Desulfurized LCGO & & & 1.000 & & \\
\hline Desulfurized VGO & & & & 0.986 & \\
\hline Desulfurized residual & & & & & 0.8542 \\
\hline Unit Liquid Volume (LV) loss (gain) & 0.00411 & 0.00633 & 0.0066 & 0.0025 & -0.0073 \\
\hline
\end{tabular}

\section*{Table A-7}

\section*{HYDROGEN CONSUMPTION IN NAPHTHA HYDROTREATING FOR CATALYTIC REFORMER FEED (FOE Barrels of \(\mathrm{H}_{2}\) per Barrel of Feed)}

\section*{Hydrogen Consumption}
\begin{tabular}{ll} 
Light naphtha & 0.0028 \\
Medium naphtha & 0.0038 \\
Heavy naphtha & 0.0038 \\
Full-range naphtha & 0.0038 \\
Cat-cracked naphtha & 0.0154 \\
Coker naphtha & 0.0154
\end{tabular}

Table A-8
GASOLINE REFORMER YIELDS ** (Barrels per Barrel of Feed)

Yields
\begin{tabular}{lll} 
Severity, RON clear & 94 & 93 \\
Hydrogen (FOE) & 0.0459 & 0.0359 \\
Hydrogen lost to fuel & 0.0115 & 0.0090 \\
Methane & 0.0049 & 0.0074 \\
Ethane & 0.0073 & 0.0130 \\
Propane & 0.0191 & 0.0304 \\
Isobutane & 0.0090 & 0.0123 \\
Normal butane & 0.0120 & 0.0158 \\
94 RON reformate & 0.8880 & \\
93 RON reformate (heavy & & 0.8870 \\
naphtha) & 0.0023 & -0.0109
\end{tabular}
\begin{tabular}{cc} 
& Corresponding \\
Severity & Gasoline \\
Range & Yield Range \\
RON Clear & \((\mathrm{b} / \mathrm{b}\) of feed \()\) \\
\hline
\end{tabular}
\begin{tabular}{lll} 
Full-range and medium & \\
naphtha feeds & \(91-103\) & \(0.908-0.783\) \\
Heavy naphtha feeds & \(91-103\) & \(0.903-0.769\)
\end{tabular}

\footnotetext{
*Base yields shown are adjusted for \(N+2 A\) difference from base.
}

\section*{AROMATICS REFORMER YIELDS} (Barrels per Barrel of Feed)
\begin{tabular}{lc} 
Naphtha (160/295\(\left.{ }^{\circ} \mathrm{F}\right)\) & -1 \\
Hydrogen (FOE) & 0.0472 \\
Hydrogen to fuel & 0.0118 \\
Hydrogen sulfide (FOE) & 0.0003 \\
Methane (FOE) & 0.0190 \\
Ethane (FOE) & 0.0332 \\
Propane & 0.0776 \\
Isobutane & 0.0277 \\
Normal Butane & 0.0381 \\
CS/I60 reformate & 0.1064 \\
Raffinate & 0.1299 \\
Benzene & 0.0717 \\
Toluene & 0.1734 \\
Mixed Xylenes & 0.1584 \\
C9+ aromatics & 0.1060 \\
Unit LV loss (gain) & -0.00043 \\
Naphtha HDU feed & -1 \\
Extraction unit feed & -0.6394 \\
BTX distillation feed & -0.5095
\end{tabular}

\section*{A. 5 Fluid Catalytic Cracker}

Fluid catalytic cracking unit, otherwise called FCC or cat cracker, is one of the major processing units in U.S. refineries, with a combined total capacity of more than \(4,600,000 \mathrm{~b} / \mathrm{d}\). The unit is basically a gasoline producer. By employing a fluidized catalyst system, heavy petroleum fractions are converted into gasoline or lighter products. Unlike the hydrocracker, FCC conversion does not require hydrogen and a high-pressure reactor system. FCC model inputs are shown in Table A-10.

\section*{A. 6 Hydrocracking}

Hydrocracking is an efficient, low-temperature catalytic method of converting refractory middle-boiling or residual material to high-octane gasoline, reformer charge stock, jet fuel, and high-grade fuel oil. Unlike reforming, in which hydrogen is produced at the expense of a yield loss, hydrocracking consumes a large amount of hydrogen but results in a liquid yield increase of as much as 25 percent over the feed.

FCC YIELDS
(Barrels per Barrel of Fuel)

> Light Gas Oil Base* Yield \(\begin{gathered}\text { Heavy Gas Oil } \\ \text { Base Yield }\end{gathered}\)
Atmospheric gas oil
Vacuum gas oil
Hydrogen (FOE)
Hydrogen sulfide (FOE)
Methane (FOE)
Ethylene (FOE)
Ethane (FOE)
Propylene
Propane
Butylenes
Isobutane
Normal butane
C5/150 CC Naphtha
150/300 CC Naphtha
\(300 / 430\) CC Naphtha
Light cycle oil
Slurry oil
CC Coke (10
Unit LV loss (gain)

\(-1\)
\begin{tabular}{lr} 
& \multicolumn{1}{l}{} \\
0.0009 & 0.0010 \\
0.0004 & 0.0009 \\
0.0038 & 0.0047 \\
0.0033 & 0.0039 \\
0.0033 & 0.0039 \\
0.0521 & 0.0577 \\
0.0185 & 0.0206 \\
0.0603 & 0.0661 \\
0.0588 & 0.0634 \\
0.0163 & 0.0177 \\
0.1651 & 0.1771 \\
0.2477 & 0.2657 \\
0.1376 & 0.1476 \\
0.2462 & 0.2453 \\
0.0538 & 0.0547 \\
0.01154 & 0.0120 \\
-0.0681 & -0.1303
\end{tabular}

\footnotetext{
*Base yields at 70 percent conversion are corrected for \(\Delta\) conversion in 60 to 90 percent range, feed density, and feed nitrogen content.
}

Reactions involved in hydrocracking are cracking, hydrogenation, cyclization, and isomerization. The product gasoline cut is rich in saturated cyclic components (naphthenes) and can be reformed to a premium grade blending stock. The model inputs for maximum gasoline inputs are shown in Table A-11; those for distillate production are shown in Table A-12 .

\section*{A. 7 Alkylation}

High-octane gasoline stock called alkylate is produced in the alkylation reaction between olefins, usually propylene and butylene, and isobutane with sulfuric acid or hydrogen fluoride as catalyst. The total alkylation capacity in the United States is \(868,5000 \mathrm{~b} / \mathrm{d}\). Of this, about 60 percent is produced in the plants that use sulfuric acid, and the

\section*{HYDROCRACKER--MAXIMUM GASOLINE OPERATION (Barrels per Barrel of Feed)}
\begin{tabular}{lrr} 
Atmospheric gas oil & \multicolumn{1}{l}{-1} & \multicolumn{1}{l}{} \\
Vacuum gas oil & & \multicolumn{1}{l}{} \\
Hydrogen (FOE) & -0.0922 & -0.1251 \\
Hydrogen losses (FOE) & 0.0128 & 0.0128 \\
Hydrogen sulfide (FOE) & 0.0006 & 0.0020 \\
Methane (FOE) & 0.0023 & 0.0027 \\
Ethane (FOE) & 0.0067 & 0.0068 \\
Propane & 0.0364 & 0.0370 \\
Isobutane & 0.0965 & 0.0920 \\
Normal butane & 0.0504 & 0.0480 \\
C5/180 Hydrocrackate & 0.3483 & 0.3340 \\
l80/400 Hydrocrackate & 0.7086 & 0.7911 \\
Unit LV loss (gain) & -0.1704 & -0.2013
\end{tabular}

\section*{Table A-12}

\section*{HYDROCRACKER--DISTILIATE PRODUCTION \\ (Barrels per Barrel of Feed)}

\section*{Jet Fuel or \\ Kerosene Operation \\ Diesel or No. 2 \\ Fuel Oil Operation}
\begin{tabular}{lrr} 
Vacuum gas oil & \multicolumn{1}{l}{-1} & -1 \\
Hydrogen (FOE) & -0.0996 & -0.0846 \\
Hydrogen losses (FOE) & 0.0128 & 0.0102 \\
Hydrogen sulfide (FOE) & 0.0020 & 0.0020 \\
Methane (FOE) & 0.0024 & 0.0021 \\
Ethane (FOE) & 0.0059 & 0.0051 \\
Propane & 0.0260 & 0.0161 \\
Isobutane & 0.0479 & 0.0302 \\
Normal butane & 0.0270 & 0.0261 \\
C5/180 Hydrocrackate & 0.1955 & 0.0873 \\
180/300 Hydrocrackate & 0.3438 & \\
I80/345 Hydrocrackate & & 0.2625 \\
\(300 / 550\) Hydrocrackate & 0.5932 & \\
\(345 / 650\) Hydrocrackate & & 0.7564 \\
Unit LV gain (loss) & -0.1569 & -0.1134
\end{tabular}
remainder in plants that use hydrogen fluoride. Alkylates are highly branched paraffins having clear research octane rating of 93 to 97 . Model inputs for alkylation are shown in Table A-13.

Table A-13
ALKYLATION UNIT (Barrels per Barrel of Feed)
\begin{tabular}{lcc} 
& \begin{tabular}{c} 
Propylene \\
Alkylation
\end{tabular} & \begin{tabular}{c} 
Butylene \\
Alkylation
\end{tabular} \\
Propylene & -0.5682 & \\
Butylenes & -0.7743 & -0.5650 \\
Isobutane & 1.00 & -0.6497 \\
C3 Alkylate \(_{\text {C4 Alkylate }}\) & & 1.0 \\
Unit LV loss (gain) & 0.3425 & 0.2147
\end{tabular}

\section*{A. 8 Isomerization and Molecular Sieve Isoparaffin Separation}

An isomerization unit is used to convert normal paraffins into isoparaffins for octane upgrading. This is a catalytic reaction carried out in a hydrogen atmosphere. The feed is heated with recycle hydrogen and charged to reactors loaded with solid catalyst. Reaction conditions are generally at temperatures of \(250^{\circ}\) to \(350^{\circ} \mathrm{F}\) and pressures between 250 and 400 psig. Chlorine on the catalyst promotes isomerization reactions. A small amount of chlorine in the form of decomposable chloride is continuously added to replace the depleted portion. The model inputs are shown in Tables A-14 and A-15.

\section*{Table A-14}

\section*{ISOMERIZATION OPERATION (Barrels per Barrel of Feed)}
\begin{tabular}{ll}
\(\mathrm{C5} / \mathrm{C} 6\) feed (b/d) & -1.00 \\
\(\mathrm{H}_{2}\) consumption (FOE b/d) & -0.0097 \\
Products (b/d) & \\
Methane (FOE) & 0.00095 \\
Ethane (FOE) & 0.00167 \\
Propane (FOE) & 0.01398 \\
Isomerate & 1.000
\end{tabular}

MOLECULAR SIEVE UNIT (N-PARAFFIN SEPARATION)
(Barrels per Barrels of Feed)
\begin{tabular}{lll} 
C5/160 Light straight run & -1 & \\
C5/175 Light straight run & & -1 \\
C5/C6 Normal paraffin & 0.416 & 0.338 \\
C5/C6 Isomerate & 0.584 & 0.662
\end{tabular}

\section*{A. 9 Hydrogen Plant}

The hydrogen produced from the catalytic reforming operation is often sufficient to replace the hydrogen consumed by the usual naphtha and middistillate hydrotreating. A hydrogen plant becomes necessary when the refinery installs a major hydrogen-consuming unit, such as a hydrocracker or a fuel oil desulfurization unit.

Hydrogen can be produced from natural gas, naphtha, or heavier feedstocks. The heavier the feedstock, the higher the production costs. Model inputs are shown in Table A-16.

Table A-16
HYDROGEN PLANT YIELDS
(Barrels per Barrel of Feed)

Fuel Gas
Hydrogen (FOE)
Fuel gas (FOE)
1.0

Naphtha

Naphtha ( \(10^{3} 1 \mathrm{~b}\) )
\(-0.8747\)
Unit LV loss (gain)
\(-0.1253\)
1.0
-0. 299
-1

\section*{A. 10 Delayed Coker}

Delayed coking is used to convert the low-grade pitch materials such as vacuum column bottoms, FCC slurry oil, etc., into lighter liquids and raw coke. The delayed coking capacity in the United States is now about 43,400 short tons of raw coke per day, or about \(900,000 \mathrm{~b} / \mathrm{d}\) as 1 iquid feed. Because a large percentage of sulfur in the feed ends up in coke, the process provides an efficient means of controlling the sulfur level in fuel oils. Raw coke, often called green coke, has numerous uses other than as fuel when it can meet certain specifications. For example, if the sulfur content is less than 1.5 percent, it is calcined and used as
electrode in metallurgical applications (primary aluminum production and steel production). Model inputs are shown in Table A-17.

Table A-17

\section*{DELAYED COKER YIELDS \\ (Barrels per Barrel of Feed)}
\begin{tabular}{ll} 
Vac Resid & -1 \\
Hydrogen (FOE) & 0.0023 \\
\(\mathrm{H}_{2} \mathrm{~S}\) (FOE) & 0.0019 \\
\(\mathrm{CH}_{4}\) (FOE) & 0.0360 \\
\(\mathrm{C}_{2} \mathrm{U}\) (FOE) & 0.0032 \\
\(\mathrm{C}_{2} \mathrm{~S}\) (FOE) & 0.0242 \\
Propylene & 0.0152 \\
Propane & 0.0337 \\
Butylene & 0.0171 \\
I-Butane & 0.0073 \\
N-Butane & 0.0167 \\
Coker gasoline & 0.27 \\
Light coker GO & 0.28 \\
Heavy coker GO & 0.14 \\
Raw coke (b/10 \({ }^{3}\) 1b) & 0.1123 \\
Unit LV loss (gain) & 0.1524
\end{tabular}

\section*{A. 11 Hydrodealkylation}

Dealkylation of alkylbenzene (toluene, ethylbenzene, etc.) is an important source of benzene because the demand for benzene as a petrochemical raw material often exceeds the amount recoverable from reformate, pyrolysis gasoline, or other hydrocarbon streams. Dealkylation reaction removes side chains of aromatics molecules and thus produces benzene and gaseous products. Model inputs are shown in Table A-18.

\section*{A. 12 Gasoline Blending Properties}

The gasoline blending properties specified for this model are shown in Table A-19.

\section*{A. 13 Distillate Blending}

The distillate blending properties assumed for this report are shown in Table \(\mathrm{A}-20\).

\title{
Table A-18 \\ TOLUENE DEALKYLATION YIELDS (Barrels per Barrel of Feed)
}
\begin{tabular}{ll} 
Operating mode & TDA \\
Feed (b/d). & \\
Toluene & -1.00 \\
\(\mathrm{H}_{2}\) consumption (FOE) & -0.0753 \\
Product (b/d) & \\
\(\mathrm{H}_{2}\) (FOE) & 0.0050 \\
Methane (FOE) & 0.2072 \\
Ethane (FOE) & 0.0053 \\
Propane & 0.0072 \\
I-Butane & 0.0040 \\
N-Butane & 0.0019 \\
Benzene & 0.8800
\end{tabular}

GASOLINE BLENDING PROPERTIES

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{RESEARCH OCTANE NUMBERS} & \multicolumn{5}{|c|}{MOTOR OCTANE NUMBERS} \\
\hline 0.0 & 0.5 & 1.0 & 2.0 & 3.17 & 0.0 & 0.5 & 1.0 & 2.0 & 3.17 \\
\hline \(J\) & K & 1 & M & N & 0 & P & 0 & R & 5 \\
\hline 66.6 & 74.9 & 79.3 & 84.5 & 88.3 & 68.7 & 75.7 & 79.5 & 84.1 & 87.6 \\
\hline 102.8 & 106.3 & 108.4 & 110.7 & 111.6 & 100.7 & 104.8 & 107.5 & 110.6 & 112.2 \\
\hline 97.4 & 99.8 & 101.4 & 103.2 & 104.1 & 92.5 & 97.3 & 99.9 & 103.1 & 104.7 \\
\hline 72.0 & 79.7 & 83.7 & 88.2 & 91.1 & 68.2 & 76.9 & 81.5 & 87.0 & 91.1 \\
\hline 72.1 & 77.3 & 80.1 & 84.4 & 88.6 & 71.5 & 76.7 & 79.6 & 83.3 & 86.4 \\
\hline 70.8 & 78.6 & 82.7 & 87.3 & 90.2 & 68.8 & 76.7 & 80.8 & 86.0 & 90.0 \\
\hline 71.0 & 76.3 & 79.2 & 83.5 & 87.6 & 70.0 & 75.4 & 78.3 & 82.2 & 85.3 \\
\hline 91.0 & 95.0 & 97.2 & 99.8 & 102.0 & 89.0 & 94.5 & 97.4 & 100.9 & 104.0 \\
\hline 97.0 & 100.2 & 102.5 & 105.5 & 108.0 & 95.0 & 99.5 & 102.4 & 106.5 & 110.0 \\
\hline 83.4 & 89.1 & 92.2 & 95.8 & 98.2 & 80.2 & 87.9 & 91.8 & 96.3 & 99.3 \\
\hline 62.7 & 72.1 & 77.1 & 82.9 & 87.2 & 64.1 & 72.5 & 76.9 & 81.7 & 84.4 \\
\hline 81.0 & 86.4 & 89.2 & 92.6 & 95.0 & 78.4 & 85.2 & 88.8 & 92.9 & 95.7 \\
\hline 52.0 & 60.4 & 64.9 & 70.3 & 74.0 & 52.7 & 61.7 & 66.5 & 72.2 & 76.1 \\
\hline 56.0 & 65.3 & 70.3 & 76.0 & 80.0 & 56.4 & 65.3 & 70.1 & 75.7 & 79.5 \\
\hline 54.0 & 62.8 & 67.6 & 73.1 & 77.0 & 54.5 & 63.5 & 68.3 & 73.9 & 77.8 \\
\hline 94.4 & 97.3 & 99.0 & 101.1 & 103.0 & 83.6 & 87.1 & 89.1 & 91.4 & 93.1 \\
\hline 91.6 & 94.1 & 95.5 & 97.2 & 98.4 & 75.7 & 79.3 & 81.3 & 83.7 & 85.5 \\
\hline 86.0 & 88.9 & 90.5 & 92.4 & 93.8 & 77.4 & 80.0 & 81.4 & 83.2 & 84.5 \\
\hline 60.0 & 64.0 & 67.0 & 76.0 & 83.0 & 51.0 & 55.0 & 62.0 & 68.0 & 72.0 \\
\hline 60.0 & 64.0 & 67.0 & 76.0 & 83.0 & 51.0 & 55.0 & 62.0 & 68.0 & 72.0 \\
\hline 86.4 & 91.7 & 94.6 & 97.7 & 99.4 & 82.9 & 89.7 & 92.9 & 96.9 & 100.0 \\
\hline 108.8 & 111.9 & 113.8 & 115.9 & 116.9 & 93.3 & 97.3 & 99.5 & 102.5 & 104.8 \\
\hline 114.1 & 115.9 & 117.1 & 118.8 & 120.4 & 99.0 & 102.8 & 105.4 & 108.2 & 109.3 \\
\hline 111.6 & 112.2 & 112.6 & 113.0 & 113.4 & 107.2 & 108.8 & 109.8 & 111.1 & 112.1 \\
\hline 108.7 & 110.2 & 110.8 & 111.7 & 112.7 & 92.9 & 93.2 & 93.7 & 94.5 & 95.0 \\
\hline 93.0 & 94.7 & 95.7 & 96.9 & 97.8 & 76.3 & 78.0 & 79.0 & 80.3 & 81.2 \\
\hline 100.7 & 101.8 & 102.5 & 103.4 & 104.1 & 90.0 & 91.5 & 92.4 & 93.5 & 94.3 \\
\hline 62.7 & 72.1 & 77.1 & 82.9 & 87.2 & 64.1 & 72.5 & 76.9 & 81.7 & 84.4 \\
\hline 52.0 & 60.4 & 64.9 & 70.3 & 74.0 & 52.7 & 61.7 & 66.5 & 72.2 & 76.1 \\
\hline 52.0 & 60.4 & 64.9 & 70.3 & 74.0 & 52.7 & 61.7 & 66.5 & 72.2 & 76.1 \\
\hline 91.0 & 94.2 & 96.0 & 98.1 & 99.6 & 81.9 & 85.4 & 87.3 & 98.6 & 91.3 \\
\hline 94.0 & 96.6 & 98.1 & 99.8 & 101.3 & 83.9 & 87.1 & 88.9 & 91.1 & 92.7 \\
\hline 97.0 & 98.9 & 100.0 & 101.7 & 103.0 & 85.9 & 88.9 & 90.6 & 92.6 & 94.1 \\
\hline 100.0 & 101.5 & 102.5 & 103.7 & 104.7 & 87.8 & 90.6 & 92.2 & 94.1 & 95.5 \\
\hline 103.0 & 104.1 & 104.8 & 105.6 & 106.3 & 89.8 & 92.4 & 93.8 & 95.5 & 96.8 \\
\hline 91.1 & 93.1 & 94.3 & 95.7 & 96.7 & 84.0 & 86.2 & 87.4 & 89.0 & 90.1 \\
\hline 93.1 & 94.9 & 96.0 & 97.3 & 98.2 & 85.8 & 87.8 & 89.0 & 90.4 & 91.4 \\
\hline 94.9 & 96.6 & 97.5 & 98.7 & 99.5 & 87.6 & 89.4 & 90.4 & 91.7 & 92.6 \\
\hline 100.0 & 100.9 & 101.5 & 102.2 & 102.8 & 91.6 & 92.8 & 93.4 & 94.3 & 94.9 \\
\hline 103.0 & 104.1 & 104.8 & 105.6 & 106.3 & 94.4 & 95.2 & 95.7 & 96.3 & 96.7 \\
\hline
\end{tabular}

Table A-19 (Concluded)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { GASO. } \\
& \text { POOL } \\
& \hline
\end{aligned}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { MEROX } \\
& \text { TREAT } \\
& \hline
\end{aligned}
\]}} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { TEL } \\
\text { G/GAL } \\
2 \\
\hline
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { DENSITY } \\
\text { LBS /BBL } \\
\text { A } \\
\hline
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { SULFUR } \\
& \text { WT PCT } \\
& \quad \mathrm{B} \\
& \hline
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { RVP } \\
\text { PSIA } \\
\text { C } \\
\hline
\end{gathered}
\]} & \multirow[t]{3}{*}{} & \multicolumn{5}{|l|}{LV PCT EVAPORATEDAT T F} \\
\hline & & & & & & & & & & & & 130 & 158 & 235 & 356 & 365 \\
\hline & A & B & C & D & GI & NT & & & & & & E & F & G & H & I \\
\hline NatUral gasoline & 1 & 1 & 1 & 1 & & & & 230.6 & 0.017 & 13.9 & 231.0 & 56 & 76 & 95 & 100 & 100 \\
\hline isobutane & 1 & 1 & 1 & 1 & & & & 197.0 & 0.0 & 72.0 & 1450.0 & 100 & 100 & 100 & 100 & 100 \\
\hline NORMAL BUTANE & 1 & 1 & 1 & 1 & & & & 204.4 & 0.0 & 10.3 & 162.4 & 62 & 92 & 100 & 100 & 100 \\
\hline LSR (C5/160) A & 1 & 1 & 1 & 1 & 1 & & & 226.6 & 0.001 & 52.0 & 1120.0 & 100 & 100 & 100 & 100 & 100 \\
\hline LSR (C5/160) B & 1 & 1 & 1 & 1 & 1 & & & 226.9 & 0.042 & 9.6 & 149.8 & 50 & 80 & 100 & 100 & 100 \\
\hline LSR (C5/175) A & 1 & & 1 & 1 & 1 & & & 233.7 & 0.002 & 12.2 & 197.8 & 66 & 92 & 100 & 100 & 100 \\
\hline LSR (C5/175) B & 1 & & 1 & 1 & 1 & & & 236.1 & 0.050 & 11.2 & 178.8 & 50 & 80 & 100 & 100 & 100 \\
\hline PROPYLENE ALKYLATE & 1 & 1 & 1 & 1 & & & & 250.3 & 0.0 & 4.7 & 58.5 & 3 & 8 & 79 & 98 & 99 \\
\hline butylene alkylate & 1 & 1 & 1 & 1 & & & & 248.4 & 0.0 & 4.9 & 66.4 & 2 & 6 & 88 & 99 & 100 \\
\hline C5/C6 ISOMERATE & 1 & , & 1 & 1 & & & & 228.5 & 0.001 & 14.2 & 236.6 & 72 & 100 & 100 & 100 & 100 \\
\hline RAFFINATE & 1 & 1 & 1 & 1 & & & & 251.0 & 0.001 & 4.2 & 58.5 & 0 & 7 & 49 & 92 & 94 \\
\hline C5/180 HYDROCRACKATE & 1 & 1 & 1 & 1 & 1 & & & 231.4 & 0.0005 & 13.0 & 213.0 & 50 & 90 & 100 & 100 & 100 \\
\hline 180/400 HYDROCRACKATE & & 1 & & & & 1 & & 270.4 & 0.001 & 1.0 & 11.8 & 0 & 0 & 10 & 86 & 90 \\
\hline 180/300 HYDROCRACKATE & 1 & & & & & 1 & & 261.3 & 0.001 & 1.4 & 17.1 & 0 & 0 & 27 & 100 & 100 \\
\hline 180/345 HYDROCRACKATE & 1 & & & & & 1 & & 264.0 & 0.001 & 1.2 & 14.4 & 0 & 0 & 14 & 100 & 100 \\
\hline C5/150 CC NAPHTHA & 1 & 1 & 1 & 1 & & & & 226.8 & 0.01 & 18.9 & 330.9 & 85 & 95 & 100 & 100 & 100 \\
\hline 150/300 CC NAPHTHA & 1 & 1 & 1 & 1 & & & & 263.8 & 0.025 & 3.9 & 53.8 & 0 & 8 & 72 & 100 & 100 \\
\hline FCC HVY NAPH & 1 & 1 & 1 & 1 & & & & 294.6 & 0.075 & 0.2 & 2.0 & 0 & 0 & 0 & 31 & 44 \\
\hline COKER GASO C5-400 (A) & 1 & 1 & 1 & 1 & 1 & & & 263.0 & 0.27 & 4.0 & 55.0 & 0 & 1 & 60 & 98 & 99 \\
\hline COKER GASO C5-400 (B) & 1 & 1 & 1 & 1 & 1 & & & 263.0 & 0.60 & 4.0 & 55.0 & 0 & 1 & 60 & 98 & 99 \\
\hline C5/160 REFORMATE & 1 & 1 & 1 & 1 & & & & 232.7 & 0.0 & 13.0 & 213.0 & 62 & 91 & 100 & 100 & 100 \\
\hline BENZENE & 1 & 1 & 1 & 1 & & & & 309.3 & 0.0005 & 3.2 & 43.1 & 0 & 0 & 100 & 100 & 100 \\
\hline toluene & 1 & 1 & 1 & 1 & & & & 303.8 & 0.0005 & 1.3 & 15.7 & 0 & 0 & 100 & 100 & 100 \\
\hline MIXED XYLENES & 1 & 1 & 1 & 1 & & & & 304.8 & 0.0005 & 0.4 & 4.2 & 0 & 0 & 0 & 100 & 100 \\
\hline C9+ AROMATICS & 1 & 1 & 1 & 1 & & & & 308.4 & 0.001 & 0.2 & 2.0 & 0 & 0 & 0 & 30 & 75 \\
\hline PYROLYSIS C5 S & 1 & 1 & 1 & 1 & & & & 241.4 & 0.0 & 15.6 & 262.8 & 85 & 95 & 100 & 100 & 100 \\
\hline PYROLYSIS GASOLINE & & & & & & & & 291.0 & 0.009 & 2.0 & 25.5 & 0 & 2 & 62 & 98 & 99 \\
\hline PYROLYSIS RAFFINATE & & 1 & & & & & & 251.8 & 0.0 & 4.7 & 66.4 & 0 & 7 & 49 & 92 & 94 \\
\hline C5/375 VHT NAPHTHA & & 1 & & & & 1 & & 269.7 & 0.01 & 1.0 & 11.8 & 0 & 2 & 23 & 97 & 99 \\
\hline C5/375 RHT NAPHTHA & 1 & 1 & & & & 1 & & 269.7 & 0.01 & 1.0 & 11.8 & 0 & 2 & 23 & 97 & 99 \\
\hline 91 RON REFORMATE & 1 & 1 & 1 & 1 & & & & 273.9 & 0.0 & 3.0 & 40.1 & 0 & 5 & 43 & 93 & 94 \\
\hline 94 RON REFORMATE & 1 & 1 & 1 & 1 & & & & 276.0 & 0.0 & 3.2 & 43.1 & 0 & 6 & 42 & 92 & 94 \\
\hline 97 RON REFORMATE & 1 & 1 & 1 & 1 & & & & 278.2 & 0.0 & 3.4 & 46.1 & 1 & 7 & 43 & 92 & 93 \\
\hline 100 RON REFORMATE & 1 & 1 & 1 & 1 & & & & 281.4 & 0.0 & 3.6 & 49.2 & 2 & 8 & 43 & 92 & 93 \\
\hline 103 RON REFORMATE & & 1 & 1 & 1 & & & & 285.8 & 0.0 & 3.9 & 53.8 & 3 & 10 & 43 & 92 & 93 \\
\hline 91 RON REFORMATE (HN) & 1 & 1 & 1 & 1 & & & & 286.6 & 0.0 & 0.8 & 9.2 & 0 & 1 & 7 & 59 & 71 \\
\hline 93 RON REFORMATE (HN) & 1 & 1 & 1 & 1 & & & & 287.6 & 0.0 & 1.0 & 11.8 & 0 & 2 & 8 & 58 & 70 \\
\hline 95 RON REFORMATE (HN) & 1 & 1 & 1 & 1 & & & & 289.1 & 0.0 & 1.1 & 13.1 & 0 & 3 & 9 & 57 & 69 \\
\hline 100 RON REFORMATE (HN) & 1 & 1 & , & 1 & & & & 281.4 & 0.0 & 1.3 & 15.7 & 1 & 4 & 12 & 49 & 61 \\
\hline 103 RON REFORMATE (HN) & 1 & 1 & 1 & 1 & & & & 285.8 & 0.0 & 1.0 & 11.8 & 0 & 1 & 6 & 40 & 55 \\
\hline
\end{tabular}

Table A-20
DISTILLATE BLENDING PROPERTIES

LSR (C5/160) A
LSR (C5/175) A
NAPHTHA ( \(160 / 295\) ) A NAPHTHA \((175 / 295)\) A HEAVY NAPHTHA A KEROSENE A LT GAS OIL A REDUCED CRUDE A LRS (C5/160) B LRS (C5/175) B NAPHTHA ( \(160 / 295\) ) B NAPHTHA \((175 / 295)\) B HEAVY NAPHTHA B
KEROSENE B LT GAS OIL B REDUCFD CRUDE B VACUUM GAS OIL A VACUUM RESID A VACUUN GAS OIL B VACUUM RESID B HVY NAPH A VIA KHT Kerosene a via kht HVY NAPH B VIA KHT KEROSENE B VIA KHT [.ESULF FCC HVY NAPH DESILLF LGO (A) DESULF LGO ( \(B\) ). DESULF LCGO (A) VIA GH DESULF LCGO (B) VIA GH C5/375 HT NAPHTHA 375/650 HT DISTILLATE DFSLILF UGO (B) DESSILF HCGO (A) VIA VH DESULF HCGO (B) VIA VH C5/375 HT NAPHTHA 375/650 HT DISTILLATE DESULFURIZED RESID B RAFFINATE FCC HVY NAP! 300-430 LIGHT CYCLE OIL SLURRY UIL C5/180 HYDROCRACKATE. 180/400 HYDRUCRACKATE 180/300 HYDROCRACKATE 180/345 HYDROCRACKATE 300/550 HYDROCRACKATE 345/650 HYDROCRACKATE COKER GASO C5-400 LCGO 400-650 HCGO 650-950 COKER GASO C5-400 LCGO 400-650 HCGO 650-950 C5/160 REFORMATE PYROLYSIS FUEL OIL PYROLYS IS PITCH
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\[
\begin{gathered}
\text { Density } \\
\text { Lbs/bbl } \\
\hline \\
\hline
\end{gathered}
\]} & \multirow[b]{3}{*}{Sulfur Wt PCt
\[
B
\]} & \multirow[b]{3}{*}{\begin{tabular}{l}
Rvp, \\
Psia \\
C
\end{tabular}} & \multirow[b]{3}{*}{Rvp Index D} & \multirow[t]{3}{*}{Lv Pct Aromatics E} & \multicolumn{2}{|l|}{Freeze Point} & \multicolumn{2}{|l|}{Pour Point} & \multirow[t]{3}{*}{\begin{tabular}{l}
Smoke \\
Point \\
MM \\
J
\end{tabular}} \\
\hline & & & & & Deg F & Index & Deg F & Index & \\
\hline & & & & & F & G & H & I & \\
\hline 226.6 & 0.001 & 10.3 & 162.4 & 0.0 & & & & & \\
\hline 233.6 & 0.002 & 9.6 & 149.8 & 2.5 & & & & & \\
\hline 260.9 & 0.011 & 2.2 & 28.3 & 9.7 & -105.0 & 16.0 & & & \\
\hline 261.1 & 0.012 & 2.1 & 26.9 & 9.5 & -105.0 & 16.0 & & & \\
\hline 276.3 & 0.027 & 0.9 & 10.5 & 16.0 & -88.0 & 25.0 & & & 21.7 \\
\hline 290.8 & 0.061 & 0.1 & 0.9 & 22.0 & -43.0 & 105.0 & -60.0 & 63.0 & 18.6 \\
\hline 302.5 & 0.171 & & & & & & 0.0 & 360.0 & \\
\hline 325.1 & 0.669 & & & & & & 85.0 & & \\
\hline 226.9 & 0.042 & 12.2 & 197.8 & 0.0 & & & & & \\
\hline 236.1 & 0.050 & 11.2 & 178.8 & 2.7 & & & & & \\
\hline 260.8 & 0.152 & 3.1 & 41.6 & 12.6 & -105.0 & 16.0 & & & \\
\hline 261.0 & 0.163 & 2.5 & 32.7 & 13.0 & -105.0 & 16.0 & & & \\
\hline 279.1 & 0.420 & 0.9 & 10.5 & 21.8 & -93.0 & 21.5 & & & 27.4 \\
\hline 289.3 & 0.832 & 0.1 & 0.9 & 25.0 & -37.0 & 126.0 & -37.0 & 126.0 & 19.2 \\
\hline 303.3 & 1.345 & & & & & & 23.0 & 665.0 & \\
\hline 328.6 & 2.175 & & & & & & & & \\
\hline 318.3 & 0.533 & & & & & & 75.0 & & \\
\hline 347.1 & 1.070 & & & & & & 100.0 & & \\
\hline 319.5 & 1.774 & & & & & & 92.0 & & \\
\hline 351.5 & 3.000 & & & & & & & & \\
\hline 276.3 & 0.003 & 0.9 & 10.5 & 16.0 & -88.0 & 25.0 & & & 25.7 \\
\hline 290.8 & 0.006 & 0.1 & 0.9 & 22.0 & -43.0 & 105.0 & -60.0 & 63.0 & 22.6 \\
\hline 278.4 & 0.042 & 0.9 & 10.5 & 21.8 & -93.0 & 21.5 & & & 31.4 \\
\hline 287.7 & 0.083 & 0.1 & 0.9 & 25.0 & -37.0 & 126.0 & -37.0 & 126.0 & 23.2 \\
\hline 290.0 & 0.01 & 1.0 & 12.0 & 32.0 & -98.0 & 19.0 & -80.0 & 30.0 & 22.0 \\
\hline 298.8 & 0.017 & & & & & & 0.0 & 360.0 & \\
\hline 296.1 & 0.135 & & & & & & 23.0 & 665.0 & \\
\hline 304.3 & 0.065 & & & & & & -23.0 & 190.0 & \\
\hline 302.4 & 0.19 & & & & & & -23.0 & 190.0 & \\
\hline 269.7 & 0.01 & 1.0 & 11.8 & 22.0 & & & & & \\
\hline 295.5 & 0.02 & & & & & & -20.0 & 206.0 & \\
\hline 309.6 & 0.20 & & & & & & 95.0 & 3800.0 & \\
\hline 314.9 & 0.11 & & & & & & 35.0 & 900.0 & \\
\hline 311.0 & 0.38 & & & & & & 35.0 & 900.0 & \\
\hline 269.7 & 0.01 & 1.0 & 11.8 & 22.0 & & & & & \\
\hline 295.5 & 0.02 & & & & & & -20.0 & 206.0 & \\
\hline 324.6 & 0.30 & & & & & & 60.0 & 1660.0 & \\
\hline 251.0 & 0.001 & 4.2 & 58.5 & 8.5 & & & & & \\
\hline 294.6 & 0.075 & 0.20 & 2.0 & 40.0 & -98.0 & 19.0 & -80.0 & 30.0 & 18.0 \\
\hline 337.9 & 1.615 & & & & & & & & \\
\hline 382.2 & 2.77 & & & & & & & & \\
\hline 231.4 & 0.0005 & 13.0 & 213.0 & 0.0 & & & & & \\
\hline 270.5 & 0.001 & 1.0 & 11.8 & 8.0 & & & & & \\
\hline 261.3 & 0.001 & 14 & 17.1 & 5.0 & & & & & \\
\hline 264.0 & 0.001 & : 2 & 14.4 & 5.0 & & & & & \\
\hline 284.5 & 0.004 & & & 8.0 & -60.0 & 62.5 & -60.0 & 62.5 & 30.0 \\
\hline 289.1 & 0.01 & & & 10.0 & -50.0 & 86.0 & -50.0 & 86.0 & \\
\hline 263 & 0.26 & 10 & 160 & 13 & & & & & \\
\hline 308.0 & 0.65 & & & & & & -20.0 & 206.0 & \\
\hline 319.0 & 1.10 & & & & & & 40.0 & 1000.0 & \\
\hline 263 & 0.6 & 10 & 160 & 13 & & & & & \\
\hline 308.0 & 1.89 & & & & & & -20.0 & 206.0 & \\
\hline 319.0 & 3.78 & & & & & & 40.0 & 1000.0 & \\
\hline 232.7 & 0.0 & 13.0 & 213.0 & 2.5 & & & & & \\
\hline 315.0 & 0.1 & & & & & & -25.0 & 180.0 & \\
\hline 350.0 & 1.5 & & & & & & & & \\
\hline
\end{tabular}

Table A-20 (Concluded)

LSR (C5/160) A
LSR (C5/175) A
MAPHTHA (160/295) A
NAPHTHA (175/295) A
heavy naphtha a
kerosene a
LT GAS OIL A
reduced crude a
LSR ( \(\mathrm{C} 5 / 160\) ) B
LSR (C5/175) B
NAPHTHA (160/295) B
NAPHTHA \((175 / 295)\) B heavy naphtha b
kerosene b
lt gas oil b
reduced crude b
vacurm gas oil a
vacurm resid a
vacurm gas oil b
vacuum resid b
hVY NAPH A VIA KHT
kerosene a via kht
HVY NAPH B VIA KHT xEROSENE B VIA KHT desulf fcc hvy naph lt gas oil a via ght lt gas oil b via ght LCGO (DESULFURIZED) LCGO (DESULFURIZED)
C5/375 HT NAPHTHA 375/650 hT DISTILLATE
vGO B VIA HT
hCGO (DESULFURIZED)
HCGO (DESULTVURIZED)
C5/375 HT NAPHTHA
375/650 hT DISTILLATE
desulfurized resid b
Raffinate
FCC HVY NAPH 300-430
light cycle oil
SLURRY OIL
C5/180 HYDROCRACKATE
180/400 HYDROCRACKATE
180/300 HYDROCRACKATE
180/345 HYDROCRACKATE
300/550 HYDROCRACKATE
345/650 HYDROCRACKATE
COKER GASO C5-400
LCCO 400-650
HCGO 650-950
COKER GASO C5-400
LCGO 400-650
HCGO 650-950
C5/160 REFORMATE
PYROLYSIS FUEL OIL
PYROLYSIS PITCH
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Cecane & Diesel & \multicolumn{2}{|l|}{Viscoaity at 122 F} & \multicolumn{9}{|c|}{LV Pct Evaporaced at Temp T (Deg. F)} \\
\hline Index & Index & CS & Index & 290 & 350 & 370 & 400 & 450 & 470 & 540 & 590 & 625 \\
\hline X & L & M & N & 0 & P & 0 & 8 & S & I & U & V & H \\
\hline & & & & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline & & & & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline & & 0.75 & 79.0 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline & & 0.77 & 78.0 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline & & 1.08 & 70.0 & 0 & 90 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline 47.5 & 56.1 & 1.75 & 60.0 & 0 & 0 & 0 & 0 & 50 & 70 & 100 & 100 & 100 \\
\hline 55.0 & 52.6 & 4.1 & 48.0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 80 \\
\hline & & 420.0 & 20.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & & & & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline & & & & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline & & & & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline & & & & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline & & 0.95 & 73.0 & 0 & 90 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline 48.5 & 54.2 & 1.5 & 63.0 & 0 & 0 & 0 & 0 & 50 & 70 & 100 & 100 & 100 \\
\hline 53.5 & 49.5 & 3.7 & 49.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 80 \\
\hline & & 440.0 & 20.3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & & 120.0 & 25.0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & & & 6.0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & & 100.0 & 25.9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & & & 6.0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & & 1.08 & 70.0 & 0 & 90 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline 47.5 & 56.1 & 1.75 & 60.0 & 0 & 0 & 0 & 0 & 50 & 70 & 100 & 100 & 100 \\
\hline & & 0.95 & 73.0 & 0 & 90 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline 48.5 & 54.2 & 1.5 & 63.0 & 0 & 0 & 0 & 0 & 50 & 70 & 100 & 100 & 100 \\
\hline 33 & & & & 7 & 30 & 49 & 88 & 100 & 100 & 100 & 100 & 100 \\
\hline 55.0 & 52.6 & 4.1 & 48.0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 80 \\
\hline 53.5 & 49.5 & 3.7 & 49.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 80 \\
\hline & & 1.8 & 60.0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & & 1.8 & 60.0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & & & & 60 & 95 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline 48.5 & 46.2 & 1.5 & 63.0 & 0 & 0 & 0 & 0 & 10 & 25 & 85 & 100 & 100 \\
\hline & & 26.0 & 32.9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & & 100.0 & 26.0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & & 100.0 & 26.0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & & & & 60 & 95 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline 48.5 & 46.2 & 1.5 & 63.0 & 0 & 0 & 0 & 0 & 10 & 25 & 85 & 100 & 100 \\
\hline & & 150.0 & 24.2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & & & & 74 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline 32 & & & & 5 & 29 & 47 & 85 & 100 & 100 & 100 & 100 & 100 \\
\hline & & 3.0 & 52.0 & 0 & 0 & 0 & 0 & 0 & 7 & 62 & 90 & 100 \\
\hline & & 50.0 & 29.3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & & & & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline & & & & 50 & 84 & 91 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline & & & & 97 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline & - & & & 70 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline 50.0 & 61.6 & 1.5 & 63.0 & 0 & 16 & 33 & 48 & 67 & 74 & 96 & 100 & 100 \\
\hline 56.0 & 63.5 & 2.1 & 57.0 & 0 & 2 & 6 & 12 & 28 & 36 & 66 & 85 & 100 \\
\hline & & & & 50 & 75 & 90 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline 42.5 & 40.0 & 1.8 & 60.0 & 0 & 0 & 0 & 10 & 25 & 50 & 85 & 100 & 100 \\
\hline & & 100.0 & 26.0 & 0 & 0 & 0 & 0 & - & 0 & - & 0 & 0 \\
\hline & & & & 50 & 75 & 90 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline 42.5 & 40.0 & 1.8 & 60.0 & 0 & 0 ' & 0 & 10 & 25 & 50 & 85 & 100 & 100 \\
\hline & & 100.0 & 26.0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & & & & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline 25.5 & 30.0 & 6.5 & 42.6 & 0 & 8 & 12 & 22 & 40 & 50 & 74 & 89 & 97 \\
\hline & & & 5.0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

Appendix B
REFINING INDUSTRY MODEL

\section*{Appendix B}

\section*{REFINING INDUSTRY MODEL}

This appendix is a supplement to Section 3.2.2. Included are:
- A brief description of the model
- A list of tables generated by the FORTRAN report program
- The naming conventions for the equations and variables
- A complete listing of the refining industry model (RIM) by equation order.

\section*{B. 1 Model Description}

The RIM is a linear programming (LP) mathematical representation of the refining and bulk transportation sectors of the U.S. petroleum industry. The geographic aggregation of the model is by the five Petroleum Administration for Defense (PAD) districts and one foreign sector. The refining industry in each district is represented by a large and a small refinery type, each having three operating modes (base, low, and high conversion) on each of two basic crude oil types (high- and low-sulfur). Additional crude oils included are the heavy, high-sulfur crude used for District V (West Coast) refining, and Alaskan North Slope crude for PAD districts III and V. Twenty-two types of refinery products are included.

The model is coded in the Mathematical Programming System (MPS) format, which is compatible with many LP mathematical systems. The associated report generating program is written in FORTRAN and is, in part, specific to the Control Data 6000 series computer and to the APEX III LP system.

A step-by-step description of the technique for application of the RIM is included in Appendix C, which describes model validation.

For an optimal solution of the model, the results are reported in the following sets of output tables:
(1) Analysis of production and movements between districts and foreign sector for each product
(2) Refinery capacity utilization by refinery types (high-sulfur, low-sulfur, West Coast), refinery size classes, and PAD districts
(3) Analysis of production and movements of all products from other districts and foreign sector for each district
(4) Utility summary by type and district
(5) Utility consumption by refinery types, sizes, and PAD districts for each utility
(6) Investment summary by refinery types, sizes, and districts for future investment options to be added.

\section*{B. 2 Refining Industry Model Naming Conventions}

\section*{B.2.1 Equations}
(1) Refining section XXYYYZ
\(\mathrm{XX}=\) PAD District No. (extra digit for future subdistrict) YYY = Product Code (see Table B-1)
\(Z=P\) for production
D for distribution
R for utility requirement
Example:
\[
105 C A P=\text { PAD } 1 \text { production of diesel }
\]

Others:
ØJBF = Overall objective function
\(X X \emptyset B J=\) Subobjective function in District \(X X\)
XXLRG = Sum large refinery capacity in District XX XXSML = Ditto small refinery
(2) Transportation section XXPCAPYY = Pipeline capacity from PADXX to YY XXMCAPYY = Ditto marine capacity XXPCOST = Sums DIST XX pipeline cost based on total volume XXMCOST = Ditto marine.

Table B-1
INDUSTRY MODEL NOMENCLATURE CODE

The Refineries
\begin{tabular}{ll} 
L & Large refinery \\
M & Medium refinery \\
S & Small refinery
\end{tabular}

The Crudes

CA
CB
CC
CD
The Cases
BA
HC
LC
MD

Sweet crude
Sour crude
California crude
Alaskan crude

Base conv
High conv
Low conv
Max dist

The Products

C3P
C4P
NAP
4AA
4 BA
4 CA
4DA
5AA
5BB
5CA
5 CB
5CC
5DA
5DB
VGO
VRD
CKA
CKB
CKC
CKD
1A6
1A7
1A8
1A9
NC4
IC4
NGF
MIS
KWH
BTU
LAB
OPC
INV

C3 LPG
C4 LPG
Naphtha
Regular gasoline
Premium gasoline
Low-lead gasoline
Lead-free gasoline
JP-4 jet fuel
Jet A jet fuel
Diesel (No. 1)
No. 2 fuel oil
Diesel (No. 2)
High sulfur No. 6
Low sulfur No. 6
Vacuum gas oil
Vac residue
Coke (low sulfur)
Coke (high sulfur)
Coke (California crude)
Coke (Alaskan crude)
Benzene
Toluene
Mixed xylenes
\(\mathrm{C}_{9}+\) aromatics
Normal butanes
Isobutanes
Natural gasoline
Miscellaneous products
Purchased electric power
Net fuel required
Labor
Operating costs
Investments

\section*{B.2.2 Variable Names}
(1) Products

XXYYYZ
\[
\begin{aligned}
X X= & \text { PAD District } \\
Y Y Y= & \text { Product code } \\
Z= & \text { Disposition code }: \text { blank }=\text { sum of DISTXX production } \\
& C=\text { Dist } X X \text { demand }
\end{aligned}
\]
(2) Crudes
```
XXCYIN = Sum of crude of type N to Dist XX
    XX = PAD District
        Y = A Sweet crude
            B Sour crude
            C California heavy crude
            D Alaskan North Slope crude
```
Other inputs
XXYYYY \(=\) Sum of input YYYY to Dist \(X X\)
    YYYY \(=\) NGFN \(=\) Nat gasoline
                            TNC4 \(=\mathrm{n}\)-Butane
                            TIC4 = i-Butane
(3) Refinery types
XXCYZZZ
```
    XX = Dist. No.
        Y = A Sweet crude
            B Sour crude
            C California heavy crude
            D Alaskan North Slope crude
        ZZZ = LBA = Large, Base
            LLC = Large, Low Conversion
            LHC = Large, High Conversion
            S-- = Ditto for small refinery
            M-- = Ditto for medium refinery
XXTLRG = Total large refinery capacity in district XX
NXTSML = Ditto small refinery
```
(4) Incremental refinery processes

XXDLHCY = Hydrocracking
\(\mathrm{XX}=\) District No.
DLHC = Diesel Hydrocracking
\(Y=1\), Shift existing HC capacity from maximum gasoline operation to maximum distillate operation
\(Y=2\), New HC capacity for distillate production
XXDLHTI = Hydrotreating No. 2 to diesel fuel cetane specification XXDSHTY \(=\) Hydrodesulfurization of motor fuel
\(Y=A, H D S\) light gasoline and FCC feed for 100 ppm S , maximum
\(\mathrm{Y}=\mathrm{C}\), HDS diesel fuel to 200 ppm S , maximum
XXZPREM \(=\) Option to shift premium gasoline to unleaded with credit for TEL saved

XX5CXX \(=\) Option to shift marginal No. 2 fuel oil to No. 1
diesel pool by use of cetane-improving additive
XX5BBX \(=\) Option to blend incremental Jet \(A\) fuel out of No. 1
diesel and No. 2 fuel oil
(5) Inter-PAD transfers, by product

XXYYYZZK
\(X X=\) PAD Dist source of product
YYY = Product code
\[
\begin{aligned}
\mathrm{ZZ}= & \mathrm{PAD} \text { Dist destination of product } \\
\mathrm{K}= & \mathrm{P}=\text { pipeline } \\
& \mathrm{M}=\text { marine }
\end{aligned}
\]
(6) Total transfers, by transport mode

XXTPIPYY = TOTAL volume of product moved from Dist XX to Dist YY by pipeline

XXTMARYY = Ditto marine
(7) Sub-cost function totals
\(X X \emptyset B J T=\) Total cost of refining and transportation in District XX, MS/CD

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
.293500000 \\
.091300000 \\
\(-1.000000000\)
\end{tabular} & \begin{tabular}{l}
P LOCALBA \\
- locashc \\
- \(104 A A\)
\end{tabular} \\
\hline \[
\begin{array}{r}
.077000000 \\
-091300000 \\
-1.000000000
\end{array}
\] & \[
\begin{aligned}
& P \text { 10CALBA } \\
& P \text { 10CASHC } \\
& P ~ 104 C A
\end{aligned}
\] \\
\hline \begin{tabular}{l}
.056000000 \\
.091300000 \\
\(-1.000000000\)
\end{tabular} & \[
\begin{array}{ll}
P & 10 C A L B A \\
P & 10 C A S H C \\
P & 1040 A
\end{array}
\] \\
\hline 1.000000000 & P 1040A \\
\hline \[
\begin{array}{r}
.007000000 \\
.010000000
\end{array}
\] & \begin{tabular}{l}
P localba \\
P \(10 C A S H C\)
\end{tabular} \\
\hline \begin{tabular}{l}
.032000000 \\
.050000000
\end{tabular} & \begin{tabular}{l}
P localba \\
P 10CASMC
\end{tabular} \\
\hline \[
\begin{array}{r}
.097000000 \\
\bullet 150000000 \\
1.000000000
\end{array}
\] & \[
\begin{array}{ll}
P & 10 C A L B A \\
P & 10 C A S H C \\
P & 100 L H I
\end{array}
\] \\
\hline \[
\begin{array}{r}
.195000000 \\
.155000000 \\
-1.000000000
\end{array}
\] & \[
\begin{aligned}
& P \text { 10CALBA } \\
& P \text { 10CASMC } \\
& P \text { 109CB }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
.012000000 \\
.133006000
\end{tabular} & \[
\begin{aligned}
& P \text { 10CALBA } \\
& P \text { 1OCASHC }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
.061000000 \\
.070000000
\end{tabular} & P LOCALBA
P LOCASHC \\
\hline \[
\begin{array}{r}
.052600000 \\
.070000000 \\
-1.000000000
\end{array}
\] & \[
\begin{array}{ll}
P & 10 C A L B A \\
P & 10 C A S H C \\
P & 10508
\end{array}
\] \\
\hline \[
\begin{array}{r}
.037000000 \\
.035000000
\end{array}
\] & \begin{tabular}{l}
P localba \\
P 1OCASHC
\end{tabular} \\
\hline -1.000000000 & \(P\) 10CKA \\
\hline -1.00600c000 & P 10CK8 \\
\hline .001420000 & P localba \\
\hline
\end{tabular}
\begin{tabular}{r}
.152130000 \\
-115700000 \\
-.300303000 \\
\(-10 C A S B A\) \\
\\
\hline
\end{tabular}
.160400000 P \(10 C 8 L H C\)
\(.0497 C G O C O\)
VOSVJOT d OOUCCOZSO
JHI8JOt d \(00000 C O B 1^{\circ}\) -150300000 \& 100 LHCZ 1.000500000 P 104CA JH78j0t d OOOOOS400. .910000000 P LOCASBA
.032000000 P 10CBLHC .050700000 P ICCASBA
1.0000 .000000 P 1098BX
.050500000 10CALHC
 -000000000 P 105日8x
.179300000 10C8LHC
-175000000 10CASBA
-005000000 P 100SHTA
\begin{tabular}{l}
.012000000 10C8LHC \\
.133000000 10CAS \\
\hline 1
\end{tabular}
.039000000 P 10CBLHC
.070000000 P 10CAS8A
 -.022000000 - 100LHT1 .049400000 P 10CBLHC
.035000000 P 10CASBA
.003600000 P 10 CALLC .004503000 P ILCBLHC
.001400000 P ICCBLHC
 -1497000n0 P ICCBLLC


VVSOT \& OOCOOOOOO 1
 .007000000 LOCALLC
\(-1.00000 C O D O\) PCSAA
 -1.0000c0030 p 10588
j178jot d 00000 cotz



 -1.006000000 p 1350A
\begin{tabular}{l}
.039000000 P \(10 C B L L C\) \\
.039000000 P \(10 C A L L C\) \\
\hline
\end{tabular} -. 456000000 P 100 LHC 1
\(\begin{array}{r}.046000000 \text { P } 1 C C O L L C \\ .037 U 00000 \\ \hline\end{array}\)


. ocssuovije p acballe
. sorjujuia p accolle 3179071 d venerctoce

- CBBOLOCJO P IOCBLBA
 1.OCOOLUOUO X 102PREA

\section*{\(1.6 C 0000006\)
-1.000000060
\(P\)}
. 007000000 P \(10 C B L H A\) \(\begin{array}{ll}3 & 4 \\ 3 & 1 \\ 3 & 0 \\ 9 & 9 \\ 2 & 2 \\ 3 & 0 \\ 3 & 0 \\ 3 & 0 \\ 3 & 0 \\ 3 & 0 \\ 3 & 2 \\ 3 & 0\end{array}\)

6
0
0
0
0
-
\(a\)
0
0
0
0
0
2
\(m\)
0
0 4
\(z\)
3
4
0
0
2
2
30
30
30
\(=0\)
2

4
0
0
0
0
0
\(a\)
0
0
0
0
0
0
0
0

.177100000 P \(10 C B L B A\)
\(.145 J C O U Q U\) P \(10 C A L H C\)

 \(u\)
\(u\)
u
0
0
 -C70000000 P 10CASLC
\(.0390 C 0000\) p \(10 C 8 L A A\) 4
1
3
3
0
0
2
0
3
3
3
0
0
3
 - C35200000 P 1 ULASLC



408
\(N 00\)
00
08
60
088
140
00
\(n\)
\(\sim\)
\(\sim\)
0
0
0
8
8
0
2
0
0
4
\(\begin{array}{rl}\cdots & 0 \\ \cdots & 0 \\ 0 & 0 \\ 0 & 0 \\ c & 0 \\ 3 & 0 \\ 0 & 0 \\ 4 & 0 \\ 3 & 0\end{array}\) 0
0
0
0
0
0
0
0

2
\(\sim\)
0
0
0
0
0
0
1
\(w\)
0
呺


 \(\begin{array}{rr}2 & 3 \\ \because 0 \\ \because & 3 \\ \vdots & 0 \\ i & 3 \\ \because & 0 \\ \vdots & 0\end{array}\) \(\leadsto \because\)
\(\vdots\)
\(\because\)
\(\because\)
\(\vdots\)
\(\vdots\) 00
\(N 0\)
0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
0 3
3
2
23
23
23
3
3
0
0
 IUCKgP
RFS LIJ:
Nh, UP: id SHY
IT SHY
dPJGCI

IOVGUP
RHS LU:
RHS UP\& \(\frac{2}{5}\)
\(\frac{19}{2}\) 1050 AP
RHS LJB RHS LJ
RHS GP: \(103 D B P\)
RHS LO
OMS LU \(\operatorname{JOCAP}\)
RHS LO:
RHS UP:
 105 CdP

RHS
1OVRDP


Ul \(\Delta u r\)
nts ()
－000710000 P 10CALAA
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { JHSV90T } \\
& \text { VOTV50T }
\end{aligned}
\]} & 1 & 00000084T＊2 \\
\hline & d & 000000254＊E \\
\hline & & － \\
\hline 9HS Y 00 L & \(d\) & \(000002800^{\circ}\) \\
\hline ข®าขว0т & d & 000008609 \\
\hline
\end{tabular}
VHHSOOT OOOOOOOGO L
.050700000 IOCALAA
.031400000 1OCASHC
\(.00 B 000000\) P \(1005 H T C\)
.057170000 P \(10 C A L B A\)
.035500000 P 10 CASHC
VGIVJOT \(000000000^{\circ} \mathrm{G}\)
VIHSOOT d \(000000009^{\circ}\)
SHSVDOT d \(000000000^{\circ} \mathrm{G}\)

\(=0\)
2
0
0
0
0
0
0
0
0
0
.606000000 P \(1005 H T A\)
1.000000000 10LNY
HTOAEJOZ \(000000000^{\circ}\) T
AYOAEJOT \(000000000^{\circ}\) T
H2OdEJOT \(000000000^{\circ}\) T -1.000000000 20C3P01P
-1.000000000 SOC3PO1R
1.000000000 10C3PC
H2OdtSot d \(000000000^{\circ} \mathrm{T}\)

3
20
50
00
60
ㄹ
00
20
2
2
20
0


H2OVOSOT

104BAC

000700000 P \(10 C 8 L H C\)

\title{
VESVJOT \(000002800^{\circ}\)
SHTBSOT \(00000 \mathrm{CBO} 0^{\circ}\)
}


VIHSOOT d OOOOOC910

गH7日j0 \(000000000^{\circ} \mathrm{G}\)
THHT00T \＆ \(000000005^{\circ}\)

NTHSOT 00000C000 9
THHTOOT OOOOOCOTG＊
d 50 dejot \(000000000^{\circ}\) T



 \(\begin{array}{ll}2 & 0 \\ 0 & 0 \\ 2 & 2 \\ 2 & 2 \\ 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 8 \\ 2 & 6 \\ 0 & 8 \\ 6 & 8 \\ i\end{array}\)
\(a\)
4
0
0
0
0
0
0
0
0
0
0
0
0
0
-
-1
 -1.200300000 P FO4BA01P

\begin{tabular}{|c|c|c|}
\hline 5718501 & \(d\) & 0000¢00¢0 \\
\hline HMyOT & d & 900000900．1－ \\
\hline T3H709T & d & 9005003［ \({ }^{\circ} \mathrm{E}\) E \\
\hline 277v53T & \(d\) & 0cJフ0295ce \\
\hline 517850 t & d & 000005826 \({ }^{\circ} \mathrm{E}\) \\
\hline STHOT & \(d\) & nnの000000＊－ \\
\hline コ11vวロโ & d & \(97093+100^{\circ}\) \\
\hline 9178901 & \(d\) & CCOCOL200＊ \\
\hline 277851 & \(\lambda\) & 000526T00． \\
\hline
\end{tabular}
 23H7001 \(7000000640^{\circ}-\)

\(577 v 201\) d \(000090300^{\circ} \mathrm{G}\)
5778501 d \(009900700^{\circ} \mathrm{c}\)
QV701 d \(000000000^{\circ} \mathrm{T}\)
IJH700t
\(27000000208^{\circ}\)
J17V30t d 0000007 It
2178j0t d 00000TEIt。

N98TOT \(000000060^{\circ} 4\)
\(23 H 1001 T 000000001^{\circ}\)

\(a=\)
3
3
2
0
0
0
0
\(m\)
0
0
0
0
0
0
0
0
0
0
0
0
HJ9dYJつt \(000000000^{\circ} \mathrm{T}\)

\(\begin{array}{ll}2 & 5 \\ 3 & 0 \\ 2 & 0 \\ 4 & 5 \\ 0 & 0 \\ 4 & 4 \\ 2 & 6 \\ 0 & 0 \\ 0 & 3 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 1\end{array}\)
\(\begin{array}{ll}2 \pi \\ 4 & \pi \\ 0 & 2 \\ 2 & 2 \\ 2 & 2 \\ 0 & 2 \\ 0 & 4 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 3 \\ 0 & 3 \\ 0 & 3 \\ 0 & 2 \\ 0 & 0 \\ 0 & 0\end{array}\) \(x a\)
\(\pi\)
3
3 0
\(\begin{array}{ll}5 & I \\ 4 & \\ 0 & 2 \\ 0 & 0 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 3 \\ 0 & 3 \\ 0 & 3 \\ 0 & 3 \\ 0 & 3 \\ 0 & 3 \\ 0 & 1\end{array}\) 20
30
3
0
0
2
2
4
20
3
0
3
3
3
3
3
3
3
3
0 \begin{tabular}{l}
2 \\
3 \\
3 \\
4 \\
0 \\
5 \\
5 \\
2 \\
0 \\
0 \\
0 \\
3 \\
3 \\
3 \\
3 \\
3 \\
3 \\
3 \\
3 \\
3 \\
0 \\
\hdashline
\end{tabular} HITV8ヶ04 d \(90000 \cap 000^{\circ}\) I



p IOCBLBA

3． 12000 CUOO P \(100 S H T C\)


\begin{tabular}{|c|}
\hline \multirow[t]{17}{*}{} \\
\hline \end{tabular}
4
0
0
0
0
0
0
0
0
0
3
3
0
0
0
0
0
0
0
0

\(\begin{array}{ll}4 & 0 \\ 4 & 2 \\ 5 & = \\ 0 & 3 \\ 0 & 2 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 3 \\ 0 & 0 \\ 0 & 0 \\ 3 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\)
2
2
0
0
2
0
30
0
0
0
0
0
0
0
0
1


-1.000000000 P 50C3PU1P
-1.000000000 P 10C4P



－ 50.30
\(\begin{array}{ll}0 & \\ 0 & \\ 3 & \\ 0 & \\ 3 & 0 \\ 3 & 1 \\ 0 & \end{array}\)

EO
\(0.020 c u 0060\)
0.00000030

6
n
0
0
0
0
0
13
3
0
0
1
0
0
0
0
30
-30
00
08
20
008
100
30
0
0
0
0
3
0
0
0
0
4
4
0
0
003
m 00
0
30
00
00
008
40
\(\infty 0\)
\(m\)
0
0
0
0
0
0
0
0
0
0
0
0
0
20
30
30
30
30
030
4
30
0


\section*{OLABR
RHS LUA
RHS UP：}

\section*{ULPCR
RHS LUE}
\(101 A V R\)
RHS LO：
1OC3PO
RHS \(10:\)
10C \＆PO
KHS LU
RHS UR：
\(\begin{array}{ll}0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 5 \\ 0 & 1\end{array}\)
\(104 E A J\)
RHS LJ：
RFS JAB
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(104 C A D\) & \(\because 0.3\) & －\＆otujicjun & \(r\) & 1r4ca & 1．j06゙vijucu & \(P\) & 104CAOFA & 1.000300000 & & 104CAOFP & 1.000000000 & P & 104CA02A \\
\hline RhS Lu： & －．0ごつしい0つく0 & \＆－vucuccious & \(p\) & \(\triangle u 4 C A \cup<P\) & 1.00000000 & \(P\) & 1 CaCAUBM & 1.000720000 & n & 1C4CAO3P & 1.000000000 & P & 104CA04P \\
\hline RHS UP： & c．jujusjoun & －．luscicos & \(p\) & 104CALこM & 1.006000600 & \(\stackrel{+}{ }\) & \(104 C A L 5 P\) & －1．0＾0， 02030 & P & 204CA01A & －1．0C0000000 & P & 204CA01P \\
\hline & & －10かcublculo & \(p\) & 3u4Caúa & －1．06000 J0 30 & P & \(304 C A 01 P\) & －1．000200030 & P & \(504 C A 01 P\) & －1．000000000 & P & \(504 C A 01 H\) \\
\hline & & －1．cicouvuio & P & bG4CACIP & －1．0GCOCJ000 & P & FO4CACJA & －1．000500000 & P & F04CACIP & 1.000000000 & P & 104CAC \\
\hline 104CAD & EO 44 & －－ciscuucouo & 8 & 1040a & 1.00000000 & P & 10404OFM & 1.000500000 & \(p\) & 1040ACFP & 1.000000000 & \(P\) & 1040402A \\
\hline RHS LU： & 0.0 OJOJJ00G & 1．icouocujo & \(p\) & 1040AU2P & 1．JOCU00000 & \(P\) & 1040A03H & 1.000300000 & P & 1040403P & 1．OGCOOCOCO & P & 1040A04P \\
\hline RHS UP： & c．ocoucjoug & 1．© ¢ ujuuuvu & － & 1jムDACSN & 1．joccccudo & P & 1040ACSP & －1．000000000 & P & 2040A01M & －1．000000000 & P & 2040A01P \\
\hline & & －1．LlU0くC000 & P & 3C40A01A & －1．000000000 & P & 3040A01P & \(-1.000300000\) & P & 4040A01P & － 1.000000000 & P & 5020 AOLH \\
\hline & & －1．ulujcojus & P & 5C4DAJIP & －1．00ciovouv & P & FJ40A01M & －1．000300000 & P & FGGDADIP & \(2.0 C C O 60000\) & \(P\) & 1040AC \\
\hline IOSCASD & \(50 \quad 45\) & －1．0COU0cogo & \(p\) & 104AAC & \(-1.000000000\) & \(P\) & 104bac & \(-1.000000000\) & \(\rho\) & 104CAC & －1．000000000 & \(\bigcirc\) & \(104 D A C\) \\
\hline RHS LJA & C．unsccouso & 1．しいざうUくイJo & X & IOTGASC & & & & & & & & & \\
\hline RHS UP： & 0.000000000 & & & & & & & & & & & & \\
\hline LOSAAO & EG 46 & －10CuJüucivo & － & l05AA & 1.000000000 & \(P\) & SCSAAOFA & 1.000000000 & P & 105AAOFP & 1.000000000 & P & 105AA02H \\
\hline RHS LJ： & 0.300050000 & 1．CCwoticuju & P & lusamuzp & \(1.300006 i 00\) & P & 105AA03M & 1.000000000 & P & 105AA03P & 1.000000000 & P & 105AA04P \\
\hline RHS UP： & \(0.600 C C O O O O\) & 1．CCOJCCOJo & P & 105AA05M & 1.000000000 & P & 105AAC5P & －1．000300000 & P & 205AA01A & －1．000000000 & P & 205AA01P \\
\hline & & －1．しうこうこうucu & P & 3USAAD1A & －1．0000000J0 & \(\stackrel{+}{8}\) & 305AA01P & －1．000300000 & P & GCBAAOIP & －1．000000000 & P & 505AA01M \\
\hline & & －1．CC（i）JOU6 & \(\vdash\) & SUSAAO1P & \(-8.006006000\) & P & FOSAAOIM & －1．000000000 & P & F05AA01P & 1.000000000 & 1 & 105AAC \\
\hline 105880 & EO 47 & －1．0C00000co & \(p\) & 103世日 & 1.000000000 & \(P\) & 105880FA & 1.000300000 & P & 10580078 & 1.000000000 & P & 10508024 \\
\hline RHS LO： & 0.000005000 & 1．0ヘJJJ0000 & \(\stackrel{\rightharpoonup}{*}\) & 1053862P & 1.004000000 & P & 1058803 H & 1.000300000 & P & \(1058803 P\) & 1.000000000 & P & \(1058804 P\) \\
\hline RHS UP： & \(0.0000 C O O C O\) & 1． 000000000 & － & iC5B805M & 1．00C000030 & P & 1058805 P & －1．000000000 & P & 2050801\％ & \(-1.000000000\) & P & 2058801P \\
\hline & & －1．000000000 & P & 3心よひ日じん & －1．030006030 & P & 30588018 & －1．000000000 & P & 4058801 P & －1．000000000 & P & 5058801月 \\
\hline & & －1．Cuvuoljou & P & SOSB801P & －1．00C000000 & \(P\) & F058801M & －1．000000000 & P & F058301P & 1.000000000 & 4 & 105B BC \\
\hline LOSCAD & E0 4b & －1．CUV000c00 & \(P\) & 105CA & 1.000000000 & P & 105CAOFA & 1.000000000 & \(p\) & 105CA OFP & 1.000000000 & \(p\) & 105CA02H \\
\hline RHS LUS & 0.003050000 & \(1.0000060 J 0\) & \(p\) & luscauzp & 1.000000000 & P & 105CA03M & \＄．000000000 & P & 105CA03P & 1.000000000 & P & 105CA04P \\
\hline RHS UP： & \(0.0 \hat{3005000 ~}\) & \(1 . C O J O 0 C O O U\) & P & 1J5Ca05M & 1.000000000 & P & 105CAC5P & －1．000000000 & P & 205CA01A & －1．000000000 & P & 205CAOIP \\
\hline & & －1．000500v03 & P & 3GSCAUSA & －1．00CU0C000 & P & \(305 C A 01 P\) & －1，000000000 & P & 405Ca01P & －1．000000000 & P & \(505 C A O 1 M\) \\
\hline & & －1．cucovoout & P & SOBCAC1P & \(-1.000000000\) & P & FOSCAOIN & －1．000200000 & P & FOSCA01P & 1.006006000 & & 105 CAC \\
\hline & & 1．こiuJcuvoc & 1 & 105CCC & & & & & & & & & \\
\hline 10bOLIM & GE 49 & －．7s0ucuuvo & 1 & IUJCAC & 1.000000000 & 4 & 105CCC & & & & & & \\
\hline RHS LO： & 0.000000000 & & & & & & & & & & & & \\
\hline RHS UP： & －INF & & & & & & & & & & & & \\
\hline 105 CBD & to sc & －1．ccucciocoo & \(p\) & 1CbCb & 1．0060006CO & \(\stackrel{8}{8}\) & 105CBOF & 1.000000000 & P & 10568088 & 1.000000000 & P & \(105 C 802 \mathrm{H}\) \\
\hline RHS LU： & 0．03000， 0000 & 1．CleJonous & \(p\) & 1çcouz & \(1 . J C L C 600 こ 0 ~\) & P & 105 CBO CH & 1.000000000 & P & 105CB03P & 1.000000000 & P & \(105 \mathrm{CB04P}\) \\
\hline RNS UR： & 0.000003 uc & 1．0ci）clovo & \(p\) & 1u5CBJjM & 1．Joulocooo & P & 103CBOsP & －1．000000000 & \(p\) & 205C801M & －1．060000000 & P & \(205 C\) B01P \\
\hline & & －1．0C0000000 & P & jogCas1m & －1．0．jc000030 & P & \(303 C\) BC1P & －1．000300000 & P & \(405 C 801 P\) & －1．000000000 & P & 505CB01M \\
\hline & & －1．cocsocuuo & \(P\) & go5CBCsp & \(-1.006000030\) & P & F05CB01M & －1．000300000 & P & FOSCBOLP & 1.000000000 & 1 & 105 CBC \\
\hline 10VGOD & EQ 31 & －1．6しJJcococ & P & 10VG0 & \(1.0000 c c c o o\) & \(P\) & JOVGOCFA & 1.000300000 & \(p\) & 10y6002 H & 1.000000000 & \(p\) & IOVG003M \\
\hline Res Los & 0．0こうJúsula & 1．COUJOCOUJ & P & LOVGUGJA & －1．00coccujo & P & 2GVGOC1A & －1．000000000 & 8 & 30VG001H & 1.000000000 & P & 10VGOC \\
\hline RHS UP： & 0.000000060 & & & & & & & & & & & & \\
\hline 105 DAD & EO 22 & －1．0cúoucooj & P & 1050A & 1.000000000 & \(P\) & IOSDAOFA & 1.000000000 & \(p\) & 1050402月 & 1.000000000 & P & 1050A03M \\
\hline khj Los & 0.000 Jujocu & 1．COCJOUCOO & P & 1050AしうM & －1．000000000 & 8 & 20bDa01m & －1．000300000 & P & 3050A01H & －1．000000000 & P & 5050A01\％ \\
\hline RHS UP： & c．00uJCJOCO & －1．cuovunoui & P & トごち0Aula & 1.006000000 & L & 1050 AC & & & & & & \\
\hline 103CLO & ह0 ：3 & －1．COUOCOVOO & P & 1 C Ot & 1.000000000 & \(P\) & 105080FA & 1．003300000 & P & 1050802n & 1.000000000 & P & 1050803 H \\
\hline RHS Las & 0．00うciosec & 1．⿰氵Cちろuccuo & P & 1050BC5M & －1．000600000 & P & 20908 Cl & －1．000300000 & \(P\) & 3050801 N & －1．000000000 & P & 5050801H \\
\hline KHS UP： & \(0.0003060 C 0\) & －1．060006000 & P & f050日U14 & \(1.00 C 000006\) & 1 & 10508 C & & & & & & \\
\hline IOVRDO & EC 34 & －1．jくcusoccoo & P & 10 VRD & 1．000060000 & P & IOVROC & & & & & & \\
\hline RHS L＇J： & し．UC）ucucoc & & & & & & & & & & & & \\
\hline RHS UP： &  & & & & & & & & & & & & \\
\hline 10CKAD & ＋ \(0 \quad \therefore\) ． & －1．0くら06．．． & r & \(1: \mathrm{fkn}\) & 1．anercocos & \(\bigcirc\) & i｀fkar & & & & & & \\
\hline
\end{tabular}
\(\begin{array}{ll}\text { Kx9602 } & 000000260^{\circ}- \\ 0 v 702 & 0 \\ 000001500^{\circ}- \\ 45 N 102 & \text { o } 000000006^{\circ} 9-\end{array}\)
1.000000000 B 2075 HL 1
\(\begin{array}{rl}-1.000000000 & 20 \mathrm{CALBA} \\ 1.000000000 & 301 R 6 A\end{array}\)
-1.000000000 20CBLHC -.018500000 20CBLHC -.021400000 z0CASBA
-1.000000000 20GALLC -.013270000 20CELHC
\(=.013270000\) 20CBLHC
-.014000000 zOCASBA
-.013270000 20CBLHC
\(=.0148000 \mathrm{CO}\) 20CASBA
\(.02480 C 000\) P 20CALBA
.023000000 P 20CASHC
.045460000 P 20CAL8A
.005900000 P 20CASHC
V8าv902 d 0,00260510.
-8.000000000 P 20CASLC

-1.000000000 P 20CBLLC
377502
3778502
\(-1,000000000\) 2CCALHC
-1.000000000 3OCASLC
-.013300000 P 20CBLLC
\(=.013300000\) 2CCALLC
-.001400000 200SHIA
 -.013300000 20CALLC
-.007090300 20DSHTA



2н 1нכ:


\begin{tabular}{|c|c|c|}
\hline V¢SV302 & d & \(000000000^{\circ} \mathrm{S}\) \\
\hline 3H 18502 & d & \(000000000^{\circ} \mathrm{G}\) \\
\hline 3N3ง2 & d & \(060000000 \%\) - \\
\hline 2 341002 & 7 & \(000000560^{\circ}-\) \\
\hline V85v502 & d & \(000086150{ }^{\circ}\) \\
\hline गH78502 & \(d\) & C0000 \(2690^{\circ}\) \\
\hline V1HS002 & d & \(00000 \cos 0^{\circ}\) \\
\hline 785VJ02 & d & 00005CL50. \\
\hline 3H7 302 & \(d\) & \(000068090^{\circ}\) \\
\hline 11H7002 & 1 & 00000 C990 \\
\hline V8SV302 & d & \(000006629^{\circ} \mathrm{Z}\) \\
\hline วH78302 & d & \(000000059^{\circ} 9\) \\
\hline VOSV302 & 4 & \(00000 \angle E T 0^{\circ}\) \\
\hline 2H78302 & d & \(000000510^{\circ}\) \\
\hline 2H 18202 & \(d\) & \(000002000^{\circ}\) \\
\hline 2H18502 & d & \(000098000^{\circ}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline -0ucgtuvoo & \(P\) & 20CBLAC \\
\hline .001920000 & \(p\) & 20CBLLC \\
\hline . \(014000 C 00\) & \(p\) & 20CBLLC \\
\hline . 01400060 & P & 20CAL1C \\
\hline -1.00C000000 & P & 20M1S \\
\hline 4.240000050 & \(P\) & 20CBLCC \\
\hline 3.790000000 & P & 20CALLC \\
\hline 33.16064000 & \(P\) & 20DLHC1 \\
\hline -1.000000000 & \(P\) & 20KHH \\
\hline
\end{tabular}

-UC1420CJO P \(2 U C B L B A\)
\(-1 . C\) CUCUJUU \(201 A B\)


3.120000000 P 200 SH C
- O584600v0 P 20CBLBA \(.05 E 550000\) P \(20 C A L N C\)
\(-1 . C O 000 G 000\) P \(20 B T U\)
 \(u\)
1
0
0
0
0
0
\(N\) .016000000 P 200 SHTA 40
0
0
0
0
0
\(N\)
2
0
0
0
0
0
0
0
0
0
0
0
0
 400
10
0
0
0
30
\(n\)
0

 \(a\)
4
4
0 0




\begin{tabular}{r}
4 \\
\multirow{2}{3}{\(=\)} \\
0 \\
0 \\
3 \\
3 \\
0 \\
\(c\) \\
0 \\
\(i\) \\
3 \\
3 \\
3
\end{tabular}



730
300
308
30
30
0
3
3

3
0
0
3
0
0
0
0
03
4
0
0
0
0
3
3
3
0
0
40
030
0
0
2
03
40
0
03
00
00
00
30
30
00
00
0
00
00
00
00
00
00
10
0
0
30
030
00
20
0
0
30
3
3
3
0 3
3
0
0
0
0
6
3
3
30
0
0


\section*{200PCR
RHS LJ
RHS UP:} 2OIAVR
RHS LO:
RHS UP: RHS LQ:
RHS UP:

\section*{2OC 3PD
RHS LJ:
RHS UP:}

2OC \(4 P D\)
RHJ LJ:
RHS UP:

E. 60
\(0.0030060 C C\)
S. JJENOOOCU

430
030
00
00
30
208
10
EO 40
C. 000030000
0.002300060

60
6.001005000
0.000000060
0
3
20
0
0
0
0
8
0
0
4

> 2OK WHR
RHS LO:
RHS UP: 20K WHR

2OMISP
RMS LQ:
RMS UP:
201A7P
RHS LO:
RHS UP:
2OLAdP
RHS LU:
RHS UP:
208 TUR
RHS LOA
RHS UP:

\section*{RHS UP:}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 204AAD & ta lid & － 1.0 （uJccubd & \({ }^{\rho}\) & 2，14AA & －1．Jncicu0000 & P & 104AAC2A & \(-1.000300000\) & P & 104AA02P & 1.000000000 & P & \(204 A A O F M\) \\
\hline KHS LJO & c．COCOCOOCO & 1．couJtu－lu & P & 2U4AALFP & 1．UJCC．CJCuO & P & 2C4AA01H & 1.003307200 & P & 264AA01P & 1.000000000 & P & 204AA03H \\
\hline \multirow[t]{3}{*}{RHS UP：} & 0．0 unvenoco & 1．0lbuulcio & P & 2J4AAOJP & 1.000000000 & P & ZCGAAC4P & 1．0c03）0000 & \(p\) & 204AA05M & 1.000000600 & P & 204AA05P \\
\hline & & －－－ubjrooco & P & \(304 A A C 2 M\) & －1．000000000 & P & 304AA02P & －1．000000000 & P & GOGAA02P & －1．060006000 & P & 504AA02m \\
\hline & & －1． & P & SO4AAJ2P & \(-1.000006000\) & P & FOSAAO2M & －1．0000リ0000 & P & FO\＆AA02P & 1.000000000 & P & 204AAC \\
\hline 204CAO & io luz & －J．alcuuduci & \(P\) & \(204 C A\) & －1．0CCU00000 & P & 104CAU2M & －1．000200000 & P & 104CA02P & 1.000000000 & \(P\) & 204CAOFH \\
\hline RHS LOI &  & 1．OCOJOCuCu & \(p\) & 2C\＆CAUFP & 1．Jccueccoo & P & 2C4CAOIM & 1.000000000 & P & 204CA01P & 1.000000000 & P & \(204 C A 03 H\) \\
\hline \multirow[t]{3}{*}{RHS UPI} & \(0.0000000<0\) & 1．COOOOCOUO & P & 204CA03P & \(1.00 C O C U 030\) & P & 204CAC4P & 1.300300000 & P & 204CA05M & 1.660000000 & P & 204CA05P \\
\hline & & －1．ccoouccua & P & 304CAC2H & －1．000000000 & P & 304CA02P & －1．000300000 & P & 404CA02P & －1．000000000 & P & 504CA02月 \\
\hline & & －1．CCOOOO000 & P & 504CA02P & －1．000000000 & P & FOSCA02H & －1．000000000 & P & FOSCA02P & 1．000000000 & P & \(204 C A C\) \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& 204040 \\
& \text { RHS LOA } \\
& \text { RHS UPA }
\end{aligned}
\]} & EO 103 & －1．000300000 & P & 2040A & －1．00000C000 & P & 1040A02 \({ }^{\text {H }}\) & －1．000500000 & P & 1040AC2P & 1.000300000 & \(P\) & 2040 AOFH \\
\hline & 0.000 cojeco & 1． 00000000 & P & 2C4DAOFP & 1．OOCOOCOOO & P & 20404014 & 1．000000000 & \(P\) & 2040A01P & 1.000000000 & P & 2040A03H \\
\hline & 0.000603000 & 1．0C0000060 & P & 2040AU3P & 1．OUCLOCOOO & P & 2040Aこ4P & 1.000000000 & P & 2040405月 & 1.000000000 & － & 2040A05P \\
\hline & & －1．0000000J0 & P & 3040AC2M & －1．000000000 & P & 3040A02P & \(-1.000000000\) & P & \(4040102 P\) & －1．000000000 & P & 5040A02年 \\
\hline & & －1．0く0さ00006 & P & 5040402P & －1，000000000 & P & F040A02 \({ }^{\text {a }}\) & －1．000000000 & P & FOSOA02P & 1.000000000 & P & 2040AC \\
\hline 20SGASO & EC 104 & －1．00000000． & P & 2J4AAC & －1．000000030 & P & 2048 AC & －1．000000000 & \(p\) & 204CAC & \(-1.000000000\) & P & 2040AC \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { RHS LOA } \\
& \text { RHS UP: }
\end{aligned}
\]} & 0.000000000 & \(1 . C 00500000\) & \(x\) & 20 TGASC & & & & & & & & & \\
\hline & 0.002000000 & & & & & & & & & & & & \\
\hline 205AAO & E0 lus & －1．CL0J00000 & P & 20bAA & －1．000060000 & \(P\) & 105AA02M & －1．000000000 & \(P\) & 105AA02P & 1.000000000 & P & 209AAOFH \\
\hline RHS LOP & 0.000000000 & 1.000000000 & P & 205AAGFP & 1．00CJOCOJC & P & 205AA01M & 1.000300000 & P & 205AAC1P & 1.000000000 & \(P\) & 205AA03M \\
\hline \multirow[t]{3}{*}{RHS UP：} & 0.000000000 & 1．OJ00CCOLO & P & 26SAAO3P & 1.000000500 & P & 205AAC4P & 1.000303000 & P & 205AA05M & 1．0C0000000 & P & 205AA05P \\
\hline & & －1．00C00C000 & P & 305AA02M & \(-1.00000000\) & P & 305AA02P & －1．000000000 & \(\bigcirc\) & 405AA02P & － 1.000000000 & P & SO5AA02M \\
\hline & & －1．000000000 & P & SC5AA02P & \[
-1.000000000
\] & P & FOSAA02M & －1．000000000 & P & FOSAA02P & 1.000000000 & L & 205AAC \\
\hline 205880 & EO lub & －1．ciccceoco & \(P\) & 20588 & －1．000000600 & P & 1058802 M & －1．000000000 & P & 20500028 & 1.000000000 & P & 2058808 M \\
\hline RHS LO： & 0.000600000 & 1.000000000 & P & 2058 BOFP & 1.000000000 & P & 20588C1M & 1.000900000 & P & \(2058801 P\) & 1.000000000 & P & 2058803M \\
\hline \multirow[t]{3}{*}{RMS UPI} & 0.000000000 & 1．000J00000 & P & 2058863P & 1.000000600 & P & 2058804P & 1.000303000 & P & 205B805A & 2．000006000 & － & 2058805 P \\
\hline & & －1．060j3cujos & P & 30588 C 2 M & \(-1.000000000\) & P & 3058802P & －1．000000000 & P & \(4058602 P\) & －1．000000000 & P & 5058802h \\
\hline & & －1．0C0000000 & P & 3038802 P & －1．000000000 & \(P\) & FO58802m & －1．000500000 & \(P\) & F058002P & 1.000000000 & 1 & 2058 BC \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& 205 C A O \\
& \text { RHS LO: } \\
& \text { RHS UP : }
\end{aligned}
\]} & E0 107 & \(-1.000000000\) & P & 205CA & －1．000000000 & P & 105CA02M & －1．000000000 & P & 105CA02P & 1.000000000 & P & 20 5CAOFM \\
\hline & 0.0000600 CO & 1．llovouojo & P & 20ECACFP & 1．00CC05000 & P & 205CAC1m & 1.000000000 & P & 205Ca01P & 1.000000000 & P & 205CA03M \\
\hline & 0.060000000 & 1.006000000 & P & 2USCAC3P & 1.000600000 & P & 205CA04P & 1.000000000 & P & 2C5CA05M & 1.000000000 & － & 205CA05P \\
\hline & & －1．000000000 & P & 305 CAE 2 M & －1．000000000 & P & 305CA02P & －1．000300000 & P & 405Ca02P & －1．000000000 & P & 505CA02M \\
\hline & & \[
\begin{aligned}
& \text { - 1. LUCUUCUOU } \\
& 1.000000000
\end{aligned}
\] & \[
\begin{aligned}
& p \\
& i
\end{aligned}
\] & \[
\begin{aligned}
& 505 C A 02 P \\
& 205 C C C
\end{aligned}
\] & \(-1.006000000\) & P & FOSCAC2m & －1．000300000 & － & FOSCA02P & 1.000000000 & 1 & 205CAC \\
\hline \multirow[t]{2}{*}{20SOLIM
RHS LOI} & GE lúz & －． 75000 uVJo & 1. & 205CAC & 1.000000000 & 1 & 205CC！ & & & & & & \\
\hline & U．OCuOCODCC & & & & & & & & & & & & \\
\hline RHS UP： & －INF & & & & & & & & & & & & \\
\hline 205CuO & EQ 169 & －1．0060C0003 & P & 265CB & －1．000000000 & \(P\) & \(105 \mathrm{CB02m}\) & －1．000500000 & \(p\) & 105C802P & 1．060000000 & P & \(205680 F M\) \\
\hline RHS LJI & 6．0030．0JOC0 & 1．LuOUNOLÍs & P & 20゙5CBuFp & 1.000000000 & \(P\) & 205CBC1M & 1.000500000 & \(\stackrel{P}{P}\) & 205CB01P & 1.000000000 & － & \(205 \mathrm{CB03M}\) \\
\hline \multirow[t]{3}{*}{RHS UP：} & 0.000060000 & 1．0coucceoo & \(p\) & 205CdG3P & 1． 206000000 & P & 205C8CsP & 1．000303000 & P & 205CB05M & 1．004000000 & P & 205C805P \\
\hline & & －1．00COCOOUO & P & \(305 C 8<2 \mathrm{H}\) & \(-1.000000000\) & P & 305C802P & －1．000300000 & P & 405C802P & －1．0000C0000 & P & 505C802H \\
\hline & & －1．000000000 & P & \(305 C B U 2 P\) & －1．000000000 & P & F05C802M & － 1.000000000 & P & F05CB02P & 1.000000000 & 1 & 205C BC \\
\hline \(20 \mathrm{VG00}\) & co 110 & －1．ecsuvodus & \(p\) & 2uvGu & －1．000060000 & \(\stackrel{P}{ }\) & 10VG002M & 1.000002000 & P & 2CVGOOFM & 1.000000000 & － & 20V6001n \\
\hline RHS LUS & 0.003000060 & d．lcouccuos & P & 2JVEOU3M & 1.000000000 & \(P\) & 2OVG005 \({ }^{\text {a }}\) & －1．000000000 & P & 30VG002M & 1.000000000 & － & 20VG0S \\
\hline GHS UP： & 0.000000060 & & & & & & & & & & & & \\
\hline 205040 & E0 111 & －1． 1.00000000 & \(P\) & 20504 & \(-1.000000000\) & P & 1050AC2M & 1.000500000 & P & \(205040 F H\) & 1.000000000 & P & 2050A0111 \\
\hline RHS LOS & 6．0）Juçceo & 1．C00000000 & － & 2U5OAO3M & 1.000000000 & P & 2050405H & \(-1.000000000\) & \(P\) & 3050402M & －1．000000000 & P & FOSDA02M \\
\hline RHS UP： & \(0.00 j 0 \mathrm{CLOUC}\) & 1.1 .000 vouco & 1 & 2050AC & & & & & & & & & \\
\hline 205000 & 50 1：2 & －10しjuvucbué & P & 205C日 & －1．304000000 & P & 1050日02閁 & 1．000000000 & P & 205080 Of & 1.000000000 & \(\stackrel{\circ}{ }\) & 2050801 M \\
\hline RMS LJA & O．COJJCOOLO & さ．しいごJしさ000 & P & 2．35OBCJA & 1.006000000 & P & 2C50803M & －1．000300000 & P & 3050802A & －1．000000000 & P & F050002m \\
\hline RHS LPA & C．OこJCくつuco & 1．C00006000 & 1 & 2050日C & & & & & & & & & \\
\hline
\end{tabular}


\(\begin{array}{r}.065000000 \text { P 30CBMBA } \\ .246900000 \text { p 30CBLLC } \\ .296500000 \text { 30CALCC } \\ .234200000 \\ -1.000000000 \text { 30CASLC } \\ \hline\end{array}\)

\begin{tabular}{|c|c|c|}
\hline E & d & 00 \\
\hline วา7vว0e & 1 & 00000082 \\
\hline 971990E & d & 0000500 \\
\hline vemojoe & \(d\) & 000000 \\
\hline 09A0E & 1 & 000 \\
\hline 1790e & ， & 00000 \\
\hline 2179308 & ， & 000000020 \\
\hline & & 00000012 \\
\hline
\end{tabular}
\begin{tabular}{l}
.042000000 \\
.028000000 \\
.028060000 \\
.049200000 \\
\hline
\end{tabular}

.0033000000 P 30CALBA
.003100000 POCASHC
0.000000000
-1.000000000

.006900000 30CBRBA
.065800000 30CBLLC
.005700000 30CALLC
.008700000 30CBH8A

 1.000000000 300LHT1 JHHVJOE d OOOOCOO日T．




 Veフojoe o \(000000820^{\circ}\) .047200000
-1.0000000000
 \begin{tabular}{l}
1 \\
3 \\
0 \\
0 \\
0 \\
0 \\
8 \\
\hline 0 \\
0 \\
\hline \\
\hline
\end{tabular} .063000000 P 3OCASHC

.002900000 30CBNAC
.0155000000 30COLBA
 .002400000 3OCALHC \begin{tabular}{l}
.0006900000 \\
.005730000 \\
.005700000 \\
\hline 0 30CAM BA \\
30CALHC
\end{tabular}


ว1\％

荎
4
y
0
0
0
0
0
0
这础

4
3
3
3
0
0
 TLH 100 d
VOSVJOE \(000000220^{\circ}-\)
\(0000090 \angle 0^{\circ}\)

 .065600600 P zOCASBA .002300000 30CAMLC
.004700000 30CALLC -1.000000000 P 30 CKA

 V®フVJ0e © \(00000 ヶ 200^{\circ}\) －1．00CcOCOCO 301a6
.000900000 30CAMLC
 sola
.006700600 30CAMLC
.200700000 3CCBMHC
.00500000





 30CASBA
VEHVJOE d OOONOREヶ？



 -1.000000000 P 3OVRD
VQHVJOE OOOOOEzOO．


.00590000 PJ 3UCAMBA
\(.00790 C 000\) P 30CBMLC
 ．001370000 30CDLBA
－GuEyCGUCO jocamaa
 －Lu®7OUUGO p jocamba

うHyHjre d roornazijo 80
00
0
0
0
0
0
0
0 0.0000000
\(E 0\)
0.000050000
0.000000000

308
\(=00\)
508
008
008
00
080
-880
080
080
080
008
00
\(301 A O P\)
RHS LOI
RHS UP：
301 ATP
QHS LOA
RHS UP：

\section*{301 AdP}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{\[
\begin{aligned}
& 30 \mathrm{KhHR} \\
& \text { RHS LU: } \\
& \text { RHS UP: }
\end{aligned}
\]} & \multirow[t]{6}{*}{\[
\begin{array}{r}
E 0 \quad 152 \\
0.6003 \operatorname{coO} 0 \\
0 . \operatorname{lossoJOCS}
\end{array}
\]} &  & P 30CAMGA & 3.163600000 & P & 3OCAMLC & 3.215000000 & P & 30CANHC & 3.370760000 & & 30CBABA \\
\hline & & 3.32 くフじ心じ & P 30CBMLC & 3.412500000 & P & 30CBMHC & 4.334500000 & P & 30CBLBA & 4.150700000 & & 30CBLLC \\
\hline & & 4.34910 cuj & \(P\) 3JCBLHC & 3.839700000 & P & 30CALBA & 3.9030 .0000 & P & 3OCALHC & 3.805600000 & P & 3ocallc \\
\hline & & 6.438000000 & P 30COLBA & 2．4830630GO & P & 3ccasba & 2.435120000 & P & 3CCASHC & 2.483000000 & P & 30CASLC \\
\hline & & 33.16 Ócuud & \(p 300 \mathrm{LHCL}\) & .068000000 & P & 300LHJ1 & 1.050000000 & P & 30USH8A & 3.120600000 & － & 300SMIC \\
\hline & & －1．cucúcuouo & P 30 KWH & & & & & & & & & \\
\hline \multirow[t]{6}{*}{\[
\begin{aligned}
& 308 \text { TUR } \\
& \text { RHS LO: } \\
& \text { RHS UP: }
\end{aligned}
\]} & \multirow[t]{6}{*}{\[
\begin{array}{r}
50 \quad 153 \\
0.500 . J 00005 \\
0.000000000
\end{array}
\]} & & & & \(P\) & 3ucanc & ． 058960000 & P & 30CAMHC & ． 050660040 & P & 30CBHBA \\
\hline & & －Cb6y40u00 & 30camba & －05E960000 & & & & & & & & \\
\hline & & －C454000CO & P 30CBALC & ． 057300000 & P & \(30 C B M H C\) & ．060470000 & P & 30CBLBA & －056190000 & P & 30CBLLC \\
\hline & & ．06310cu0 & P 30CBLHC & ． 060560000 & P & 30CALBA & ． 063040000 & P & 30CALHC & ．059060000 & P & 30CALLC \\
\hline & & －し7234UU心0 & P 30CDLba & ． 042896000 & P & zocasba & .057330000 & P & 3OCASHC & ． 042890000 & P & 30CASLC \\
\hline & & －．03900l000 & 1 300LHC2 & .016000000 & P & 300SHTA & ． 008000000 & P & 30DSHTC & \(-1.000000000\) & P & 30BTU \\
\hline \multirow[t]{6}{*}{\begin{tabular}{l}
3OENER \\
RHS LOA \\
KMS UP：
\end{tabular}} & \multirow[t]{6}{*}{EQ 154
0.00000006
0.000000000} & ． 062960000 & P zuCAMBA & ． 062910000 & P & 30CAMLC & ． 065010000 & P & 30 CAHHC & ． 057000000 & \(P\) & 30CBMEA \\
\hline & & －C．517000Ju & \(P\) 3UCBMLC & ． 063700000 & P & 30 CBMHC & ．0692？0000 & P & 30CBl日a & ． 064000000 & P & 30CBLLC \\
\hline & & ．671400JJo & P 3UCBLHC & ．06776000G & P & \(30 C A L B A\) & ．070466000 & P & 30CALHC & ． 066190000 & \(p\) & 30Callc \\
\hline & & ． 08430 CUVO & P 3OCOLBA & ． 047560000 & P & 30CASBA & ． 061910000 & P & \(30 C A S H C\) & ． 047560000 & P & 30CASLC \\
\hline & & －52000UOLO & P 3UOLHCS & －． \(055006 C 00\) & 1 & 300LHCZ & ． 025000000 & P & 300LHTI & ． 018000000 & & 300SHTA \\
\hline & & .014000000 & \(?\) 300SHTC & －1．000060000 & P & 3 OENE & & & & & & \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { 3OLABR } \\
& \text { RHS LO: } \\
& \text { RHS IJP: }
\end{aligned}
\]} & \multirow[t]{5}{*}{EQ 155
0.00000000 y
0.000000000} & \(2 . C O U 000003\) & P 30CAMBA & 5.000000000 & \(P\) & \(30 C A A L C\) & 5.000300000 & \(P\) & 30 CAMHC & 5.000000000 & P & 30CBMBA \\
\hline & & 5．CCJJOCuco & \(P 30 C\) AMLC & 5.000000000 & P & 30CBAHC & 5.000000000 & P & 30CBLBA & 5.000000000 & P & 30CBLLC \\
\hline & & 5.000000000 & －30CO1MC & 5.000000000 & P & 3ucalba & 5.000000000 & P & 30CALHC & 5.000000000 & P & 30CALLC \\
\hline & & 5.100000000 & P 30CASBA & 5.000000000 & P & \(30 C A S H C\) & 5.000300000 & P & 30CASLC & ． 800000000 & P & 300LHC1 \\
\hline & & ． 500000000 & P 30DLHJ1 & ． 600000000 & P & \(3005 H T A\) & .600300000 & P & 300SHTC & －1．000000000 & P & 30LAB \\
\hline \multirow[t]{6}{*}{\[
\begin{aligned}
& 300 P C R \\
& \text { RHS LO: } \\
& \text { RHS UP: }
\end{aligned}
\]} & \multirow[t]{6}{*}{\(80 \quad 156\)
0.000000000
0.000000000} & ．101300060 & P 30CANBA & .098600000 & P & 30CAMLC & ． 075000000 & P & 30CAMHC & ． 138200000 & P & 30CBn8A \\
\hline & & \(.0700 C C 000\) & P 3OCBMLC & ． 108500000 & P & 30CBMHC & ． 162100000 & P & 30CBLBA & ． 093800000 & P & 30CBLLC \\
\hline & & .121300000 & P 3OCBLHC & ． 138600000 & P & 30CAlba & ． 104200000 & － & 30CALHC & ． 118400000 & P & 30CALLC \\
\hline & & ． 111700000 & P 30CASBA & ． 112900000 & P & 30CASHC & .111700000 & P & 30CASLC & －．038200000 & P & 3001 HC1 \\
\hline & & －． 557000000 & L 300LHC2 & ． 012500000 & P & 30 DLHTL & .013000000 & \(P\) & 3005 HTA & ． 006000000 & P & 30DSHTC \\
\hline & & －1．000000000 & P 300PC & & & & & & & & & \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 30 \text { INVR } \\
& \text { RHS LO: } \\
& \text { RHS UP: }
\end{aligned}
\]} & \multirow[t]{3}{*}{\(E 0 \quad 157\)
\(0.000 \cup 000 C 0\)
0.000000060} & 3.800000000 & P 30DEHCl & .100000000 & 1 & 300LHC2 & ． 510000000 & P & 300LMT1 & － 400000000 & P & 300SHTA \\
\hline & & 1.13400000 & \(P\) 3COSHTC & 4.000000000 & P & 301 RGN & 0.000000000 & P & 30SML．N & －1．000000000 & P & 30ENV \\
\hline & & 2.700000000 & P 30 NPIPOL & 1.700000000 & P & \(30 N P 1 P 02\) & & & & & & \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& 30 C \text { 3PO } \\
& \text { RHS LO: } \\
& \text { RHS UP: }
\end{aligned}
\]} & \multirow[t]{5}{*}{\begin{tabular}{l}
E0 \(\quad 150\) \\
\(0.0000030 C 4\) \\
0.000060000
\end{tabular}} & －1．000000000 & P 30C3P & －1．000000000 & P & 10C3PU3A & －1．000300000 & \(p\) & 10C3P03P & －1．000000000 & \(p\) & 20C3P03M \\
\hline & & －－CuJucoicio & P 2UC3PG3P & 1.000000000 & P & 30C3POFM & 1.000000000 & P & 30C3POFP & 1.000000000 & P & 30C3P01M \\
\hline & & 1． 000000000 & P 30C3PG1P & 1.006000000 & P & 30C3PU2M & 1.000305000 & P & \(30 C 3 P 02 P\) & 1.000000000 & P & 30C3P04\％ \\
\hline & & 1．000006000 & \(P 30 C 3 P 05 N\) & 1．006000600 & P & \(30 C 3 P 05 P\) & －1．000300000 & P & \(4063 P 03 P\) & \(-1.000000060\) & P & 50С3P03H \\
\hline & & －1．6icJ00060 & \(P\) 5CC3P03P & －1．000600050 & P & FOC3P03M & －1．000000000 & \(P\) & FOC3P03P & 1.060000000 & 1 & 30 C 3 PC \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& 30 C 4 P O \\
& \text { RHS LO: } \\
& \text { RHS UP: }
\end{aligned}
\]} & \multirow[t]{5}{*}{\[
\begin{array}{r}
E 0 \\
0.0 C 00 C 0000 \\
0.000 C 00000
\end{array}
\]} & －1．000000600 & P 30C4p & －1． \(0.0 C O C O O C O\) & P & 10C6PC3n & －1．000300000 & \(P\) & 1064PG3P & －1．000006000 & P & 20C4P03M \\
\hline & & －1．COCJUCOJo & P 20C4P03P & \(1.00 C 000000\) & P & \(30 C 4 P\) OFM & 1.000000000 & P & \(30 C 480 F P\) & 1.000000000 & P & \(30 \mathrm{C4PO1M}\) \\
\hline & & 1．OUCNOCOOOO & \(830 C 4 P O 1 P\) & 1.000000000 & P & 30C4P02m & 1.000000000 & P & \(30 C 4 P 028\) & 1.000000000 & P & 30C4P04P \\
\hline & & 1．CCOUGOOOO & P 3OC4PUEN & 1.000000000 & P & \(30 C 48 C 5 P\) & －1．000000000 & － & \(40 C 4 P 03 P\) & －1．060000000 & P & 50C4P03M \\
\hline & & －1．6000060ue & P 5UC4PG3P & \(-1.000600000\) & P & FOCSPC3M & －1．000020000 & P & F064803P & 1.000000000 & 1 & \(30 \mathrm{C4PC}\) \\
\hline 3GNAPO & \multirow[t]{5}{*}{\[
\begin{array}{r}
\varepsilon 0 \quad 100 \\
0.00000060 \\
0.00000000
\end{array}
\]} & －1．cgovocuus & P 3JNAP & －1．00C000000 & P & 1CMAPC3m & －1．003．00000 & P & IONAPO3P & －1．000006000 & \(P\) & 20NAP03H \\
\hline RHS LO： & & －1．clcJcouoo & P 20NAPG3P & 1.000000000 & P & 3ONAPCFM & 1.000500000 & p & 30NAPOFP & 1.000000000 & P & 30NAPO1H \\
\hline \multirow[t]{3}{*}{RHS UP：} & & 1．COCOCOCS & \(P\) SUNAPOLP & 1．000000000 & P & 30NAPC2M & 1.000000000 & P & 30NAP02P & 1.000000000 & P & 30NAPOLP \\
\hline & & －¢ jouluuiu & \(P\) junaruba & 1．000くついరご0 & P & 30NAPO5P & －1．000000000 & P & GCNAP03P & －1．000000000 & P & SONAPO3M \\
\hline & & －1．COLUOOOCS & \(P\) \％ONAPO3P & －1．000000000 & P & FONAPC3M & －1．000303000 & P & FONAPO3P & 1.000000000 & P & 30 MAPC \\
\hline 3048 AD & \multirow[t]{5}{*}{} & －1．cójovcic & P 3048A & －1．00c000000 & \(p\) & 1648403 M & －1．000300000 & P & \(1048403 P\) & －1．000000000 & \(p\) & 2048403 H \\
\hline KHS LJ： & & －－olcu） & \(P\) zu4dacjp & 1．SOUCGUJCO & ， & 3048AUFM & 1.000000000 & P & 304BAOFP & 1． 060006000 & P & 3048A01N \\
\hline \multirow[t]{3}{*}{KHS UR：} & & 1．しくこい6しつう。 & P 3J4BAul？ & 1．Jocioicoc & P & \(30484 \cup 2 A\) & 1.000305050 & P & 3048AC2P & \(1.0 C 0000000\) & P & 3048A04P \\
\hline & &  & P こう¢BALJM & \(1.00600 C L O J O\) & P & 3046a05p & －1．000503000 & \(p\) & 4048A03P & －1．000000060 & P & 5048A03M \\
\hline & & －1．10（\％） & －Susbaius & －1．3Ccccooou & P & FCSHAL3H & －1．000J00000 & P & F04BA03P & 1.000000000 & P & 3048 AC \\
\hline \(304 A A D\) & \multirow[t]{3}{*}{} & －1．0．い」儿， & P 304AA & －1．00cioucou & \(P\) & 1U4AAC3M & －1．000．001000 & 1 & 104AA03P & －1．000000000 & \(P\) & 204AA03M \\
\hline RHS L．11 & & －1．116うごい」 & P 2unatusp & 1．0clcuscuo & P & 3C\＆AAOFM & 1．000305000 & P & 3UGAAOFP & 1． 000000000 & P & 304AA01M \\
\hline Whas 1 ： & & & & －．．．． & \(\checkmark\) &  &  & P & 3usadr？P & 1．crcouccoc & P & 304AA04P \\
\hline
\end{tabular}

-6.900000000 P 40 THC4
\(=.005180000\)
-.0920000000
-1.000000000 40CASEA
1.000000000 40SMLM
-1.000000000 \＆0CASLC
-1.000000000 40CBSNC -.073000000 40CASHC

2H58000 8 \(000002900^{\circ}=\)
V8Sv504 \＆ \(000005400^{\circ}=\)
.010600000 SOCASAA
-1.000000000 SOC3P
\(\begin{aligned} .063100000 & \text { SOCASBA } \\ -1.000000000 & \text { SOC\＆P }\end{aligned}\)


\(\begin{array}{rl}-8.3000000000 & \text { P } 4 \text { ONGFN } \\ -12.42500000 & \text { POFTU } \\ .300000000 & X 402 \text { PREN }\end{array}\)
\(\begin{array}{rl}\text { THS10Y } \\ \text { SHSOJOS } \\ \mathrm{d} & 000 C O C 0000^{\circ} \mathrm{T} \\ 000000000^{\circ} \mathrm{T}\end{array}\)
-1.000300000 － \(0 C A S H C\)

\begin{tabular}{l}
-.037900000 P \(40 C B S E C\) \\
-.058400000 \\
\hline
\end{tabular}
\(=.005900000\) P \(40 C\) ESLC
-.001400000 P 400 SHTA
－．005900000 P 40CBSLC -.005900000 P 400 SHVA
-.007000000 P
.012800000 P \(40 C B S H C\)
\(\therefore .027100000\) I 400 LHC2
.003100000 P \(40 C B S H C\)
-.035300000 L 400 LHC2 0.035300000 L 400 LHC 2
－750707090 P 4CCESHC \(\therefore 40313000 \mathrm{C}\)－ CDLHCL
－14日701000 p 4CCESHC
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 301400 & c． 171 & \multirow[t]{2}{*}{crosccusa} & \multirow[t]{3}{*}{\(p\)} & \multirow[t]{3}{*}{3U1A0} & \multirow[t]{3}{*}{1．00govicuos} & \multirow[t]{3}{*}{\(p\)} & \multirow[t]{2}{*}{\(30140 C\)} \\
\hline Ras LJ： & こ．か」」いこうしく & & & & & & \\
\hline RHS U．P： & 6．Jいいしこうこと & & & & & & \\
\hline 301470 & is 170 & \multirow[t]{3}{*}{－1．．かいていう」} & \multirow[t]{3}{*}{1} & \multirow[t]{3}{*}{3U1A7} & \multirow[t]{3}{*}{1.001000000} & \multirow[t]{3}{*}{\(p\)} & \multirow[t]{3}{*}{361A7C} \\
\hline NHS L．J & c．OuOusuocu & & & & & & \\
\hline RHS UP： & \(0.00 J L C O J C O\) & & & & & & \\
\hline 301 A80 & EO 179 & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{P} & \multirow[t]{3}{*}{30148} & \multirow[t]{3}{*}{1.000000000} & \multirow[t]{3}{*}{P} & \multirow[t]{3}{*}{30148C} \\
\hline RHS LO： & 0．0COJVOJVO & & & & & & \\
\hline RHS UP： & －．JJoocioco & & & & & & \\
\hline \multirow[t]{2}{*}{30MISO} & EO 18C & \multirow[t]{3}{*}{－1．000000000} & \multirow[t]{3}{*}{P} & \multirow[t]{3}{*}{30 MIS} & \multirow[t]{3}{*}{1.000000000} & \multirow[t]{3}{*}{P} & \multirow[t]{3}{*}{30WISC} \\
\hline & \(0.0000 C O C C O\) & & & & & & \\
\hline RHS UP： & O．COJJCOCOO & & & & & & \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& 4008 \mathrm{D} \\
& \text { RHS LQB } \\
& \text { RHS UP: }
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{array}{rr}
E 0 & 161 \\
0.000 \subset 00000 \\
0.0 U ن O O O .0
\end{array}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
－9．2ういコしぬひし0 \\
－7．30000600c \\
－1．CluJcusuo \\
1．COCUOOOCO
\end{tabular}} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{\begin{tabular}{l}
40CAIA \\
401 IC4 \\
400 PC \\
400815
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{array}{r}
-9.00 C 000000 \\
-.020000000 \\
-.956900000 \\
-1.000000000
\end{array}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& p \\
& p \\
& p \\
& p
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& 40 C B I N \\
& 40 K H H \\
& 40 I N V \\
& 401 P C S T
\end{aligned}
\]} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { 40SML } \\
& \text { RHS L:J: } \\
& \text { RHS UP: }
\end{aligned}
\]} & \multirow[t]{3}{*}{\(E 0 \quad 182\)
0.000000000
0.00000000 C} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text {-1.003000cu0 } \\
& \text {-1.C00000000 }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& p \\
& p
\end{aligned}
\]} & \multirow[t]{3}{*}{40CBSBA
\[
40 C A S H C
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& -1.00 C U C 0000 \\
& -1.0000 C 0000
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& p \\
& p
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \angle 0 C B S L C \\
& 40 C A S L C
\end{aligned}
\]} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 40 C A 1 D \\
& \text { RHS L3: } \\
& \text { RHS UP: }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
E 0 \\
0.000000000 \\
0.000 C 000 C 0
\end{array}
\]} & \multirow[t]{3}{*}{1.000000000} & \multirow[t]{3}{*}{1} & \multirow[t]{3}{*}{4OCAIN} & \multirow[t]{3}{*}{\(-1.000000000\)} & \multirow[t]{3}{*}{P} & \multirow[t]{3}{*}{¢OCASBA} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{2}{*}{\(40 C 810\)
RHS} & \multirow[t]{3}{*}{\[
\begin{gathered}
E 0 \quad 1 甘 4 \\
0.000000 C 60 \\
0.0606000 C 0
\end{gathered}
\]} & \multirow[t]{3}{*}{1.00600000} & \multirow[t]{3}{*}{P} & \multirow[t]{3}{*}{\(40 C 81 \mathrm{~N}\)} & \multirow[t]{3}{*}{－1．000000000} & \multirow[t]{3}{*}{P} & \multirow[t]{3}{*}{¢OCASBA} \\
\hline & & & & & & & \\
\hline RHS UP： & & & & & & & \\
\hline \multirow[t]{3}{*}{4ONGFD
RHS LJ：} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{\[
\begin{array}{r}
1.000000000 \\
-.073000040
\end{array}
\]} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{40 NGFN 4UCASEA} & \multirow[t]{4}{*}{\[
\begin{aligned}
& =.073000 c 00 \\
& -.073000000
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& P \\
& p
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \angle O C B S B A \\
& 4 O C A S H C
\end{aligned}
\]} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline RHS UP： & & & & & & & \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { YONC4D } \\
& \text { RHS LJ: } \\
& \text { RHS UP: }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
E 0 \quad 1 t 0 \\
0.0000000 \mathrm{CO} \\
0.0000000 C 0
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
1 . C C O O U V O O O \\
-\quad C 1100 C G 00
\end{array}
\]} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{40 TNC 4 4OCASBA} & \multirow[t]{3}{*}{\[
\begin{aligned}
& =.012600000 \\
& -.009100006
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& p \\
& p
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 40 C B S B A \\
& 40 C A S H C
\end{aligned}
\]} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 40 \text { IC4D } \\
& \text { RHS La: } \\
& \text { RHS UP: }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
\text { EQ } 187 \\
0.00300 J 0 C 0 \\
0.000000060
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
1.000000000 \\
-.000600000
\end{array}
\]} & \multirow[t]{3}{*}{P
\(p\)} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 40 \text { TIC4 } \\
& 40 \text { CASHC }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& =.003400000 \\
& =.003300000
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& P \\
& P
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \angle O C B S B A \\
& \angle O C A S L C
\end{aligned}
\]} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline 40 C 3 PP & \multirow[t]{3}{*}{\(E 0 \quad 166\)
0.00330060
0.000000060} & \multirow[t]{3}{*}{\[
\begin{aligned}
& -11280000 G \\
& \text {-il200600 }
\end{aligned}
\]} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{40CBSBA
\[
\text { } \triangle O C A S H C
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& .012800000 \\
& .012800030
\end{aligned}
\]} & \multirow[t]{3}{*}{\begin{tabular}{l} 
P \\
\hline
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \angle O C B S L C \\
& 4 C C A S L C
\end{aligned}
\]} \\
\hline RHS L．JI & & & & & & & \\
\hline RHS UP： & & & & & & & \\
\hline 40 C 4PP & \multirow[t]{3}{*}{EG 184
C．OOGODOOCO
\(0.000006 C O\)} & \multirow[t]{3}{*}{\begin{tabular}{l}
－Cu310v0jo \\
－CO31CCCOO
\end{tabular}} & \multirow[t]{2}{*}{} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { 4OCBSUA } \\
& 40 C A S H C
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
.003100000 \\
.003160000
\end{array}
\]} & \multirow[t]{2}{*}{P} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 40 C B S L C \\
& 40 C A S L C
\end{aligned}
\]} \\
\hline RHS LJ： & & & & & & & \\
\hline RHJ L？： & & & P & & & & \\
\hline \multirow[t]{2}{*}{4ONAFP} & \multirow[t]{3}{*}{\[
\begin{gathered}
i c \quad 196 \\
0 . c c o c c o j c o \\
\because .6 c) \cos 10 c c
\end{gathered}
\]} & \multirow[t]{3}{*}{－1．16cisisuos} & \multirow[t]{3}{*}{\(p\)} & \multirow[t]{3}{*}{4 SNAP} & & & \\
\hline & & & & & & & \\
\hline RHS UP： & & & & & & & \\
\hline 4cacur & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & \(p\) & \(4] C B S O A\) & \multirow[t]{2}{*}{\begin{tabular}{l}
 \\
－Jち ンしししいた
\end{tabular}} & \multirow[t]{2}{*}{\(p\)} & 4UCBSLC \\
\hline Rちら LJ & & & \(r\) & GLCAJHC & & & 4．CASLC \\
\hline khs \(\mathrm{USO}^{\text {a }}\) & & & \(p\) & susea & －1．JOCCCJuJo & \(x\) & YCZPREM \\
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
=0 \quad 1 \geqslant 8
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
－ごムぐくはいJし \\
－17！．いい
\end{tabular}} & \multirow[t]{2}{*}{\(p\)
\(r\)} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
－1ヶcúcJujc \\
－121：c．ons
\end{tabular}} & \multirow[t]{2}{*}{p} & \＆ucaslc \\
\hline & & & & & & & GiCASLC \\
\hline
\end{tabular}
.059507000 P \(40 C A S B A\)
-.1500000001 HOOLHC2
.639700000 \＆OCASBA
-.150000000 \＆ODLHC2
1.000000000 ． 4040 A
.023400000 ． 0 CASBA
.056200000 P HOCASAA
1.000000000 POSBBX
.209700000 P 4 CASBA
.974000000 \＆ 40 LHC2
.600000000 POSBBX
.132000000 P GOCASAA
-.005000000 PODSHTA
.002400000 － 0 OASEA
.032000000 －OOCASBA
.032000000 P \(4 O C A S E A\)
.022000000 P \(00 L H J 1\)
.054500000 P \(40 C A S B A\)
-1.000000000 40CKA
\(-1.000000000-40 \mathrm{CKB}\)
.175030000 P 40 CHSHC
 \(\left.\begin{array}{rl}1.0000000000 & p\end{array}\right) 404 \mathrm{CA}\) ．
\(\begin{array}{ccc}.045600000 & P 40 C B S H C \\ -1.000030000 & P & 405 B 8\end{array}\)
.146000000
1.235000000
\(1.0000085 H C\)
1.00000000
 \begin{tabular}{l}
\(\infty\) \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline
\end{tabular} \(\begin{aligned} .002400000 & \text { POCBSHC } \\ -1.000000000 & \text { POVGO }\end{aligned}\)
\(\begin{array}{rl}.032000000 & 40 C B S H C \\ -1.0000000000 & 4050 A\end{array}\)
.032000000 P \(40 C\) CSHC
-.458000000 P 400 LHCI
\(\begin{aligned} .056400000 & \text { P 40CBSHC } \\ -1.000909000 & \text { p 40VRO }\end{aligned}\)
.004600000 P 0 CASLC
.005800000 ． 0 OCBSHC
\(.14 C\) UUOOOC P 4CCBSLC
.12150 UUOC P 4UCASLC
j7Svjnh d \(000005\left(21^{\circ}\right.\)
j7S日jith d \(000000041^{\circ}\) 1．OOCOCONOO × 402 PREM
1.000000000 P G04AA
\(.03520 C 000\) \＆OCBSLC
.023400000 4OCASLC
.043300000 P \(4 O C B S L C\)
.053860020 P \(4 C C A S L C\)
JTSVJO4 \＆ODOOOE9OE
JTS日JO4 d \(009006892^{\circ}\)
-1.000000000 P 405CA
\(.0880 G 0000\) p \(4 O C B S L C\)
.113600000 P \(40 C A S L C\) x×35DY d \(000000200^{\circ}\) l－ J7SVJOM
37S日jor
\＆
\(.0320 C 0000\) \＆ 0 OCBSLC
\(.0320 C 0000\) P 4OCASLC
\(.032 C 00000\) P 4OCASLC
.032000000 P 4OCASLC
.054500000 40CBSLC
.054500000 PCCASLC
.004600030 P 4OCASHC
3158504＊00000日：00＊


0.000000002
ن． \(0000000 C 0\)
 0.000 COOOCO 23
20
0
0
3
30
40
0 0.0 doj000 C EQ 190 0.000000000
\(0.000 J 00010\) －ーフ E0
0.500050020 9
0
0
0
0
3
3
0 10
00
-8
0
0
08
40
0 3
0
0
0
0
0
0
0
0 6
6
0
0
0 30
00
38
08
20
00
20 0 200
0.000000000
\(0.000 C O J O L\) 3
3
0
0
0
0 EN
\(0.0000000 C O\)
\(0.0000000 C O\) \(N\)
\(N\)
0
0
0 3
3
0
6
0
20
0
3
0
0
0 30
3
10
0
0
0
0
10
10
0
0 －0UG000000 300
400
30
30
080
408
30 EG 205 GULUUUDOVO
0.0000000 O
 0
\(\omega\)
\(N\)
0
0
0
0
0
0
\(\omega\)
0
0 \(0300900100^{\circ} 0\)
\(404 C A P\)
RHS LIA
RHS UP：
\(4040 A P\)
RHS LJ：
RHS UP：
OSGASP
RHS LJ：
RMS UP： RHS URA
RAAP LJO
RHS UPI 405 HUP
RHS LOS 3
3
\(a_{2}^{2}\)
2 OUSGAP
RHS LOB JHSVJOY d CCODOEO6 \({ }^{\circ}\)
VBSBJクY d OCD2O989 \({ }^{\circ}\) ． 000000000 P \(400 L H 7 \&\) －OHBUSU்こUO POCBSBA \(\begin{array}{r}.13200 U 0 J 0 \\ -1.0000000 C 0 \text { P 4OCASHC } \\ \hline .05 C A\end{array}\)

1
0
0
0
0
0
0
0
0
3
0
0
0
0
3

\(C 320 C v 00 G P\) 4CCESBA
\(-U S 25 C G L U O\) \(P O C A S H C\) \(4 O C\) ASHC
\(605 D B\)
\(.6545 \operatorname{COLCO} P\) \＆OCBSBA
.054500000 POCASHC
\(a\)
\(\infty\)
0
0
0
\(a\)
0
0
0
0
0
\(n\)
0
0
.003000000 P \(40 C B S B A\)
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
－1．guGUCLCJU P 401A7
\(\infty\)
3
0
0
3
0
3
3
3
3
0
6
0
1

4LCBSBA

4
0
5
5
\(n\)
30
00
\begin{tabular}{l}
\(-C .3520000 J\) \\
\(-C 23400000\) \\
\hline
\end{tabular}
\(.0457 C L O U O\) \＆ECBSBA
.\(U 5380 C O O O\) \＆OCASHC

-
－
\[
0
\]
3
0
0
0
0
0
5
0
0

\(60508 P\)
RHS LJ
RHS UP GCVRDR
RHS LJ：
RHS UP：
OCKAP
RHS LO：
RHS UP：


01 Aop




377v50s＊ 00000000 ค・ケー
3H7390s \＆ \(000000000^{\circ} \mathrm{I}\)－
-014000000 P SOCALLC
-.014000000 P SOCOLBA



VIHSOOS o \(000000200^{\circ}-\)
V\＄15j0s o \(000000900^{\circ}-\)
Vesvios d 000000 si0
V87j30s d 000000 sio dejos d \(000000000^{\circ} \mathrm{T}\)－
VgSvjos d \(000000510^{\circ}\)
.003100000 50CCLBA
.010000000 50CASBA -1.000000000 P SOC4P

.103000000 SOCCLBA
.045000000 50CASBA 23H7005 \(700000000 \varepsilon^{\circ}{ }^{\circ}\)
.310000000 SOCCLBA
.105000000 50CASBA \(\therefore 400000000\) L SOOLHC2
.062600000 50CCLBA
.022000000 SOCASBA -150000000 L 500 LHC2
 -15000000 L 500LHC2 vosos \＆ \(000000000^{\circ}\) \％
 275V20s o \(00000 \mathrm{Ch10} 0^{\circ}-\)
 315V50s of 000009900－ गlivjos \＆ \(00000 \mathrm{cos} 0^{\circ}\)－
 23H700s \(1000001220^{\circ}\)－

วา7vjos d \(00000 \varsigma 500^{\circ}\) 2JH700s \(10000005 E 0^{\circ}-\)
VETOJOS \＆ \(000000010^{\circ}\) .006400000 P 50CALLC
0009600000 P 50COLBA \(\begin{aligned} .009600000 & \text { 50COLBA } \\ -1.000000000 & \text { 5ONAP }\end{aligned}\)
 TJH700s d 00000000 \({ }^{\circ}\)－

V870j0s d 0000009 TE．
J17VJRs d \(0000024 ヶ 0^{\circ}\)

 83H700s of \(0000000 \mathrm{~s} \mathrm{~T}^{\circ}\)－

VO90s d \(000000000^{\circ} \mathrm{T}\)
.015000000 P 50CALHC
.015060000 P SOCCLHC 37SVJOS o \(00000 \mathrm{E} 210^{\circ}\)
.010000030 P 50CALHC .004300000 P SOCCLHC
\(.01 C J 0 C 000\) P SOCASLC .006400000 P SCCALHC

 .181100000 P SOCCLHC
.058600000 P SOCASLC
 \(\qquad\) .1811100000 P SOCCLHC
.050000000 POCASLC -195600000 SOCALHC
 1．00C000000 P 504AA
\(\stackrel{2}{2}\) 50ct 24 \(50 C A 10\) \(50 C\) A10
RHS LOI
RHS UP：

OC日10 E2 243 jeculduluje potcein
1．c50Jcoouc p SOCCIN
1.060000000 L 50COIN

1．GCOO00000 P 50NGFN
.\(- C 14 J 0 C G 00\) P 50CCLUA
－．014C00000 P 50CASBA
\begin{tabular}{l}
5 \\
2 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline
\end{tabular}

1．CG0000000 P SGTICA
 \(u\)
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
． 0091000 CJ P 50CAL 8 A \(.0619 \angle G L G O ~ p ~ B C C C L L C\)
.021 VUOÚJ P SUCASHC
－C09006000 p socalba －CC5JOCCGO P SUCCLLC
－CUOBOCOOS P SOCASHC
.135000000 P bCCALBA .154000000 P 50CCLLC
\(.0774 C C O 00\) P SUCASNC

\(-31500 C 00 L\)
－\(C=13 C O G O C O\) P SOCCLBA
SOCCLC
\begin{tabular}{l}
\(.62660 C \cup G O\) \\
-1.000006000 \\
P \(50 C A S H C\) \\
\hline
\end{tabular}
－C62400600 P 50CALEA －Cb76Cevuo P SOCASHC
-1.000000000 P SOACA
vatroos
U
socashe
suboa
go4ba
SCIGAS
acac \(.0410 C 600\)
\(15406 G 00\)
\(.6799060 J\)
\(.6 G 000000\) ED 246
0.000003060 \(\begin{array}{rr}E 0 & 247 \\ 0.0000 c u 000\end{array}\) c．ougccuious \(n 90\)
\(\sim\)
\(\sim\)
0
3
0
0
0
0
0
0 \(0.0600000 C 0\)

EG
0.060000000
C． 0000000000 \(E 0\)
\(0.030000 c c o\) N

 O．GUOUCJOLO
\(n\)
33
0
0
0
0
0
4
4
0
0 3
0
0
0
0
0
0
0
0

\(n\)
\(n\)
0
0
0
0
0
0
0
0
0
0 3
0
0
0
0
0
0
0
0
 SONGFO
RHS LUA
RHS UPI SONC4O RHS LOA
RHS UP： SOIC4D RHS LOA
RHS UP： 50C 3PP RHS L0：
RHS UP： SOC 4PP RHS LUA
RHS UPA SONAPP RHS LU：
RHS UP：
504 AAP
RHS LOI RhS UR：

SO4BAP
RHS LU：
RHS UP：

\section*{504 CAP
RHS LO}

504DAP
RHS LO：
5GSGASP
RHS LJA
.033600000 P 50CCLBA
.022700000 POCASBA
 VOSVJ05 d \(0000008150^{\circ}\)

Valjocs d \(000002650^{\circ}\) Vesvjos o \(000000025^{\circ}\) ． X09505 \(000000009^{\circ}\)－

.010200060 50CCLBA

.072800000 P 50CCL8A T1H7005 \＆ \(000000220^{\circ}-\)
VG5V50s \(00000029 \pi^{\circ}\)
.020000000 P 50CCLBA
.079800000 P 50CAS8A
.002200000 p socasic 3ห30s d 000000000 －

V87j50s \＆ \(000006200^{\circ}\)
V873j0s \(000009290^{\circ}\)
275v30s d \(000000500^{\circ}\)
evios e000000000．T－
Vulojus o ujerners．
\(\begin{aligned} .069400000 & \text { P 50CALLC } \\ .065600000 & \text { 50C0LBA } \\ -1.000900000 & \text { P } 50588\end{aligned}\)



 V85V50s d \(00000 \varepsilon 010^{\circ}\)
Jivvoss of \(000002010^{\circ}\) Vosvjos d 00000є0t0．

971rjos d \(0000062 \angle 0^{\circ}\) V0505 \＆ \(000000000^{\circ}\) r－
v 70705 d \(000006220^{\circ}\)
 vivvoos d \(000000020^{\circ}\) OYAOS \＆ \(000000000^{\circ}\) r－

SHSVSDS 00000 \(2200^{\circ}\) .016200000 P \(50 C 6 L H C\)
\(917 v 305\) 000002100
.001370000 P 50CDLBA

\section*{V87090s \(000006200^{\circ}\)
317vjos \(0000006200^{\circ}\)}

\section*{}

JHSVJOG 000corsio
 JH7VJOS \＆ \(00000 \% 120^{\circ}\) .069400000 P 5 OCCLHC
.051800000 P \(50 C A S L C\)
 ЭHIJJOS \({ }^{\circ} \mathrm{OGONO2650}^{\circ}\) .252000000 p 50CASLC
-1.000000000 p 505CA
 －1．000000000 P 505Cxx \(.010200 J 00\) P 50CALHC
.016200000 PCCCLCC
-1.000000000 P 5 UVGO －1．000000000 P 5UVG0 JHTJJOS d \(000008220^{\circ}\)
JH7VJDS d \(000008220^{\circ}\) j7Svjos d 000n09コ92．


 1
u
U
0
0
0
0
0
0
0
0
0
0
0
0
0
0 VASVJOs d \(000002200^{\circ}\)

8月00s \＆ \(000000000^{\circ}\) โ－
517550s \＆OCOOOY200
.0012000 S SOCALHC
.00120000 P SCCCLHC

\section*{}

\section*{JHTVJOS d ODOOOQ200．}

V8Svj0cs on0000500．

bUCAL OA
JCCCLLC
VRTVJO \(\quad\) CNCONRATO。


岱

 JHSVJOG o 07000rert．


.\(C 20000000\) P SCCALBA
.\(C 2 C J O C 000\) P 50CCLLC
.\(C 798 C 0000\) P 50CASHC －．CO1400000．P SOCALHC
\(-1 . C C 0 J 0 c 600\) P SOCKA
 \(n\)
\(n\)
\(n\)
0
0
0
0
0
0
0
0 0.0000 CJOCl \(E 0 \quad 260\)
\(0.000 C O O O C O\) 0.0006000 CO

60
0.000000000 C．OUOU00000
C．OOUGCOOCO

N 30
0.0
0.0
7
7
30
30
00 ．0．0000000 500
00
0
0
0
0
0
0
0
0 C．00006SOLO \(\varepsilon 0 \quad 27 c\)
\(0.0009000 C 5\)
\(0.0000000<0\) －Clzzucngi p sCCLLBA
－Cuzscocuc p socclac
 －CO\＆20Cu00 p SOCALBA
.001200000 p SOCCLLC
\(.0 G 2900000\) P SOCAL BA
.062900000 p SOCCLLC


SORROP
RMS LOB
RHS UPI
SOCKAP
RHS \(1 J\) J
RHS LJB
RHS UPI
SOCKRP
RHS LDA
RHS UP：
SOCKCP
RHS LJ
RHS UPA
501 AOP
RHS LOB
RHS UP：
SOLATP
RHS LOA
RHS UP：
SOLAUP
RHS LU
RHS UP：
SOHESP
RHS LOB
RHS UP：
.084040000 P SOCCLEA
.040204000 P SOCASBA
.016000000 P SODSMTA .096200000 P SOCCLBA
.044500000 SOCASBA
.055000000 L SOOLHCZ -055000000 L SOOLHCZ
-1.000000000 P SOENE

 .096700000 P SOCALLC
.235900000
-.03820000 SOCOLBA
\(-.0300 L H C 1\) -.038200000 SOOLHCX
.006000000 SODSHTS .400000000 SOOSHTA
-1.000000000 SOINY
\(2.000000000 \times 50\) TPIPO4

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 5ubiuk & r6 273 & － 726 ucuus & \(r\) & guCALGA & ． 073620000 & \(p\) & SOCALHC \\
\hline Krs LOS & U．しひごしつOしo & －vecylccuo & P & 5びくしたべ & ．J124E0000 & P & SUCCLHC \\
\hline RHS UPI & O．OCCOUJOUC & － 6,402000 U0 & \(P\) & LULASHC & ． 034570000 & \(p\) & SOCASLC \\
\hline & & －uvoJcuocu & \(P\) & JUUSHIC & －1．00C000000 & P & 508TU \\
\hline SJthtR & \(10 \quad 274\) &  & \(P\) & SUCALBA & ．0858400U6 & \(P\) & SOCALHC \\
\hline RHS LU8 & 0.000000000 & .0779 JuOG0 & \(P\) & jOCCLLC & ．086200000 & P & SOCCLHC \\
\hline RHS UP： & －OUJOOUOCJ & － \(64530 C \cup 00\) & \(P\) & SCCASHC & ． 038620000 & 8 & 5CCASLC \\
\hline & & －C2っJCOUOこ & \(P\) & SCOLHIL & ． 018000000 & \(P\) & SODSHTA \\
\hline SOLA日R & EH 275 & \(2 . C O O O C C O L\) & \(p\) & 3CCOLBA & 5.306060300 & P & 5GCALBA \\
\hline RTS LOt & 0.020000000 & う．cccucocoo & \(P\) & כOCCLAA & \(5.00 C 000000\) & P & SCCCLLC \\
\hline RHS UPE & \(0.00 J\) U心5000 & b．CCOJCOOUJ & \(P\) & SOCASBA & \(5.00 C O C U O D\) & \(P\) & SOCASHC \\
\hline & & －JJCJOOとJu & P & SUOLHII & ． \(6000 C 0000\) & \(P\) & 500SMTA \\
\hline \(500 P C R\) & E0 276 & ． 233900000 & \(p\) & \(3 \cup C D L B A\) & .215100020 & \(p\) & SOCALBA \\
\hline RHS LO8 & 0．00JC00060 & ． 219460 Juo & \(P\) & 5 OCCLBA & － 105400000 & P & SCCCLLC \\
\hline RHS UP： & 0.000000000 & －64370COOO & P & 5CCASHA & ． 558300000 & \(P\) & SOCASHC \\
\hline & & \[
\begin{array}{r}
-.5 \pm 70 i c j 00 \\
-1 \cdot C C O O O C J O O
\end{array}
\] & \[
i
\] & \[
\begin{aligned}
& 50 O L H C C \\
& \text { SUOUPC }
\end{aligned}
\] & ．012500000 & P & 500LHT1 \\
\hline SOIAVR & EO 277 & 3.800000000 & \(p\) & 2001 HCl & －100000000 & 1 & \(5001 \mathrm{HC2}\) \\
\hline RHJ LOI & 0.000000000 & 1.134000000 & \(P\) & 5COSnTC & \(4.00 C 000000\) & P & \(50 L R G N\) \\
\hline RHS UP： & \(0.0000 C 0000\) & 5．OC 0000000 & X & SOTP1POL & 4.000000000 & \(x\) & \(501 P\) IPG2 \\
\hline \[
\begin{aligned}
& \text { IODSGAS } \\
& \text { RHS LOS }
\end{aligned}
\] & \(E 0\)
0.0278
0.00000 & 1.000000000 & \(p\) & 100SHJA & \(-1.000000000\) & \(p\) & 10TGAS \\
\hline RHS UP： & \(0.0000 C J O C O\) & & & & & & \\
\hline 200 SGAS & \[
\text { EO } 279
\] & 1．00000C000 & \(p\) & 2005MTA & \(-1.000000000\) & P & 20TGAS \\
\hline RHS LO： & \[
0.000000000
\] & & & & & & \\
\hline RHS UP： & 0.00000000 & & & & & & \\
\hline 300 S6AS & EO 200 & \(1 . C 00000000\) & P & 300SHTA & \(-1.000006000\) & \(p\) & 3016AS \\
\hline RHS LO： & C．OJU00．JOCO & & & & & & \\
\hline RHS UP： & \(0.0000000<0\) & & & & & & \\
\hline 400 SGAS & E0 261 & 1.000000000 & P & ¢ODSHJA & －1．000000000 & P & 4016AS \\
\hline －RHS LJI & 0．0500000CO & & & & & & \\
\hline RHS UP： & U．COOGCOOLO & & & & & & \\
\hline 500 SGAS & EO 262 & 1．0COOOO500 & － & SCOSHTA & \(-1.000000000\) & \(p\) & ECTGAS \\
\hline RHS LO： & 0.000000000 & & & & & & \\
\hline RMS UP： & 0.000 こ000C0 & & & & & & \\
\hline \(100505 L\) & \(50 \quad 263\) & 1－UCOJOOCこ0 & \(p\) & 10OSHTC & \(-1.000000000\) & \(P\) & \(105 C\) A \\
\hline RHS LO8 & C． 000000000 & & & & & & \\
\hline RHS UP： & O．OCOCC3OCO & & & & & & \\
\hline 200 SOSL & 50264 & 1．COOOOUNOS & \(P\) & 2 COSHJC & \(-1.000000000\) & \(P\) & 205CA \\
\hline RHS LO： & U．0こJJCJOCC & & & & & & \\
\hline RHS UP： & C．000J6JOCl & & & & ， & & \\
\hline 300 SDSL & cコ 2ビ & 1.000000000 & \(p\) & \(30 U S H T C\) & －1．s0（0000） & P & 303CA \\
\hline RHS LU： & C．UUU）（）ucも & & & & & & \\
\hline RHS UPI & く。」ごういういして & & & & & & \\
\hline 400 SOSL & co \(\operatorname{lct}\) & －．く160くこっく & \(r\) & 4LDSHTC & －1．3Jlcuudoo & \(v\) & 4ここCA \\
\hline khj ijo & ごさひごつうつく0 & & & & & & \\
\hline RhS UP： & U．U2い6CJULO & & & & & & \\
\hline \(500 \leq\) ここし & 1． 2 2ri & ．．1 ，．ノ．ミじ， & \(r\) & \(\because\) L，mic & －－ついじ心」ー」 & \(p\) & \(50: C A\) \\
\hline Pr & 1．．．．．） & & & & & & \\
\hline
\end{tabular}



25
0
0
0
0
0
 50c4po3p soc4pos
50C4PC

20NAPO5M
40 NAPOSP


 ． 1,000000000 504日A03P
1,000000000 504BAC

－2．000000000 P 204CA05
 1.060000000 504CA03P
1.000000000 504CAC
 an
0
00
00
00
0
0
0
0
0
0
0 1.0000000005040 A
1,000000000
5040 AC
-1.000000000 5040AG

 SVVS0S \(7000000000{ }^{\circ}\) T
dEOVVSOS \(000000000^{\circ}\) T

 1.000000000 L 50589 C Wร0VJ502 \(000000000^{\circ} \mathrm{R}\)－解
 dSOVVSOR \(000000000^{\circ}\) I－ 05
0
0
0
0
0 1.000000000 505AA03M
-1.000000000 FO5AAO5P

 －1．000000000 P FO5日B05P
号 HEOVJSTS 0000 COOOO • 1 -1.000000000 P F040A05P
-1.000000000 P S04CAC

 -1.000000000 1040A05P
-1.00000000
 ㄹ － 2.000300000 FU4BA05P

\section*{0
0
0
0
0
0
0
0
0
0
8
8
8
\(\vdots\)
1}
 ， -1.000000000 P LU4CAOSP 1.000300000 P 10NAP O5P
-1.00000000 P 30 NAP 05 F
-1.000000000
1.00000000 P SONAP O1M
1.000303000 P 50NAPO3A
-1.00000000 P FONAPOSP 1.000300000 P LONAPO5P
-1.000300000 P SONAP \(05 P\)
-1.0000000000 S SONAPO1A
1.00000000
1.000300000 P 50NAPO3A
-1.000000000 P FONAPOSP


 -1.000000000 P \(104 C A 05 \mathrm{~N}\)
 1.000000000 P \(504 \mathrm{CA} A 2 \mathrm{P}\)
-1.000000000 FO4CA05
 －1．000000000 P 5C4BAC
 1.000000000 S65AAC2P
-1.000000000 FO5AA05M -1.000000040 P \(10588[5 \mathrm{H}\)






 1.000000000 PO4CAO2M
\(1.06006000 J\) SJ4CAJ4P



RHS LUA
RHS UP： 50 napo
RHS

－e \＆e -1.060060000
1.000000003
1.000000000
1.000000000
\(-1 . C 00000000\)
-1.000000000
\(1 . C 00000000\)
\(1 . C 00060000\)
1.060040000
 －





SOBAAO
RHS LOA
RHS UPA SOC 4PO SOC RHS LOB
RHS UPA



ค

-1.006000000 P 5040A
-1.406000000 P 2040AJSP 2

-1.000000000 SC4AAC
1.00000000 A SOTGASC


500
\(\sim 0.0\)
0.8
0.8
0.8
0.80
0.8


07 SHY
OVO
edn SHV


 － 1.0000000000 FONAPCSM
－ 1.000000000 1048A05M \(\pi=2\)
0
0
0
0
0
0
0
0
0
0 FO4BAOSM

\section*{5
0
0
0
0
8
8
0
0
0
0
0
\(i\)} \begin{tabular}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline \\
\hline
\end{tabular}

\begin{tabular}{|c|}
\hline \multirow[t]{9}{*}{} \\
\hline \end{tabular} SUC SPD
RHS L．J．
RHS UP：





3
3
3
3
0

59

\section*{5880
RHS \\ \section*{505880
RHS}}
 5OS日6U4

3
0
3
3
3
3
3
3
3
-1

3
0
0
0
0
0
0
0
0

\section*{Ē SCAO
RHS
RHS}
\(\begin{array}{rl}-1.060000000 & \text { 205C805M } \\ -1.000000000 & \text { 405C805 } \\ 1.000000000 & 5056801 P \\ 1.00600000 & 505 C 803 P \\ 1.000000000 & 505 C 8 C\end{array}\)
-1.000000000 ？30V6005n
WSOVOSOE \＆ \(000000000^{\circ} \mathrm{I}\)－
-1.000000000 P 3050805 M
-1.000000000 P F050805

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SOSOLIM & 65 24y & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{1} & Siscal & 1．Jccecũoso & L & EuSCCC \\
\hline Rat LJ： & \multicolumn{5}{|l|}{} & & \\
\hline RHS UP： & \multicolumn{7}{|l|}{－INF} \\
\hline 30sc80 & \multirow[t]{2}{*}{toresio} & －1．lccucoseo & P & 20こCb & －1．00ccucosu & P & 105C8C5m \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { RHS } 10: \\
& \text { RHS UP: }
\end{aligned}
\]} & & －1．ccuJccuvo & P & 20うCbiょp & －1．JULOCJOOS & \(P\) & \(305 C B C 5 M\) \\
\hline & \multirow[t]{3}{*}{0.00 OCOOCO} & 1．cocsuooco & P & 505CuCFM & \(1.0 J C O C J U O U\) & P & 505CBCFP \\
\hline & & 1．0ccoccouo & P & こUSCBuくN & 1.300003000 & P & 303C802P \\
\hline & & ＋－CuCcujuo & P & 5uSC8ump & －1．00LCG0006 & P & FO5C3C5A \\
\hline SOVGU0 & \multirow[t]{3}{*}{\[
\begin{array}{r}
\text { £0 301 } \\
0.0000 \operatorname{cuOLu} \\
0.030000000
\end{array}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& -1 . \operatorname{cocococos} \\
& 1.0 c 0 v O C C C O
\end{aligned}
\]} & \multirow[t]{3}{*}{P} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { SEVGO } \\
& \text { SOVGOUF }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{r}
-1.3 \supset \operatorname{coc} x<0 \\
1.00 c 000000
\end{array}
\]} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
10VGOC5A \\
sOVGOC
\end{tabular}} \\
\hline RNS LD： & & & & & & & \\
\hline RHS UP： & & & & & & & \\
\hline \multirow[t]{2}{*}{SOSOAO
RHS LUA} & \multirow[t]{3}{*}{\[
\begin{gathered}
10 \\
=.0000020 \\
0.000000006
\end{gathered}
\]} & －1．0cojocuio & \(P\) & SUSDA & \multirow[t]{2}{*}{\[
\begin{array}{r}
-1.00000 \mathrm{COOO} \\
1.00000 \mathrm{COO}
\end{array}
\]} & \multirow[t]{2}{*}{\(\stackrel{P}{P}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1050 \mathrm{AC5A} \\
& 5050 \mathrm{ACS}
\end{aligned}
\]} \\
\hline & & るoluruviduus & \(p\) & SCSDALFA & & & \\
\hline AHS UP： & & 1.000000000 & 1 & SOSDAC & & & \\
\hline 505080 & ÉO 363 & －1．いうごocccco & P & 56508 & －1．03COCJ000 & P & 1050805 M \\
\hline RHS LO： & \(0 . C 002030<0\) & 1．CJOJOU心う & P & 50500UFA & \multirow[t]{2}{*}{1．000600000} & \multirow[t]{2}{*}{P} & \multirow[t]{2}{*}{50508C1A} \\
\hline RHS UP： & C．しJJOCOOC & 1．しJ00unilu & 1 & 503OBC & & & \\
\hline SOVROD & \multirow[t]{3}{*}{\(60 \quad 364\)
\(C .0300000 C 0\)
\(0.000 G 000 C O\)} & \multirow[t]{3}{*}{\(-1.0 \cdot 0 \operatorname{cocosoc}\)} & \multirow[t]{3}{*}{P} & \multirow[t]{3}{*}{sovro} & \multirow[t]{3}{*}{1.006000000} & \multirow[t]{3}{*}{P} & \multirow[t]{3}{*}{SOYRDC} \\
\hline RHS LUO & & & & & & & \\
\hline RHS UP： & & & & & & & \\
\hline SOCNAD & \multirow[t]{3}{*}{\[
\begin{array}{r}
\bar{E} 0 \\
0.05 \\
0.00000000 \\
0.0050020 C 0
\end{array}
\]} & \multirow[t]{3}{*}{－1．0u0́00300} & \multirow[t]{3}{*}{P} & \multirow[t]{3}{*}{5JCKA} & \multirow[t]{3}{*}{1.00000000} & \multirow[t]{3}{*}{P} & \multirow[t]{3}{*}{SOCKAC} \\
\hline RHS LU： & & & & & & & \\
\hline RHS UPI & & & & & & & \\
\hline SOCKAD & \multirow[t]{3}{*}{EO 360
\(0.00 J 3 C 00 J 6\)
0.000000060} & \multirow[t]{3}{*}{－1．000000000} & \multirow[t]{3}{*}{\(p\)} & \multirow[t]{3}{*}{506 kB} & \multirow[t]{3}{*}{1.000000000} & \multirow[t]{3}{*}{P} & \multirow[t]{3}{*}{50CKB6} \\
\hline RHS LO： & & & & & & & \\
\hline RHS UP： & & & & & & & \\
\hline \multirow[t]{2}{*}{SOCKCO
RHS LJ：} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { EO } \begin{array}{l}
307 \\
0.000 G O O O C D \\
0.00 J O C O O C O
\end{array}
\end{gathered}
\]} & \multirow[t]{3}{*}{\(-1.050000000\)} & \multirow[t]{3}{*}{P} & \multirow[t]{3}{*}{50CKC} & \multirow[t]{3}{*}{1.000000000} & \multirow[t]{3}{*}{P} & \multirow[t]{3}{*}{50 CKCC} \\
\hline & & & & & & & \\
\hline RHS UP： & & & & & & & \\
\hline 501460 & \multirow[t]{3}{*}{\[
\begin{array}{r}
E 0 \\
0.0000000<0 \\
0.000<000 C 0
\end{array}
\]} & \multirow[t]{3}{*}{－：．0ccuouvoc} & \multirow[t]{3}{*}{\(p\)} & \multirow[t]{3}{*}{Solab} & \multirow[t]{3}{*}{1.000060000} & \multirow[t]{3}{*}{p} & \multirow[t]{3}{*}{501A6C} \\
\hline RHS LUS & & & & & & & \\
\hline RHS UP： & & & & & & & \\
\hline SU1A70 & \multirow[t]{3}{*}{EO 309
\(0.0000 C O O C O\)
\(0.0600 C O O C O\)} & \multirow[t]{3}{*}{－1．cicuocjuc} & \multirow[t]{3}{*}{\(p\)} & \multirow[t]{3}{*}{2C147} & \multirow[t]{3}{*}{1.000060000} & \multirow[t]{3}{*}{P} & \multirow[t]{3}{*}{SO1A7C} \\
\hline RHS LU： & & & & & & & \\
\hline RHS UP： & & & & & & & \\
\hline 501480 & \multirow[t]{3}{*}{\[
\begin{gathered}
E 0 \\
0.05310 \\
0.0090000 C \mathrm{c}
\end{gathered}
\]} & \multirow[t]{3}{*}{－1．000000000} & \multirow[t]{3}{*}{P} & \multirow[t]{3}{*}{50248} & \multirow[t]{3}{*}{1.000000000} & \multirow[t]{3}{*}{P} & \multirow[t]{3}{*}{501486} \\
\hline RHS LU： & & & & & & & \\
\hline RHS UP： & & & & & & & \\
\hline SOMISO & \multirow[t]{3}{*}{\[
\begin{gathered}
E 0 \\
0.0000000 \mathrm{C0} \\
0.005005000
\end{gathered}
\]} & \multirow[t]{3}{*}{\(-1.060500000\)} & \multirow[t]{3}{*}{P} & \multirow[t]{3}{*}{SOMIS} & \multirow[t]{3}{*}{1.000000000} & \multirow[t]{3}{*}{P} & \multirow[t]{3}{*}{50ALSC} \\
\hline RHS LOI & & & & & & & \\
\hline RHS UP： & & & & & & & \\
\hline F008」 & \multirow[t]{7}{*}{\[
\begin{aligned}
& \text { EO } \begin{array}{l}
312 \\
\text { C. UONC, } \\
\text { C.OOUCJOCG }
\end{array}
\end{aligned}
\]} & \multirow[t]{7}{*}{\begin{tabular}{l}
－0．1＞0000000 \\
－1：．© 3 J OOU0 \\
－1ン．7コJCNOC \\
－12．48jこと uvu \\
－6C．CCJCCLOO \\
－21．ccuccoo \\
－ \(1 . \mathrm{LCLOOOUJ}\)
\end{tabular}} & P & ＋OC3\％ & \multicolumn{2}{|l|}{－9．030000000} & FOC4P \\
\hline RHS Lus & & & L & FO4BA & －13．37000030 & ？ & FC4CA \\
\hline \multirow[t]{5}{*}{RHS UP：} & & & 1 & FCSE8 & \multirow[t]{2}{*}{\[
\begin{aligned}
& -14.32000000 \\
& -21.00000050
\end{aligned}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l} 
l \\
\hline
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{l}
FO5CA \\
FOVGO \\
FOCKC \\
FOnIS
\end{tabular}} \\
\hline & & & P & Fごう06 & & & \\
\hline & & & P & FOCA \({ }^{\text {c }}\) & －30．0しJ00000 & & \\
\hline & & & F & fulad & \(-20.00000000\) & & \\
\hline & & & \(P\) & FOIACSI & & & \\
\hline \multirow[t]{2}{*}{FOC 3PO \({ }_{\text {RH，LJi }}\)} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
－1．C1－iコしにう \\

\end{tabular}} & \multirow[t]{2}{*}{\(\stackrel{ }{*}\)} & \multirow[t]{2}{*}{Fucisp くしでうPurm} & \multirow[t]{2}{*}{\[
\begin{aligned}
& -1.006000000 \\
& -1.00 C O O C C O O
\end{aligned}
\]} & \multirow[t]{2}{*}{P
\(p\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { FOC } 4 P \\
& \text { ZOC } 3 \text { POFP }
\end{aligned}
\]} \\
\hline & & & & & & & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|}
\hline －1．000303000 & 105CBCFP \\
\hline －1．000000500 & P 305CBOFP \\
\hline 1.000000000 & P FOSCA03M \\
\hline 1．000．j00n00 & P FOSC803 \\
\hline 1．000）20000 & P FCSCB05P \\
\hline －1．000000000 & 2050a0f \(n\) \\
\hline 1.000300000 & F0S0402m \\
\hline ．000300000 & 2050805 m \\
\hline 1.000303000 & P F050802M \\
\hline
\end{tabular}
\(-1.00 C 000000\) P 10 VG00FM
\(1.0000000 C 0\) P FOVGOC
\(1.000000 G 00\) P FOVROC
1.000000000 P FOCKAC
1.000000000 P FOCKAC
1．0000COCOO P FOCKCC
1.0000000 UU P FESAGC
1．00C00CCOO P FOIATC
1.000000000 PFO1ABC
1.000000000 P FONASC
\(-1.000 C 000.00\) P \(10 N P 1 P O 2\)
\(1.00 C C 00000\) P ICSAAU2P
1.000000000 P 1OSAAC2P 1.000000000
1.000500000
1.0000
1.00000000
1.000000000
1.000509000 \(\quad 10 C 4 P 03 P\) 1.000509000 P \(104 C A 03 P\)
1.000000000 P \(105 C A 03 P\)
1.000103500 P \(10 C 4\) P04P
\begin{tabular}{|c|c|c|c|c|}
\hline 9141く1：1 & x & ＂．！．．．－ & Te \(\quad\) i & 5（dy）A）t \\
\hline denvognt & \(d\) & ngesonnans 1 & c）osorsoog．0 & 1 CO SHy \\
\hline dE＾サマムतt & \(\cdots\) & caconos？ 1 & กา．000 \(300^{\circ}\) & 101 S4y \\
\hline EndIdinf & k & corangoコヘ＊ & BEE O？ & E？dvjdot \\
\hline dフロロア¢の1 & \(d\) & の刀ロッ）（u？n＊ & & \\
\hline dてつvoヶ0t & d &  & 000 \(000000^{\circ}\) & idn SH\％ \\
\hline －2．0才VNOt & d & gncnocnjo i & \(000000000^{\circ}\) & 107 ¢Hy \\
\hline \multirow[t]{3}{*}{2011dつt} & 7 & コロロッフロロッグ：－ & QEE CJ & 20dvodot \\
\hline & & & \(050009000^{\circ} \mathrm{O}\) & 1 dn SHy \\
\hline & & & \(090600000^{\circ} \mathrm{O}\) & 107 SHy \\
\hline \multirow[t]{3}{*}{SINOS} & \(d\) & （ncosoon \({ }^{\circ}\) I－ & LEE O？ & OSTMOJ \\
\hline & & & 0าロワา0ヶ00＊ロ & idn SHy \\
\hline & & & 0 OCOOSCOCO & 1 Cl ＜4y \\
\hline \multirow[t]{3}{*}{8ャtoy} & \(d\) & 000000000 \(1-\) & QEE O3 & O8v \(0 才\) \\
\hline & & & \(990000000^{\circ} 0\) & ifn 54\％ \\
\hline & & & cocconrco \({ }^{\circ}\) & 101 SHy \\
\hline \multirow[t]{3}{*}{LVTCS} & \(d\) & \(000000003^{\circ} \mathrm{I}-\) & CEE OJ & OLVIOJ \\
\hline & & & 0000000Cが0 & ton SHy \\
\hline & & & 00500） \(000^{\circ} \mathrm{O}\) & 107 SHy \\
\hline \multirow[t]{3}{*}{9マ10」} & \(d\) & 00ククロ（？J） & ¢¢E 0 ？ & 09V \(0 \pm\) \\
\hline & & & \(030010 \mathrm{COO} 0^{\circ}\) & idn Shy \\
\hline & & & \(050009000^{\circ}\) & \(10754 y\) \\
\hline \multirow[t]{3}{*}{\(3 \times 305\)} & \(d\) & \(000500000^{\circ} \mathrm{I}\) & EEE O3 & 05x 005 \\
\hline & & & \(000030000^{\circ} 0\) & idn 548 \\
\hline & & & \(070000000^{\circ} 0\) & 101548 \\
\hline \multirow[t]{3}{*}{8） 305} & \(d\) & COCOOCOOT \({ }^{\circ} \mathrm{T}\) & 2fe 03 & 08xjos \\
\hline & & & \(070000900^{\circ} 0\) & idn Shy \\
\hline & & & \(07 \mathrm{COOOCO} 0^{\circ}\) & IOT SHy \\
\hline \multirow[t]{3}{*}{V900t} & \(d\) & 0000000 ？ \(0^{\circ}\) T－ & TEE 03 & \[
0 \vee \times 304
\] \\
\hline & & & \(000000000^{\circ} 0\) & d dn SHy \\
\hline & & & O）ccoojo \({ }^{\circ} \mathrm{O}\) &  \\
\hline \multirow[t]{2}{*}{O8＾0才} & \(d\) & 200000000 \({ }^{\circ}\) I－ & OEE OF & OOXAOJ \\
\hline & & & \(300000000^{\circ} \mathrm{C}\) & 1 dn 548 \\
\hline Wナ009A0s & \(d\) & & 3） \(0000000^{\circ}\) & 101 S4y \\
\hline 09ペ」 & \(d\) & \[
\text { ncnonroos. } \mathrm{T}=
\] & 62 EF & 009A03 \\
\hline \multirow[t]{2}{*}{WS090，0t
WJO日OGOG} & \(d\) & \(200000000^{\circ} \mathrm{T}\) & \[
030000000^{\circ} 0
\] & \\
\hline & \(d\) & กクワク000ワ0年－ & \(0^{\circ} 00000000^{\circ}\) & CCT SHy \\
\hline g0cof & \(d\) &  & －2E O3 & 083C03 \\
\hline \multirow[t]{3}{*}{\[
\begin{array}{r}
\text { wgovorns } \\
\text { winvoing } \\
\forall 0 \text { ind }
\end{array}
\]} & \(d\) & ncconcons 1 & 910005000 0 & idn 548 \\
\hline & d & nnjoocosio I- & \[
000 \operatorname{coc} 00^{\circ} 0
\] & tot SHy \\
\hline & \(d\) & \(000090000^{\circ} \mathrm{t}-\) & \[
\text { L2६ } 03
\] & OVOSOS \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{N4O80ccos
Nzngosint}} & \(00005 \operatorname{coso}\) & & \\
\hline & d & （nn7urno．il & & \\
\hline Hinojrca & \(d\) & coscoronoto & njoc） \(\mathrm{SCOCO}^{\circ}\) & 1 dm SHy \\
\hline \multirow[t]{4}{*}{\[
\begin{array}{r}
\text { aynpjar? } \\
\text { qjery }
\end{array}
\]} & \(d\) & \[
\text { กล } 22^{\circ} \text { cion• }
\] & クวミcnoruo.0 & 101 54＊ \\
\hline & 1 & cr．voseonlor & \[
\text { वटह } \quad \text { ? }
\] & OPJGOJ \\
\hline & & & fNI + & tan 548 \\
\hline & & & 3）Mobuconey & 10764 \\
\hline フロブつの」 & \(d\) & のrnnore：くで－ & く？¢ 79 & Wltosnt \\
\hline
\end{tabular}
TPIPU3
． 000000000 P \(10 N A P O 5 P\) 1.000000000 P \(1040405 P\) 1.000000000 P \(10 N A P O F P\)
1.000000000
1.000000000
\(1040 A O F P\)
1.000000000
1.000000000 1．000000000 205CA01P
AEOV 2602
dEOV \(2402 ~\)
AEOSH502 S 00000000000





1082502
\(10 V 0502\) d \(000000000^{\circ} \mathrm{I}\)
\(1108 V H 02 ~\)
\(1000000000^{\circ} \mathrm{T}\)

\begin{tabular}{l}
1.000000000 \\
1.000000000 \\
\hline \\
1.000000000 \\
\hline
\end{tabular}
1.000000000 P 30NAPO4P
1.000000000 P \(3040 A 04 P\) 6
0
0
0
6
0
0
0
0
SSOQJSOE \(000000000^{\circ} \mathrm{T}\)
dSOSVNOE d \(000000000^{\circ} \mathrm{T}\)
JJOSJ5OE \(000000000^{\circ} \mathrm{T}\)
JJOVOHOE \(000000000^{\circ} \mathrm{T}\)
dSOAVNOE \(000000000^{\circ} \mathrm{T}\)
dIOVOSOS \(000000005^{\circ} \mathrm{I}\)
dTOAVNOS \(000000000^{\circ}\) I 11005505 d \(000000000^{\circ} \mathrm{T}\)
20
0
0
2
10
0
0
4
0
88
88
88
88
88
80
0


 L． 2003130000
\(1.3003) 00500\)
1.0
1.000300000
\(P\) \(104 C 405 P\) \(\qquad\)



\(a\)
0
0
0
0
6
6
68
88
88
88
8
8
dYOVJHOZ \(000 C C 000 C^{\circ} 1\)
dYOdH50Z \(000000000^{\circ} 1\) \begin{tabular}{l}
6 \\
8 \\
6 \\
8 \\
8 \\
0 \\
8 \\
8 \\
8 \\
8 \\
8 \\
0 \\
\hline
\end{tabular} 1.000090000 P 20C4PO5P
1.000500000 P 204CAO5P d与OV 592 O \(00000 \mathrm{COO} 0^{\circ} \mathrm{I}\)
1.000000000
1.000500000
1． \(20 C 4\) 204CAOFP
1.000000000
1.000300000
1.000000000 \(P \quad 3063 P 01 P\)
dZOVOYOE d \(00000 C 000^{\circ}\) i
dZOAEJOE d \(000000000^{\circ}\) i
1．000000000 P 3058802P
1.000900000
1.000500000 \(P \quad 30 C 4 P 04 P\)
1.000000000
1.000300000
n \(30 C 4 P 05 p\)
1.000000000 p \(305 C A 05 p p\)

dT0d4504d 00000c000 1 1.000900000 P \(404 C A 01 P\)
1.000200000 P \(405 C A 01 P\)
0
N
0
0
0
0
0
0
0
0
0
0
8
8
0
-
\(=\)

1.000 .90300
1.000000000
\(1.000404 C A O 3 P\)
1.00000000 1．JELVOUCDO \(P\) 1CC3PCSP
1．ICCUCUUUO P 1C4BALSP


20
0
3
0
2
2
2
\(N\)


1.000000000 P \(20 C 3 P G 4 P\)
\(1.000006000 P\)
\(1.0006 C 0 C 00 ~ P ~ 20588 C 4 P\)
1.000000600 P \(20 C 3 P 05 P\)
\(1.00 C 000000\) P \(2048405 P\)
\(\begin{array}{r}1.000600000 \\ 1.000000000 \\ 1.000000000 \\ 1.0204 B A O F P \\ -1.000000000\end{array}+305 B B O F P\)

\(1.00 C 000600\)
1.000000000 \(P 30 C 3 P 04 P\) \(1.000000000 P\) 304BA04P
\(1.004000000 P 3058804 P\)
1．OOCOGOU0U P 30C3POSP
\(1.00 C 000000\) P \(304 B A 05 P\) \(a\)
\(n\)
0
0
6
0
5
5
0
\(m\)
0
0
1．000000U60 P 30C3PCFP \(1.00 C O C V O U 0\) P \(3648 A C F P\)
1.000000000 P \(3058 B O F P\) 0
2
2
-1
0
0
0
0
0
8
0
0
8
0
0
\(d I .988504\) d \(007000900^{\circ}\) t
\(d F 9 V 8404\) d \(000003000^{\circ}\) t
\begin{tabular}{l}
0 \\
\multirow{1}{0}{} \\
0 \\
2 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
3 \\
0 \\
0 \\
0 \\
0
\end{tabular} \(1.000000000 p\) \(4048402 P\)
\(1.00 C 000000 P 4038802 P\)
\(a\)
9
\(m\)
0
2 0
 1． 1 LUJUCLIVG P IUGAALFP
1．LUUOCGCOO P IUSAALFP
\(=3\)
2
\(a\)
\(a\)
3
\(n\)
2
2
0
0
0
3
3
0
3
0
1
\(\begin{array}{lll}a & 2 & a \\ =0 & 3 & -3 \\ a & 4 & 0 \\ 4 & 0 & 0 \\ 0 & 5 & n \\ n & n & n\end{array}\)
 1．CCOJCOGGO P \(2 J 4 D A O 3 P\)
\(1 . O C L J U O U J O P\)
\(2 U 5 S C O 3 P\)
－1．GOUVOOLOG L 2UTP1PO4 \(1.00 C G O O O C L P\) 2G4AAOGP
1．LUOJGOOLU P \(205 A A U G P\)
－1．CU0000000 × 20TPIPOS L．GCOUUCOOG P 2U4AAUJP
\(1 . O G O J 00000 ~ P ~ 205 A A N S P ~\)
\(-1 . C O C J O 0000\) \＆ \(201 P I P O F\)


\(a\)
0
0
0
0
0
\(m\)
0
0
3
3
3
3
3
0
3
0
0 1．CCODU0000 P 3UNPIF02
\(\begin{array}{ll}1 & 4 \\ 0 & 3 \\ 2 & 2 \\ 2 & 2 \\ 2 & 3 \\ 1 & 2 \\ 4 & 2 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 3 & 0 \\ 0 & 8 \\ 0 & 8 \\ 0 & 0 \\ 1 & =\end{array}\)

\(-1.0600 C 0000 \mathrm{~L} \quad 30 \mathrm{TPIPO4}\)
\(\begin{array}{ll}a & a \\ 0 & 0 \\ 3 & 8 \\ 4 & 4 \\ 5 & 3 \\ m & n \\ 0 & a \\ 0 & 3 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 3 & 3 \\ 3 & 0 \\ 0 & 0\end{array}\)
 1．OCOUVOOUO P 3CSAAOSP
\(-1 . \angle O C O C O 000 \times 30\) TPIFOF 1.060000000 P \(304 A A U F P\)
1.060000000 P \(305 A A G F P\)
0
0
0
0
0
0
2
0
8
8
0
0
3
0
0
1．CCOJOCOGO P \(404 A A C I P\)
1．CLOJOOUNJ P \(4 C S A A O L P\)
\(N\)
0
2
2
\(\vdots\)
3
2
2
0
3
3
0
3
3
3
0
0


응
\(\begin{array}{rr}E 0 r & 347 \\ 0.000000060 \\ 0.000000060\end{array}\)
00
50
10
0
0
3
60
680
108
08
0
00
\(w 0\)
10
18
\(m\)
0
0
0
0
0
4
0
0
\(60 r\)
\(0.0000000 C 0\)
0.000000000
 0
0
8
0
0
0
0
0 \(m 8\)
\(n 0\)
\(m 0\)
0
0
0
3
4
0
0 50
18
\(m 0\)
3
8
08
48
0 10
\(\kappa 0\)
0
0
3
3
3
0
0
0
0
3 IJPCAP U
RHS LU：
RHS UR：
IUPCAPOF
RHS LU：
RHS UPB
2OPCAPUI
RHS LO：
RHS UP：
OPCAPOI
RHS LJ：
RHS UP：
20PCAP 04
2OPCAPO4
RHS LJ：
RHS UP：
2OPCAPO5
RHS LU：
RHS UP：
40
20
6
4
0
0
0
0
-1

3OPCAPO2
RHS LO：
RHS UP：
\(30 P G S B O 4\)
MHS LO：
KHS LO：
RHS UP：
\(30 P C A P O S\)
RHS LU： \(30 P C A P O F\)
RHS 108 RHS UF： OOPCAPOL
RMS LD：
RMS UP：


\footnotetext{
のジらず
OPCAPO3
RHS L9
RHS UP
}
1. 000000000 P 40 NAPOFP
1.006000000 P \(4040 A O F P\)
1.000000000 P \(405 C 8 O F P\) 1.006000000
1.000000000
1.000000000 \(\operatorname{s04APO1P}\) 505C801P 1.000000000 P 50 NAPO3P
1.000000000 P \(5040403 P\)
1.000000000 P \(505 C 803 P\)
 dJOQSGOG d \(000000000^{\circ}\) I
dJOVOYOG d \(000000900^{\circ}\) T
JOOVNOG \(000000000^{\circ}\) T
\(\begin{array}{ll}\text { dZOVS50\& } & 000000000^{\circ} \mathrm{T} \\ \text { dTOVO4OH d } 000000000^{\circ} \mathrm{T} \\ \text { dTOdVNOS d } 000000000^{\circ} \mathrm{T}\end{array}\)
1.000000000 FOMAPO2P
1.000000000 FO4OAO2P
1.000000000 P FONAPO3P
1.000000000 FO4DAO3P
1.000000000 P FONAPOSP
1.000000000 P FOSAAOSP

SGOQSGO』 \(050000000^{\circ} \mathrm{T}\)
SSOVOSOI \(000000000^{\circ} \mathrm{T}\)
ASOdVNOS d \(000000000^{\circ} \mathrm{T}\)

 1.000000000 P 10 HAPO3n
1.000000000 P \(1040 A 03 \mathrm{M}\)
1.000000000 P \(105 C B 03 \mathrm{~K}\)
\begin{tabular}{l}
\(1.0 G 0000000\) \\
1.00000000 \\
1.0 \\
\hline
\end{tabular}

 1.CCUUUCUOO P 1040 AFM
\(1 . J U O U O C O O O\)
\begin{tabular}{|c|c|c|}
\hline 1.0 .00000500 & \(p\) & 4UC3PUFP \\
\hline 1.036ữju) & P & 4048 ACFP \\
\hline 1. JOCNOLOUO & P & \(4028 B O F P\) \\
\hline
\end{tabular}
 S 40 PCAPGR WOP CAPGF
RHS LUI
RHS UP:


 \(m a\)
-30
0
0
0
0
3
6
6
\(\times 0\)
0
0
0
0
0
0
0
3
3
3
2
1 \(\begin{array}{ll}a & a \\ 0 & 0 \\ 0 & 4 \\ 4 & 4 \\ 0 & 0 \\ 0 & n \\ 0 & a \\ 3 & 3 \\ 0 & 3 \\ 0 & 3 \\ 0 & 3 \\ 0 & 3 \\ 0 & 3 \\ 0 & 0 \\ 0 & 4\end{array}\) \(-1.000000000 \times 501 P 1\) PO 1. CCVOOOOOO P SOSAAO4P

\section*{\(-1.0 \cup C U 000 J J\) SOTPIPOF} 1.CCOJJGOUO P SOSAAOFP - 1.0 LCDuvjuu \(\times\) fotplpgl
 \(-1.0 \cup 0000000 \times\) FOTPIPUZ
\(1.0000 G 0000\) P FUAAAO2P
\(1.0003000 J 0\) P FOSAAD2P \(-1.0 C J 000000\) X FOTPIPU3
\(1 . C 0 C 00000\) P FO4AAU3P
1.000006000 P FOSAAC3P 1.OUOUOLOOU.P FOSAAU3P

\section*{\(-1 . C O O J O O C O O\) X FOTPIPO4
1.OUCOOCCLC P FOGAAOLP}

 1.CCOOOJOUO P FOSAAOSP

 P 1050 avza
orrancza \(x\)
0
0
0
0
0
0
0
0 1. Culugcuju p lúdajan



\(E 0\)
\(0.0300 c 00 \mathrm{~L}\)
0.000 0.0000000 0!
 \(0.000 O C O O O O\)
U. OUCOOOOCO N \(\begin{array}{r}10 \\ 08 \\ 10 \\ \hline 0 \\ 0 \\ 0 \\ 2 \\ \hline\end{array}\) 10
00
10
0
3
0
0
0
0
4
4
0 3
0
m
a
\(=3\)
\(=3\)
0
0
3 IUNCAPO3
RHS LO:
HHS UR:

1OHCAPJ,
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 20MCAPuL & ic 372 & －1．0．ひ儿いった。 & \({ }^{+}\) & 2：ImAKU1 & 1.100000000 & P & \(2 U C 3 P G 1 / 4\) & 1．J0030 2000 & P & 2UC4P01H & 1．000000000 & P & 20NAPO1M \\
\hline Ras Lut & c．ucuevoocu & 1－（60） & P & 2U4ASCIA & 1．000COOCOO & P & 204BACIM & 1．U09700000 & P & 206CAUI品 & 1．COCOOOCOO & P & 2040A01n \\
\hline \multirow[t]{2}{*}{RHS} & －000うJ）u（0 & 1－CluviuJu & H & CCJAAJLA & 1．00COCOCNO & P & 20ヶB801M & 1． 000300000 & P & 205CAOLM & \＄．000000000 & － & 205C B01M \\
\hline & & 1．1しつろuひ」 & P & 20¢0AC1M & 1．00C000300 & P & 2050801／ & 1．000300000 & P & 20VG001m & & & \\
\hline 2OHCAPO3 & 上」 373 & －1．0060000e0 & H & 201hakul & 1．000006000 & P & 20C3PG3A & 1．0c0300000 & P & 20C4P03n & 1．000000000 & P & \(20 \mathrm{NAPO3M}\) \\
\hline QHS LJ： & 0.000000060 & 1．Gulocioun & － & 20\＆AAv3a & 1．OOCOCOCOO & P & 204BAC3M & 1.000000000 & P & 204CAC3M & 1.000000000 & \(P\) & 2040403M \\
\hline \multirow[t]{2}{*}{RHS UP：} & 0．0002u0cco & 1．Ulữulujo & \(p\) &  & 1．000000000 & P & 205B803H & 1．000300000 & P & 205CA03M & 1.000000000 & P & 205CB03M \\
\hline & & 1．C00600000 & P & 2050AC3M & 1.000000000 & \(P\) & 2050803H & 1.000300000 & \(P\) & 20VG003m & & & \\
\hline 20MCAPGS & EO 374 & －1．lJCJunjui & P & 2UTMARUS & 1．00ccccúoo & P & 20C3P05H & 1．000000000 & P & 20C4P65M & 1．000000000 & P & 20NAPOSM \\
\hline RHS LU8 & \(0.6000030<0\) & 1．CUOJU0000 & P & 20ヶAAGSM & 1.000000000 & P & 2048405 H & 1． 700200000 & P & 204CA03A & 1.000000000 & P & 2040405M \\
\hline \multirow[t]{2}{*}{RHS UPI} & 0.000000000 &  & P & 2JSAAOSA & 1．00C000600 & P & 2058805 H & 1．000300000 & P & 205CA05m & 1．000000000 & － & 205C805M \\
\hline & & 1．CCOUVOOOO & P & 2050A02H & 8.000000000 & P & 2050日C5A & 1.000000000 & P & 20VG0C5M & & & \\
\hline 2OMCAPOF & E0 375 & －1．ciloucucios & P & 20TMAKOF & 1.300000000 & P & 20C3PGFH & 1.000300000 & P & 20C6POFH & 1.000000000 & P & 20 NAPOFN \\
\hline RHS LO8 & 0.000000000 & 1．00ujucluy & \(P\) & 2JGAAOFA & 1．000000000 & P & 2048 AOFA & 1． 000000000 & P & 204CAOFM & 1．000000000 & P & 2040AOFM \\
\hline \multirow[t]{2}{*}{RHS UPB} & 0.000000000 & \(1.02050 c 035\) & P & 20SAAGFM & 1.000000000 & P & 2C5BBCFM & 1.000000000 & P & 205CAOFM & 1.000000000 & － & 205C80FM \\
\hline & & 1．C00NOC0J0 & \(P\) & 205DACFA & 1.000000000 & P & \(205080 F H\) & 1.000000000 & P & 20VG00FM & & & \\
\hline 3OHCAPOL & E0 376 & －1．06c． 200000 & P & 30 TMAROL & 1． 00000000 & P & 30C3P01m & 1.000000000 & \(p\) & 30C4P01M & 1.000000000 & P & 30NAP01M \\
\hline RHS LO\＆ & 0．00JVO20CL & 1．ccojuunco & P & 304AAOIA & 1．006000000 & P & 3048401H & 1.000000000 & P & 304CA01M & 1．000000000 & P & 3040 AO1N \\
\hline \multirow[t]{2}{*}{RHS UP：} & 0.0000000 co & \(1 . C\) CuOOUOUN & P & 3isamela & 1.000000000 & P & 3058001～ & 1.000500000 & P & 305CA01M & 1.000000000 & P & 305C801M \\
\hline & & 1.000000000 & P & 305DACIM & 1.000000000 & P & 3050801 M & 1.000000000 & P & 30V6001n & 1.000000000 & \(P\) & 30VACOIM \\
\hline 30 MCAP 02 & E4 377 & －1．000000000 & P & 30 Tmaroz & 1.000000000 & P & \(30 \mathrm{C3P02H}\) & 1.000500000 & P & 30C4P02M & 1.000000000 & \(p\) & 30MAPO2N \\
\hline RHS LO： & 0.0000000 CC & 1.060000000 & P & 304AAO2M & 1.000000000 & P & 3048402月 & 1.000500000 & P & 304CA02M & 1．000000000 & P & 304DA02M \\
\hline \multirow[t]{2}{*}{RHS UP：} & 0.000000500 & 1．CCOUC0000 & P & 305AAU2M & 1.000000000 & P & 3058802H & 1.000000000 & P & 305CA02m & 1.000000000 & P & \(305 C 802 \mathrm{H}\) \\
\hline & & 1．ccos00600 & P & 3050402 & 1.000000000 & P & 3050802 A & 1.000000000 & P & 30V6002M & & & \\
\hline 30 nCAP 05 & EO 378 & －1．CCLOOnuJo & P & 3UTMARUS & 1．000000000 & 8 & 30C3PC5M & 1.000000000 & P & 30C6P65M & 1．000000000 & P & 30NAP05M \\
\hline RHS LO： & D．COOOCOOOO & 1．OUNOOOCOO & P & 304AACSA & 1．00C000000 & P & 3C4BAO5M & 1.000000000 & P & 364CAO5m & 1．600000000 & － & 3040A05 N \\
\hline \multirow[t]{2}{*}{RHS UP：} & \(0.0000600 C 0\) & 1．CCCJOCOJC & P & 305AA05M & 1.000000000 & P & 3058005 m & 1.000000000 & P & 305CA05H & 1．000000000 & P & 305CB05N \\
\hline & & 1．OC0000000 & P & 3050405H & 1.000600000 & P & 3050805 m & 1.000000020 & P & 30V6005M & & & \\
\hline 3OHCAPOF & E 379 & －1．0C000c000 & P & 3OTMAROF & 1.000000600 & P & 3CC3PCFM & 1.000200000 & P & \(30 C 4\) POFM & 1.000000000 & P & 30 NAPOFM \\
\hline RHS 108 & －．0．j0こ000し0 & 1－CCOJVOOOO & P & 304AAUFM & 1.00000000 & P & 304BAOF & 1.000500000 & P & 304CAOFM & 1．000000000 & P & 3040AOFA \\
\hline \multirow[t]{2}{*}{RHS UP：} & c．0CJUCJOCO & 1．CCCNOUGuJ & P & 30SAACFA & 1.004000000 & P & 3058605 M & \＄． 000000000 & P & 303CAOFM & 1.000000000 & \(P\) & 305600FM \\
\hline & & 1．CCOOO0000 & P & 305DACFA & 1.000000000 & \(P\) & 305080 H ¢ & 1.000000000 & P & 30VGOOFM & & & \\
\hline SONCAPCL & ¢0 360 & －1． \(12 C C O O C O O C\) & P & SOTHAROL & 1.000000000 & P & S0C3PC1M & 1.000000000 & P & 50C4P01M & 1.000000000 & \(p\) & 50NAPO1M \\
\hline AHS CD： & 0．0J50，000し（ & 1．600000000 & P & 30\＆AAOLH & 1.000600000 & P & SO4BA04 & 1.000500000 & P & 504CA01M & 1．000000000 & P & 5040A01M \\
\hline \multirow[t]{2}{*}{RHS UP：} & 0.2035 CuGGO & －－ucuslujuy & P & SUSAAULA & 1．00COCCOOO & P & SC5B601H & 1.000000000 & P & 505CA01M & 1．000000000 & P & 505CBOLA \\
\hline & & \(1 . \operatorname{COCOOCOOO}\) & P & gOSDACIM & 1.000000000 & \(p\) & SC50801H & & & & & & \\
\hline SOHCAHO2 & EU 361 & －1．000000000 & P & 50thandz & 1.000003000 & P & 50 C 3 P 02 m & 1.000300000 & P & 50C4P02M & 1.000000000 & P & 50WAP02M \\
\hline RhS LJi & 0．030．」いJuć & 1．ccosocous & P & 504AAU2M & 1.000000000 & P & \(3 C 4 B A C 2 H\) & 1.000000000 & P & 504CA02M & 1.000000000 & P & 5040402M \\
\hline RMS UP： & \(0.00006 J 000\) & 1.006000000 & P & SOSAAOZA & 1.200000000 & \(p\) & 50588C2H & 1.000500000 & P & 505CA02M & 1.000000000 & \(P\) & 505C802m \\
\hline 50ACAPO3 & EO 3t2 & －1．000000000 & P & SUTMARO3 & 1.000000000 & P & 50C3PC3M & 1.000000000 & P & SOC4PO3H & 1．000000000 & \(P\) & 50 MAPO 3 M \\
\hline RHS LOA & 0.000000000 & 1.00000000 & P & 504AA03H & 1．00COOU000 & P & 504BA03M & 1.000000000 & P & 504CA03M & 1．000000000 & － & 5040403M \\
\hline \multirow[t]{2}{*}{RHS UP：} & 0.005001000 & 1－iく03Cし000 & P & SJ5AAU3M & 1.000600000 & P & 5C5B803H & 1.000000000 & P & 505Ca03M & 1.000000000 & \(P\) & 505 C 803 m \\
\hline & & 1．（OU）ごJJC & P & 5050AO3M & 1．00C000000 & P & 50508C3M & & & & ， & & \\
\hline \multirow[t]{2}{*}{SOHCAPOF
RHS LD：} & E0 363 & －1．000000000 & P & SOTMANOF & 1．000000000 & \(p\) & 50C3POFM & 1.000000000 & \(p\) & 50C4POFM & 1.000000000 & P & 50NAPOFM \\
\hline &  & 1．Jisuecuso & P & 504AAGFM & \＄．00ccosooe & P & \(504 B A O F M\) & 1.000000000 & P & 504CAOFM & 1.000000000 & P & 5040AOFM \\
\hline \multirow[t]{2}{*}{RHS UP：} & c． 000000060 & 1．C00000000 & P & 505AAUFM & 1.036900000 & P & 505860FM & 1.000000000 & P & 505CAOFM & 1.000000000 & － & 505CBOFM \\
\hline & & 1．CCOOOOGLO & P & SOLDAOFM & 1.000600000 & P & 50308OFM & 1.000000000 & P & SOVGOOFM & & & \\
\hline FOMCAPG1 & EO 3r4 & －1．0uvovooue & \(p\) & FOIMARJI & 1．00C000300 & \(p\) & FOC3POIM & 1．000）00000 & \(p\) & FCCAPC1M & 1． 000000000 & \(P\) & FOMAPOIH \\
\hline RHS LOS & と．cuz jersucu & 1．6．ujliaJuu & P & FJGAACSA & 1.0 ucccoc 06 & P & FO4BAC2A & 1.000300000 & P & FO4CAUsM & 1.000000000 & P & F040A01H \\
\hline KHS U12\％ & 1．0c \(\quad \therefore\) ¢rc & 1．1－j．1 & & 1－AA！im & 1．0ñcomes， & P & FCSBACIM & 1.000302 200 & P & FO5CAO1M & \(1.0000000 c 0\) & P & FO5C801M \\
\hline
\end{tabular}
1. OCCOOCOOO P FONAPO2H
1. 100006000 P FOOADO2H
1.000000000 P FOSCBO2H

 \(\pi\)
\(n\)
0
0
30
20
0
4
4
0
0
8
0
0
0 1. 000000000 P FOSC805 A
SOdIdIOT K 0000000日 \({ }^{\circ}-\) -.990000060 P 20NPIPO3
1.000000000 P 20TPCST

-.600000000 \& 60 PPIP05
\(-.800000000 \times 50195904\)
40d1d10s K \(000000005^{\circ}-\) -12.00000000 P LOTMAROF
-12.00000000 P 20 tharof
-12.00000000 P 30 Jmarof
-12.00000000 P SOtMAROF
-.000000000 P FOTMAROS

1.000000000 - FOC4PO3H
1.0000000000 P FO4CAO3
1.0000000000 P FOSCAO3H
\(\begin{array}{ll}1.0000 n 0000 & \text { P FOCAP } \\ 1.0000000000 & \text { FO4CAOSH }\end{array}\) 1.000000000 P FOSCAOSM \(-9.900000000 \times 10\) TPIPO3
1.000000000 P 10 TPCST \(\begin{array}{ccc}-.990000000 & \text { L 201PIPO3 } \\ -12.00000000 & \text { 20TPIPOF }\end{array}\)
-.500000000 P 30NPIPC2
\(-12.00000000 \times\) 30TPIPOF
-.600000000 L sorpapos
\(-1.050000000 \times 5018 \mathrm{POO}\)
\(-9.900000000 \times\) FOTPIPO3
-3.000200000 P 10ITARO5
\(\begin{array}{llll}n & n & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & n & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & i\end{array}\)

\begin{tabular}{l}
5 \\
5 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline
\end{tabular}
 3.000000000 P FO50BOS A
-.300000000 P 10 OPIPO2
-12.0000000 L 10 TPIPOF
-.270000000 P 20NPIPO1
\(-9.400606030 \times\) 20TPIPO5
-.420000000 P 30NP1POI
-1.000000000 L 30TPIPO5

\(-9.900000000 \times\) SOTPIPOZ
1.000000000 P SOTPCST
-.750000000 \& FOTPIFO2
2.OOCOC0000 P FOTPCST
-1.200000000 P lotando3



 soyvuloy a cjonoconset-
 1.000000600 P FOSOACJM -.jCuOUCLOU L LUTPIPO2
\(-9.900000000 \times\) JOTPIPOS

-.420000000 L 30TPIPGL
\(-.060 J 00000 \mathrm{~L} 301 P I P G 4\)
\(-4.9 C L O C C G O D \times 40\) TPIFO1
\(-12.00000000 \times 40 \mathrm{TPIPOF}\)


-4.960000000 P 101 MARO2
1.000000000 P IOTACST




100
200
0
0
0
3
3
-3.
0.
n
m
0
0
0
0
0
03
\(i 3\)
\(i 8\)
 0
0
0
0
0
0
0
0
0
0
0
0
3
0
0
0
0
0
0
0
8
0
0 0.0000000 uC
न

no
30
30
3
3
3
3
3
0
2
2
0
 \(80 \quad 344\)
4.000000950
0.000005000 \(n 09\)
\(n 00\)
003
003
003
030
408

 a
3
3
3
3
3
 \(?\)
\(?\)
3

FOMCAPOS
RHS LUI
10PCOS
RHS LOA
RHS UP:
20 COSS
RHS LD:
HHS UP:
30 PCOST
RHS
RH: RHS LIA
RHS UPA
GOPCOST
RHS LJI
RHS UP:
SUPCOST
RHS LU:
RHS UP:
GOPCOSI
RHS IJI
RHS UPI
10nCEST
RHS LJı
KHS UP!
\(20 n \operatorname{COST}\)
RHS LUA
RHS UPI
合

, OHCOST

Orcust
RHS L.J:


Appendix C
REFINING INDUSTRY MODEL VALIDATION

\section*{Appendix C}

\section*{REFINING INDUSTRY MODEL VALIDATION}

\section*{C. 1 Background and Overview}

From a statistical analysis of U.S. refining industry capacity data (see Appendix D), the capacity limits shown in Table C-1 were developed for each PAD for large, medium, and small refinery size classifications.

Table C-1

\section*{REFINING CAPACITY LIMITS--1974 VALIDATION CASE}
(Thousands of Barrels per Calendar Day)

PAD District
I II III IV V

\section*{U.S. Total}

Small refineries \({ }^{*}\)
\begin{tabular}{lllllll} 
Lower limit & 180 & 700 & 700 & 420 & 500 & \\
Upper limit & 190 & 890 & 835 & 550 & 630 & \\
1974 reported \(\dagger\) & 211 & 888 & 832 & 547 & 627 & 3,102
\end{tabular}

Large refineries \({ }^{\neq}\)
\begin{tabular}{lllllll} 
Lower 1 imit & 1,200 & 2,500 & 4,520 & -- & 1,400 & \\
Upper limit \(\dagger\) & 1,300 & 3,150 & 6,130 & -- & 1,850 & \\
1974 reported & 1,466 & 3,142 & 5,300 & -- & 1,850 & \(\underline{11,712}\) \\
& & & & & & 14,814
\end{tabular}
* \(0-50 \times 10^{3} \mathrm{~b} / \mathrm{d}\).
\(\dagger_{\text {Reported }}\) stream-day capacities as of 1 January 1975, reported in Oil and Gas Journal (7 April 1975).
\# More than \(50 \times 10^{3} \mathrm{~b} / \mathrm{d}\).

Product requirements were based on those reported in Appendix D. Because the product categories reported in the "Petroleum Statement" do not in all cases correspond to those in the model, it was necessary to allocate as shown in Table C-2. Lower demand limits at the reported values were established for each of the major products in each district. For the validation work, the minor products were left unbounded. Limits were set

ALLOCATION OF BUREAU OF MINES PRODUCT CATEGORIES TO MODEL CATEGORIES

on inter-PAD pipeline capacities at an arbitrary 120 percent of reported 1974 rates (Appendix D) because actual capacities are not readily available in published literature. No minimum utilization requirements were set on either pipeline or marine shipments.

The remaining category of case-specific input data is that of prices of crude oil, natural gas liquids (NGL), and imported products. The prices used in the 1974 validation case are presented in Table C-3. Domestic product prices are not required for operating the refining industry model (RIM) in a cost-minimizing objective mode. Similarly, investment for existing facilities is considered a "sunk cost" and is not included in the validation process.

Detailed comparisons of RIM and BuMines data, by major product, are presented in Tables C-4 to C-6 for each PAD district. Refinery output, interdistrict movements by transportation mode, imports, and district demands are presented. Full output of the RIM validation case follows the comparison tables.

Table C-3
REFINING INDUSTRY MODEL FEEDSTOCK AND IMPORTED PRODUCT PRICES* (Dollars per Barrel)

PAD District
1 \begin{tabular}{lllll}
1 & 2 & 3 & 4 & 5
\end{tabular}

Feedstocks
\begin{tabular}{lrrrrr} 
Sweet crude & 9.65 & 9.65 & 9.25 & 9.25 & 9.25 \\
Sour crude & 9.40 & 9.40 & 9.00 & 9.00 & 9.00 \\
California blend & -- & - & - & - & 8.50 \\
Natural gasoline & 8.30 & 8.30 & 8.30 & 8.30 & 8.30 \\
Isobutane & 7.30 & 7.30 & 7.30 & 7.30 & 7.30 \\
Normal butane & 6.90 & 6.90 & 6.90 & 6.90 & 6.90
\end{tabular}

Product imports
\begin{tabular}{lr}
\(\mathrm{C}_{3}\) LPG & 8.19 \\
\(\mathrm{C}_{4}\) LPG & 9.03 \\
Naphtha & 14.15 \\
Gasoline (no-lead) & 15.83 \\
JP-4 & 14.53 \\
Jet A & 15.75 \\
Diesel (No. 2) & 14.32 \\
No. 2 fuel oil & 14.32 \\
No. 6 fuel oil (1ow S) & 12.48 \\
No. 6 fuel oil (high S) & 10.48
\end{tabular}

\footnotetext{
*Feedstock prices are estimated composite representative 1974 refinery acquisition costs. Product imports are representative 1974 prices FOB Caribbean refinery.

Sources: Platt's Oil Price Handbook and Oil Manual, 1974 prices, McGraw-Hill, New York (1974)
Federal Energy Administration, "Monthly Energy Review" (July 1976)
}
D. J. T. TRANSPORTATION SYSTEMS CEhtER
REFINING INDUSTRY MODEL - 1974 VALIOATION CASE
SUPPLY OEMAND GALANCE BY PRODUCT
MBPOI



HOTB: Figurea in parentheses are from the Bureau of Mines for 1974.
Table C-5
D. D. T. transportation ststems center
refining industhy model - 1974 validation case

petroleum aominstantion for oefense distaicts (pad) _--0-0-0
\(47.0(42) \quad 177.4(163) \quad 473.6(405) \quad 25.0(16) \quad 224.0(170) \quad 947.0(796)\)


Table C-6
13. 2. T. TRAHSPJRTATION SVEIENS GENT: ?
LEEFIN:NG IMDUSTRY HODEL - 1974 VALIMATIOU CASE
SUPPLY \(\cap\) EHAND RALANCE BY PKJOUCT



SECTION Q. 13
MIDNLE OISIILLATE BLENT
MIDOLE OISIILLATE

TNTER-PAO MOVENEHTS FROY..
Table C-6 (Concluded)
D. O. T. TRANSPOHTATION SYSTEMS CENTEH



HOTE: The figuren in parenthonee are from the Bureau of Minee for 1974.

\section*{C. 2 Refining Industry Model: Full Output for 1974 Validation Case}

The output tables on the pages that follow cover the matters tabulated below.
\begin{tabular}{ll} 
Section & \multicolumn{1}{c}{ Content } \\
A. & \begin{tabular}{l} 
Refinery output, inter-PAD transfers, imports, \\
and demand by product
\end{tabular} \\
B. \(\quad\)\begin{tabular}{l} 
Refinery output, inter-PAD transfers, imports, \\
and demand by PAD district
\end{tabular} \\
C. \(\quad\)\begin{tabular}{l} 
Refinery capacity utilization by PAD district, \\
size, crude type, and conversion severity
\end{tabular} \\
D. \(\quad\)\begin{tabular}{l} 
Refinery utility, manpower, operating costs, \\
and energy requirements
\end{tabular} \\
E. \(\quad\)\begin{tabular}{l} 
Summary of refinery input and output options \\
existing in the industry model
\end{tabular}
\end{tabular}

REFIHING，INOUSTPY HODEL－：G7－VALIIAAIOI C．f．SF．
\(9 \cdot 4\) ！z
\(-20-11\) n \(\begin{array}{ll}1 & \text { n } \\ i & \infty \\ i & \infty \\ 1 & n\end{array}\)
SUPPLY DEMAND TALAMCE BY PRODUCT
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 9＊ヶて2 & \(\mathrm{c}^{\circ} 82\) & \(1 \cdot 7\) & &  & \(9{ }^{\circ} 64\) & 9＊ 4 \\
\hline －S 01 & 5 & － & \(\xi\) & & 2 & 1 \\
\hline & \multicolumn{6}{|l|}{} \\
\hline & & & & & & （－1＊） \\
\hline
\end{tabular}
\(\qquad\)


0
\(\stackrel{\rightharpoonup}{i}\)
\(\stackrel{\rightharpoonup}{n}\)
：
\[
\begin{aligned}
& \sigma \\
& \dot{~}
\end{aligned}
\]
\[
\begin{aligned}
& \dot{u} \\
& \dot{p}
\end{aligned}
\]

THTER－PAD MOVEIENTS FROM．．
DISTRICT 1
PIPE－LINE
MARINE
DYSTRICT 2
PIPE－LINE
MISTRICH 3
PIPF－LINE
PIPFEL
MARINE
OISTRICT
3NI7－3dId
\(\rightarrow 101 d 1510\)
5 IJIEASIO
3NIEVN
DISTRICT 5
FIPE－LINE
FARINE
TOTAL DOMESTIC．RECEIPTS
PIPE－LINE
NOMESTIC SHIPHENTS
FOREIGN IMPJPIS／ーEXPORTS
PIPE－LINE
MARIHE
TOTAL SUPPLY MOVEMENTS
PIPE－LINE
MARINE
NISTPICT DEMAND
\[
79.6
\]
\(1 \cdot 75\)

כNI7－3dId
MARINE
FIPE－LIN
MARINE
J. 3. T. TRAMSPORTATION SYSTE:S G:HTE?
PEFIHING INDUSTRY MOOLL - \(197 \%\) VALIDATI



 19.1
E 2.7
INTER-PAD MJVEMENTS FROI..
OISIRICT I
PIPE-LINE
MARINE
OISTRICT 2
PIPE-LINE
MARINF
OISTRICI 3
PIPE-LITE
MARINE
OISTRICT
PIPE-LIHE
MARIUE
OISTRICTE
PIPE-LIHE
MARINE
TOTAL OOMESTIC RECEIPTS
PIPE-LII:E
PARINE
FOREIGN IMPOFTS/-EXPORTI
PIPE-LINE
MARIIIE
TOTAL SUPPLY MOVẼMÉHTS
PIPE-LINE
MARINE
ITSTPICT NEMAHIN
\[
14.1
\]
\[
13.4
\]
\[
1 \cdot 5
\]
1J.
\[
6^{\circ} \angle \tau
\]
SINEWdIHS 2IIS shun


REFIMTNG INGUSTRY ：HODRL－ 1974 VALIDATION GASE
SUPPLY NEMANO BALANCE BY PRODUCT

2・ロラリ
\[
29.1 \quad \text { L5. }
\]
\[
\begin{aligned}
& \text { (HPFD) } \\
& \text { PETERO }
\end{aligned}
\]


U.S.
~~
\(7=3.6\)
\(\because\)
\(\stackrel{~}{~}\)
\(\ddot{\sim}\)
\(-5\) 272 .
\(\stackrel{\ddots}{-}\) (MPDPS)
PETFO

\section*{82 \\ 1
212.5}
~
\(\underset{\sim}{\sim}\)
\(\stackrel{y}{\sim}\)
214.6
214.6

\begin{tabular}{r}
2 \\
\multirow{2}{c}{} \\
3 \\
3 \\
3
\end{tabular}
a
sin
sin
in
539.1
530.3
a
on
on
in
753.6
753.0
77.0-0.



\(692 . C\)
\(692 . i\)
～웅
\(\hat{\circ}\)
\(\stackrel{\rightharpoonup}{0}\)
\(\stackrel{0}{0}\)
\(\underset{\sim}{\sim}\)
76.4
fy2．i
3E6．5
\(\stackrel{i}{i}\)
inter－pad movements from．．
DISTRICI 1
PIPE－LINE
MARINE
DISIRICI 2
PIPE－LIHE
MARINE
OISTRICI 3
PIPE－LINE
MAPINE
DISIRICT 4
PIPE－LINE
MARINE
DISIRICI
PIPE－LINE
MARIHE
TOTAL DOMESTIC RECEIPTS
OOMESIIC
PIPE－LINE
MARINE
SINENAIHS JIISJWOU
FOREIGN IMPJRTS／－EXPDPT；
IGN IMPJRTS／－EXPDPT
PIPE－LINE
MARINE
TOTAL SUPPLY MOVZ̈MENTS
PIPE－LINE
MARINE
642.1
692.0
692.0
692.0
\(692 . \mathrm{c}\)
\(6 y 2 . \mathrm{c}\)
DISTRICT DÉMANO
y ・ロ NO1153S
LOW LEAD GASDLINE
REFINERY OUTPUT
T 1JIalSIO
MARINE PIPE－LINE
MARINE
PIPE－LINE
FOPETGN IMPコニ゙ TSIた
MARINE
INTER-PAO MOVEMENTS FROM..
OISTRICT 1
LEAD FREE GASULIVE
SECTIJHA. 7
find ino Aysmigay
DISTRICT 1
PIPE-LINE
PIPE-LINE
MARINE
OISTRICT 2
OISTRICY
MARIHE
DISTRICT 3
PIPE-LINE
PIPE-LINE
MARINE
DISTRICT
PIPE-LINE
MAFINE
OISTRICT 5
PIPE-LINE
3N17-3dId
TOTAL DOMESTIC REGEIPTS PIPE-LINE
MAPINE
ODMESTIC SMIPRENTS
FOREIGH IMPORTS/-EXPOPTS
PIPE-LINE
NARINE
TOTAL SUPPLY MOVEHENTS
PIPF-LINE
MARINE
nISTRICT OEMANO
\[
\begin{aligned}
& \text { …....... }
\end{aligned}
\]
0. 2. T. tranispohtayion ststelis gimite

SUPPLY DEMAISN BALANCE BY PROJUCT


○~~~
~2n
\(\stackrel{\sim}{\square}\)

\(0:\)

!

\(\stackrel{\sigma}{0}\)
11.3
67.8
\(\because:\)

1
7.7
35.1
13.6
21.5
35.1
13.6
21.5
42.
\& • \(\quad\) NOILOBS
JP-4 JET FUEL
Alldino AdENIs3y
inter-pad movements from..
DIETRICI 1
PIPE-LINE
FARIE
DISIRICI 2
PIPE-IIIE
MAPINE
OISTRICI 3
PIPELIME
MLPINE
OISIRIC
PIPELINE
MARIHE
OISTPIIT 5
PIPE
MARINE
TOTAL OOMESTIC RECEIPIS
PIPF-LINE
MARINE
SINJWdIHS JIISEhUU
FOREIGN IMFTJPTS/-EXPORTS
PIPE-LINE
MARIME
TOTAL SUPPLY MOVEMENTS
PIPE-LINE
HARINE


\footnotetext{
SECTITNA． A ：
}
nIESEL
Indino \(A\) EENI\＃Jy
INTER－PAD MOVEMENTS FROM．．
ISTRICT 1
PIPE－LIN
HARINE
OISTRICT
PIPE－LIME
DISTPICT 3
\(\begin{array}{ll}72.4 & 147.7 \\ 172.4 & 147.7\end{array}\)
147.7
147.7
\(\because\)

MHEDI
PETROL
－S＂ll

0
0
0
0
0
0
0

－

jupplr nemano nalamce．BY pronjot
\(\begin{array}{cc}3 & 4 \\ 552.1 & 153.9\end{array}\)



5
113.2
\(.4 E .8\)
\(\vdots\)

？？

HHPOI
PETROLFUM AOMIHSTRATION FOR DEFENSE DISTRICIS PPADI
HSTRATION F
3
552.1
147.7
\(\begin{array}{ll}172.4 & 142.4\end{array} \quad 147.7\)
\(\stackrel{\rightharpoonup}{\dot{j}}\)

\begin{tabular}{l}
\(\infty\) \\
\(\vdots\) \\
\hline
\end{tabular}
T
\(\begin{aligned} & \text { nISSEL } \\ &=-0-0-0-0-0-0-0-0-0-0-0-0\end{aligned}\)

SIdIJJ3y JIISENOO רV101
MARINE
ПOYESTIC SHIPMEHTS
FOREIGM IMPJFTS／EEXPORTS
PIPE－EIHI
IARINE
TOTAL SUPPLY MOVEMENTS
PIPE－LINE
MARIHE
OHシル？O IJIHISIU 7VIO』
REFINTNG INDUSTRY HMN:L - 1976 VALINATIG' RASE


2t・ロ 1.011035
0. 3. T. TRAMSPORTATION SYSTEMS CEMER
REFINTNT, TMOUSTRY MUREL - 197L VALIOATION CLSE
SUPPLY DEMAMD RALAMCE BY PGODURI
0. 2. T. TRAMSPORTATION SYSTEML CEMTEX
REFINTNT, TMOUSTRY MUNEL - \(197 L\) VALIOATION CLSE
SUPPLY DEMAMD RALAMCE BY PGODUCT
0. 3. T. TRAMSPORTATION SYSTEMS CEMIER
REFINTNT, TMOUSTRY MUOEL - \(197 L\) VALLDATION CLSE
SUPPLY DEMAMD RALAMCE BY PGODUCT U.S.
U. S.
-0.0.0.0 523.4
TPOLEUH AOMINSTRATION FOR DEFENSE OISTQIT,IS IPABI

70.1
76.0
is
813.6 \(\stackrel{\bullet}{\stackrel{\circ}{\square}}\)
1267.0
\(\because \stackrel{0}{0} \quad \stackrel{\vdots}{\vdots}\) 233.0

63.3
\(\underset{\sim}{m}=\)
13.3
2C 3.0
177.0
7r.
120.0
17.:
\(\square\)
63.3
\(7 € .\).
\(76 . j\)
76.1
\(\underset{\sim}{5}\)
786.7
785.7
d5: 0:
INTEROPAD MOVĒHENTS FROM.。
OISTRICT 1
EROPAD MOVĒHENTS FROM.
OISTRICT 1
PIPE-LIME
MARINE
DISTRICI 2
FIPE-LINE
MARINE
OISIPICT 3
PIPE-LINE
MARINE
DISIRICT 4
PIPELIINE
HARINE
DISIPICI 5
PIPE-LINE
MARINE
PIPE-LIME
MARINE
DISTRICI 2
FIPE-LINE
MARINE
OISIPICT 3
PIPE-LINE
MARINE
DISIRICT 4
PIPELIINE
HARINE
DISIPICI 5
PIPE-LINE
MARINE
PIPE-LIME
MARINE
DISTRICI 2
FIPE-LINE
MARINE
OISIPICT 3
PIPE-LINE
MARINE
DISIRICT 4
PIPELIINE
HARINE
DISIPICI 5
PIPE-LINE
MARINE
PIPE-LIME
MARINE
DISTRICI 2
FIPE-LINE
MARINE
OISIPICT 3
PIPE-LINE
MARINE
DISIRICT 4
PIPELIINE
HARINE
DISIPICI 5
PIPE-LINE
MARINE
PIPE-LIME
MARINE
DISTRICI 2
FIPE-LINE
MARINE
OISIPICT 3
PIPE-LINE
MARINE
DISIRICT 4
PIPELIINE
HARINE
DISIPICI 5
PIPE-LINE
MARINE
PIPE-LIME
MARINE
DISTRICI 2
FIPE-LINE
MARINE
OISIPICT 3
PIPE-LINE
MARINE
DISIRICT 4
PIPELIINE
HARINE
DISIPICI 5
PIPE-LINE
MARINE
PIPE-LIME
MARINE
DISTRICI 2
FIPE-LINE
MARINE
OISIPICT 3
PIPE-LINE
MARINE
DISIRICT 4
PIPELIINE
HARINE
DISIPICI 5
PIPE-LINE
MARINE
PIPE-LIME
MARINE
DISTRICI 2
FIPE-LINE
MARINE
OISIPICT 3
PIPE-LINE
MARINE
DISIRICT 4
PIPELIINE
HARINE
DISIPICI 5
PIPE-LINE
MARINE
TOTAL DOMESIIC RECEIPIS
PIPE-LIN
MARINE
DOMESIIC SHIPMENTS
FOREIGN IMPJFIS/-EXPOQTS
PIPE-LINE
NARINE
TOTAL SUPPLY MOVEMENTS
PIPE-LINE
MARINE
TOTAL SUPPLY MOVEMENTS
PIPE-LINE
MARINE
district deyand

HI SULFUP NO. E
\(-\infty-0-\infty-0-0-0-0-0-0\)
Indino ayjnls3y
PIPE-LINE
MARINE
J．0．T．TPANEPORTATION SYETLIAS CE゙MTE，

SUPPLY DLMANO AALANCE BY PNDOUCT
U．S．
\(0-0.0-0\).

9゚SE！
5
17.1

\(179.8^{3}\)
10.0 .0


PEPOS
PETRO
\(\begin{array}{rr}1 & 2 \\ 03.3 & 0.0 .0 .0 \\ 0.0\end{array}\)
L•日
PRTROLEUM ADMIHSTRATION FOR DEFENSE JISTRICIS（PAOI
533.2
ER－PAD MOVEMENTS FROH．．
OISTPICT 1
PIPE－LINE
MARINE
DISTPICI 2
PIPE－LINE
MAFIVE
OISIPICT 3
PIPE－LINE
MARINE
DISTRICI
PIPE－LINE
MARINE
DISIRICTE
PIPE－LINE
MARINE
TOTAL MOMESTIC RECEIPTS
PIPE－LIHE
MARINE
DOMESTIC SHIFMENTS

PIPE－LINE
MARIVE
TOTAL SUPPLY ROVÉMENTS
OISTRICT TEMARIN
1ndino Adzlityy
ONESTIC SHI MENT
PIPE－LINE
HARIHE
TOTAL SUPPLY ROVÉMENTS
\[
\begin{aligned}
& 0 \\
& \stackrel{0}{\sim}
\end{aligned}
\]
\[
\stackrel{?}{i}
\]
Indino AdENIJ38
INTER-PAO MOVEMENTS FRO\%..
\[
\begin{aligned}
& \text { DISTPICI } 1 \\
& \text { PIPE-LINE }
\end{aligned}
\] PIPE-LINE
MARINE
DISIRICT
PIPE-LINE
MARINE
DISIRICT
PIPE-LINE
MARINE
DISIPICI 4
PIPE-LINE
MARINE
DISTRICI
PIPE-LINE
MARINE PIPE-LINE
MARINE
DISIRICT
PIPE-LINE
MARINE
DISIRICT
PIPE-LINE
MARINE
DISIPICI 4
PIPE-LINE
MARINE
DISTRICI
PIPE-LINE
MARINE PIPE-LINE
MARINE
DISIRICT
PIPE-LINE
MARINE
DISIRICT
PIPE-LINE
MARINE
DISIPICI 4
PIPE-LINE
MARINE
DISTRICI
PIPE-LINE
MARINE PIPE-LINE
MARINE
DISIRICT
PIPE-LINE
MARINE
DISIRICT
PIPE-LINE
MARINE
DISIPICI 4
PIPE-LINE
MARINE
DISTRICI
PIPE-LINE
MARINE PIPE-LINE
MARINE
DISIRICT
PIPE-LINE
MARINE
DISIRICT
PIPE-LINE
MARINE
DISIPICI 4
PIPE-LINE
MARINE
DISTRICI
PIPE-LINE
MARINE PIPE-LINE
MARINE
DISIRICT
PIPE-LINE
MARINE
DISIRICT
PIPE-LINE
MARINE
DISIPICI 4
PIPE-LINE
MARINE
DISTRICI
PIPE-LINE
MARINE PIPE-LINE
MARINE
DISIRICT
PIPE-LINE
MARINE
DISIRICT
PIPE-LINE
MARINE
DISIPICI 4
PIPE-LINE
MARINE
DISTRICI
PIPE-LINE
MARINE PIPE-LINE
MARINE
DISIRICT
PIPE-LINE
MARINE
DISIRICT
PIPE-LINE
MARINE
DISIPICI 4
PIPE-LINE
MARINE
DISTRICI
PIPE-LINE
MARINE
TOTAL DDMESTIC RECEIPTS
PIPE-LINE
MARINE
nOVESTIC SHIPMENTS
FOREIGN IMPOPIS/-EXPORTS
PIPE-LINF
PIPE-LINE
MAPINE
TOTAL SUPPLY MOVEMENIS
PIPE-LINE
MAPIME
TOTAL SUPPLY MOVEMENTS
PIPE-LINE
MAPIME
oIStrict denamo

\section*{CECIITN A. 16}
LUAE. STDCKS
\(-0-0-0-\infty-\infty-\infty-\infty\)

\section*{}

0. O. T. THAHSPOPTATICH SVSTVHTS G:HIE?
REFIHING INRIISTRY MONTLL - 1974 VALINATITN CASF.
\(11 . S\).
424.9


SUPPLY DEMANO BALAFICE BY RROD'JCT
INTER-PAD MOVEMENTS FROM..
OISTRICT \({ }^{1}\)
PIPE-LINE
MARIHE
DISTRICT?
PIPE-LINE
MARINE
DISTRICT 3
PIPE-LINE
MARINE
PIPE-LINE
MARINE
OISTRICT 5
PIPE-LINE
TOTAL DOMESTIC RECEIPTS
PIPE-LINE
MARINE
nOYESTIC SHIPMENTS
FOREIGN IMPOFTS/-EXPORTS
PIPE-LINE
MARIPIE
TOTAL SUPPLY MOVEMENTS
WIPE-LINE
HOOINE
0157n 301 13:01510

\section*{ASPMALT AND ROAD OILS}

\section*{REFINERY OUTPUT}
OISIRICT I
PIPE-LINE
MARINE
DISIRICT 2
PIPE-LINE
MARINE
OISTRICT 3
PIPE-LINE
MARINE
OISTPICI 4
PIPE-LINE
MARINE
OISTRICT 5
PIPE-LTNE
MARINE

\(\qquad\)
3. ग. T. TRAMSPORTATION SYETEMG CE:IT:?
qefining inmustry nonel - 1984 valioation case
SUPPLY OEMANO ZALANEE BY PPODJCT
U. 5.
n.
i.
n:
1.4


14 BPOI
PtTPM
\(-\infty-\infty\)
\(-0-0-\infty\)

ER-PAD MOVEMENTS FROM.。
OISTRICT 1
PIPE-LINE
MRINE
DISIRICI 2
PIPE-LIME
MARINE
OISIRICT 3
PIPE \(-L I N E\)
MARINE
DISTRICT 4
PIPE-LINE
MARINE
DISTRICT 5
PIPE-LINE
MARINE

1ndino AdzNIAJy

\footnotetext{
TOTAL DOMESIIC RECEIPTS PIPE-LINE
MARINE

गomestic shipments
FORE IGN IMPJRTS/-EXPORIS
PIPE-LINE
MARINE
TOTAL SIIPPLY MOVEMEHTS
PIARELIE
HRE
}
nIstrict jeyano

SUPPLY DEMAND BALANLE HY PPOI:JCT
H.S.
E 2.3
!2.3
n
-0-0-0.--
2. 1
\(\begin{array}{rrr}1 & 2 & 3 \\ 5.9 & 25.2 & 13.0\end{array}\)
(MPP))
HING INDUSTRY HUDTL - \(19 ? 4\) VALIOAIIUN CASS
SUPPLY OEMANB BALANAE HY PPOUSOT
PETROLEUM ADMINSTRATION FOK DEF:HSE IISIRICIS (PAOI
45
2. 1

\(2.2 .2 \quad: n .0\) ?
TER-PAQ MOVEMENTS FPOH. .
OISTRICT 1
PIPE-LINE
MARIHE
OISIRICI 2
PIPE-LINE
MARINE
OISTRICT 3
PIPE-LINE
MARINE
OISTRICT
FIPE-LINE
MARINE
OISTRICT 5
PIPE-LINE
MARINE
TOTAL DOMESIIC RECEIPTS
PIPE-LINE
MARINE
nOȲ̄sTIC SHIPHENTS
FIREITNN TMPOFTS/-EXPORTS
PIPE-LINE
MARINE
FORE ITNN TMPOFTS/-EXPORT
PIPE-LINE
MARINE
TOTAL SUPDLY MOVËME.'TS
MAPINE
OISIPICT いE4\&:!
SECTITAN A. 19


\section*{Indino AyJNIfyy}
REFINERY OUTPUT
1
OISTRICT 1
PIPE-LINE
MARIHE
OISIRICI 2
PIPE-LINE
MARINE
OISTRICI 3
PIPE-LINE
MARINE
OISTRICT
FIPE-LINE
MARINE
OISTRICI 5
PIPE-LINE
MARINE
MARINE

Qeftilligi innuspar yoriel - 1974 valioation case SUDPLY DEMAND BALGHRE AY PRODUR,T

inter-pad movements from..
OISIRICT
PIPE-LINE
COKE (CAL CVIHEV
SECTION A. 23
PEFINERY CUTPUT
TOTAL OOMESTIC PECEIPTS
PIPE-LINE
MARINE
DOMESTIC SHIPMENTS
FORE IGN IHPOPTS/-EXPORTS
total supply movémevts
FIPE-LIME
MAKINE
nistaict gevarion
3. 2. T. TRANSPORTATION SVSIGHS RENTEO
ININT, INDISTRY MONEL - : g7L VALIUATIOH CASE
SUPPLY DEMANO MALANCE AY PRODUCIT


MITPOI
pLrOOL



                            \(\because\)



PIPE-LINE
MARINE
ORYESTIC SHIPRENTS
FOREIGN IMPJFIS/-EXPORTS
PIPE-LINIE
MARINE
FORE IGN IMPJFIS/OEXPORTS
PIPE-LIAIE
MARINE
TOTAL SIJPPLY MOVEMENTS
PIPĒ-LIHE
MARINE

REFINEPY OUTPUT
INTER-PAO MOVEMENTS FROM..
OISTRICT I
PIPE-LINE
MARINE
OISTRICT 2
PIPE-LINE
MARINE
OISTRICT 3
PIPE-LINE
MARTNE
OISTRICT 4
PIPE-LINE
MARINE
OISTRICI 5
PIPE-LIIE
MARINE
TOTAL OOMESTIC RECEIPTS
ORESTIC SHIPRENTS
section n. \(\because 2\)
INTER-PAD MJVEMEHTS FPOM.. NTER-PAD MJVEMEHTS FPO WISTRICT
OL
DISPRICT
PIPE-LIT,
MARIME
OISTRICT
PIPE-LINE
PIPE-LINE
MARINE
DTSTRICT
PIPELIME
PIPE-LIHE
MARINE
OISTRICIE
PIPE-LINE
MISTPICT 5
PIPE-LINE
marine
TOTAL DOMESTIC RECEIPTS
PIPE-LIME
MARINE
BOYESTIC Shipments
FORE IGN TMPOPTS/-EXPORTS
MARINE
TOTAL SUPPLY MOVEMENTS
PIPE-LIHE
MARINE
nISTRICT oEmat:0
\[
\begin{aligned}
& \text { SUPPLY DEMANO TALANGE GY PRODUCI } \\
& \hline
\end{aligned}
\]
n. J. T. TOAHSPDRTATIO'A SVSTEMS GEVTER
REEININT, INTISTIRY MOCEL - 1976 VALIDATION CASF
SUPPLY TEMAND BALAN:E AY POOT'JCT
U.S.
3.6
\(\stackrel{\circ}{\circ}\)
\[
\text { SECTIT: A. } 23
\]
SENSTAX 03 XIW
\[
\begin{aligned}
& \text { FOREIGN IMPOPTS/-EXPORTS } \\
& \text { PIPE-LIME }
\end{aligned}
\]
\[
\begin{aligned}
& \text { PIPE-LIME } \\
& \text { MAPINE }
\end{aligned}
\]
(MAPA)

OR DEFENSE OI 3 - -0.0.0.-.
RATION FOR
? 39.7 \(\qquad\)










TOTAL DOMESTIC RFCEIPTS PIPE-LINE
MARINE
DOMESTIC SHIPMENTS
TOTAL SUPPLY MOVEMENTS
PIPE-LINE
MARINE
NISTPICT DE MAHIN

nISTRICT DEMAF:

 PIPE-LIME
MARINE
nחMESTIC SHIPMENTS FORE IGH IMPORTS/-EXPORTS PIPE-LINE
MARINE
TOTAL SUPPLY MOVEMENTS
PIPC-LIINE
H\&QIHF. PIPE-LINE
MARINE
TOTAL SUPPLY MOVEMENTS
PIPC-LIINE
H\&QIHF. PIPE-LINE
MARINE
TOTAL SUPPLY MOVEMENTS
PIPG-LINE
HCQIUF.
MISC. PROOUCTS
\(-=-0-0-0-0-0-0-0-0-0-0=\)

\section*{REFINERY OUTPUT} OISTRICT 1

OISTRICI 2
OISTPICT
MARINE
OISTRICI 4
PIPE-LINE
OISTRICT 5
PIPET-LINE
PIPEI-LIN
MARINE
TOTAL DOMESTIC RECEIPTS PGPE-LINE

\[
11.6
\]
\[
4 こ .4
\]
\[
2.5
\]
\[
104.1
\]
\[
904
\]
\[
\begin{aligned}
& \text { 0. 3. T. TPANSPOOTATION SYSTEMS C: inte } \\
& \text { pefibing industry honel - } 1974 \text { valioatiom case }
\end{aligned}
\]
SOUR SQUNE
\begin{tabular}{r}
190.0 \\
\(13 j 0.0\) \\
\\
14.8 \\
8.9 \\
.5 \\
\hdashline 0.0 .00 \\
1504.8
\end{tabular}
1504.1
 : Ni

 \(145 \mathrm{FF} \mathrm{F} \%\) \(\because\)
\(\vdots\)
\(\Rightarrow\)
214.5
62.7
106.2
2135.1
1093.9
1647.7
1765.4
181.2
947.3

 i

- THOET
- \(-20-0=0-0\) 18OdWI \({ }^{\circ} 5^{\circ} \mathrm{n}\)
\[
i^{\prime 2} \cdot k
\]



 15.3
27.6
27.4








puv siวsemop oว sy вopnis

Thoueande of barrels per calendar day \({ }^{(2)}\)

101alsio
ONY H70
\(\stackrel{0}{*}\)
\(\stackrel{\rightharpoonup}{\sigma}\)
751.9
128.6
915.7

\(\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & m\end{array}\)
0
\(\vdots\)
\(\vdots\)
\(\vdots\) OISIRICT
OUTPUT
\(\stackrel{\rightharpoonup}{\circ} \quad \stackrel{\rightharpoonup}{\sigma}\)
\(\stackrel{\circ}{\sim}\)
\(\begin{array}{lll}\underset{\sim}{\sim} & \text { N } & \text { N } \\ \underset{\sim}{\sim} & \text { N }\end{array}\) 3 \(\circ\)
Si
Si

ت~
 TOTAL
MOVEMENTS MOVEMENTS
\(-\infty-\infty-\infty-\infty\) 180000 -
\(180 \mathrm{dWI} 3-1\)車 IIISJMu0
70101 0nyfsili
\(0.6 \mathrm{E} G\)
3.625

\(\stackrel{4}{3}\)
\(\underset{-}{j}\) +
\(\vdots\)
\(\vdots\) \(\stackrel{?}{0}\)

~ \(\vec{~} \stackrel{:}{i}\)
5
\(\stackrel{i}{i}\)
539.1 0
SUPPLY DEMAND BALANCE BY MISTPICII
REFINENG imDUStor monel - 1974 Valioarion case
D. J. r. transpmotation systems genter
thenestare receipts arom

3



539.0000000
539.6






 \(\underset{\sim}{4}\)

-0.0.0.0-0
2
\(-0-0-0000\)

OISIRICII
\(-\infty=-0-0-0-0-0-\infty\)
C3 LPG
PIPE-L INE
MAPINE
C4 LPG
PIPE-LIAIE
PIPE-LIAIE
MAQINE
NAPHTHA
PIPE - LINE
PIPE-LINE
MARINE
REGILAZ GASOLINE
PIPE-LIME
PIPE-LIME
MARINE
PREMIUM GASOLINE
PIPE-LINE
MADINE
LOH LEGD GASOLINE
PIPE-LINE
PIPE-LINE
HARINE
LFAD FREF GASOLIHE
PIPF-LIHE
PIPF-LIME
MARIVE
JP-L JET FUEL
PIOE-L INE
PIRE-LINE
MAPINE
JEY Y P JET FUEL
PIPE-LINE
MAPIVE
OIESEL
PIPE-L IHE
HAMINE
NO. PF FUĒL OIL
PIPE-LIME
MAPINE

\(\begin{array}{lllll}0 & 0 & 0 & n & 0 \\ \frac{2}{4} i & 0 & 0 & 0 & 0 \\ \sum_{0} i & n & 0 & 0 & 0 \\ 0 & 0 & \infty & 0 & 0\end{array}\)








 YOYAL
HOVEHENTS
-O-
0
al
-

\(\begin{array}{cc}0 \\ 0 & 0 \\ 0 & 0 \\ n\end{array}\)
5
 \(\stackrel{\rightharpoonup}{\mathrm{N}}\) is


000 ER
\(6.2 \varepsilon\)
0.008
0.008
~
\(\stackrel{\circ}{\circ}\)
\(\stackrel{?}{\circ}\)

stryer
ourpui
\(\stackrel{\vdots}{i} \quad \stackrel{\circ}{\mathrm{~m}} \quad \stackrel{\infty}{m}\)
\(\underset{\sim}{\dot{j}} \stackrel{M}{\dot{\sim}} \underset{\sim}{\dot{\sim}} \underset{\sim}{\dot{\sim}}\)

0
- ジ
3


IMIAG IMDUSTRY HODFL - 197 - VAL IMATIN:I CAS
SUPPLY DEMANO GALANR- IV OISRPICI
TJTAL
\(004 E S I I C\)
\(-0.0-0.0\)
.........-.
 \(-0 \stackrel{1}{1}\)
NISTRICT 2
MI SIILFIJR NO• 6
PIPE-LIHE
MARIVE
LO SIILFUR NO. 6
PIPE-LIJE
PIPE-LIHE
MARINE
LIBE STJCKS
PIPE-LINE
MARTNE
MSPHALT ANO ROAD OIL
PIPE-L IHE
PIPE-LI
MARINE
COKE ILD
COKE TLO SULFUR)
PIDE-LIME
MADJNE
COKE THI SULFURI
PIPE-LINE
COKE ICAL CRUDEI
PIOF-LIME
PIDE-LIME
MAQINE
BENTENE
PIPE-LIME
PIPE-LIHE
MADINE
TOLUFNE
PIPE-LINLL
MAPIVE
mixen xyluthes
PIP§-LIHF
MACIVE
HISC. Pantucy


\begin{tabular}{|c|}
\hline コロッて！ \\
\hline \(0 \cdot 957\) \\
\hline 0.015 \\
\hline 2094 \\
\hline 10112 \\
\hline \(S^{\circ} 582\) \\
\hline \(5 * 9 \%\) \\
\hline －¢ \\
\hline \(00^{\circ} \%\) \\
\hline \[
\begin{aligned}
& \text { ONVH30 } \\
& \text { LOI\&ISIO }
\end{aligned}
\] \\
\hline
\end{tabular}
 IN 3H3AOH
7VIOI －i

ror
REFIHING INAUSTKY MOUEL－ 1974 VILIDAIIGA RAF：
SUPPLY DEMAFIG MALANCF IY DISIPIC，
10101
j1152h00
：


OISTRICT
OEMANO
100.0
100.0
122.8
134.3
5.4
10.3
16.3

\footnotetext{
906632
}

un
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
号
n
\(\vdots \cdot\)

SUPPLY OEMAND AALANC: OY DISTRICI
TUTAL
IMPRRT
/-EXPORT
\(\qquad\)


\begin{tabular}{|c|c|}
\hline 2* 4 & \\
\hline \(6^{\circ} \mathrm{E} 51\) & \\
\hline n.52 & \\
\hline \(2^{\circ} 81\) & \\
\hline \$092 & \\
\hline \(9^{\circ} 92\) & \\
\hline \(9 \cdot 52\) & \\
\hline \(7^{\circ} 14\) & \\
\hline \(9^{\circ} \mathrm{T}\) & \\
\hline \(8^{\circ} 3\) & \\
\hline indino 15181SIO & \[
\begin{gathered}
\text { SIN 3H 2NOH } \\
\text { TVAO1 }
\end{gathered}
\] \\
\hline
\end{tabular}
 TOTAL
MOVİHENT
\(\stackrel{0}{-}\)

IMPORT
I-EXPORI
\(=-0-00-0\).
\%. 0. T. TRANSPIRIATION SYETSI仿 CENT: ?
WEFTIENG, TNDUT,TPY MOUELL - 3674 VALIDAIIBN CAS:
SUPPLY DEMANO BALANCE AY DISIRICII
INIER-STATE RECEIPTS FPGM
OISTRICT
OEMAND
\(\stackrel{8}{-}\)
\(\therefore \quad \therefore\)
0062
\(\stackrel{\square}{\circ} \quad \stackrel{\circ}{\circ}\)
\(\stackrel{-}{-}\)
17.0
\(\stackrel{0}{\square}\)
1.3
3.62
\(\because\)
\(\stackrel{\circ}{i}\)
\(\varepsilon\)
\(\varepsilon \cdot \tau\)




\section*{n. 3. 1. TRAMSPDPTATIUN SUSTEMS CEnt:?}
SUPPLY OEMAHD BALAMCE BY BISTFICI
70101 !
            -.....-. 5
        INIFR-STATE PSGEIPIS FPOM
2
        --.-.----
            NISTRICT
9-0N ontinis IH
PIRE-LINE
MAPINE
LO SULFUR NO. 6
PIPE-LINE
PIPE-LINE
MARINE
LURE STOCKS
PIPF-LIME
HARINE
ASPHALT ANO
PIPE -LINE
PIPE-LINE
MARINE
COKE (LO SULFUR)
PIPE-LINE
MADINE
COKE MAI SULFUR)
PIPE-LIME
MAOLNE
PIPE-LINE
HADINE
COKE GEAL CPUDEI
PIPE-LINE
PIPE-LINE
MAPINE
QFHIENE
PIPE-LIHE
MARINE
TOLUENE
OLIPN
PIPE -LIME
MAPINE
MTXEO XYLEHES
PIPE-LIHE
MARINE
HISC. pin Onucts
MADINĒ
TMTAL IIPMRTS
PIRE-LIHE
PICE-LII
MAOINE

OISTRICT
DEMANO
－－－－อ－อ－
5008
5.92
\(\stackrel{n}{\circ}\)
\begin{tabular}{ll}
\(n\) & \(\vdots\) \\
\multirow{2}{*}{} & \(\vdots\) \\
\multirow{2}{*}{}
\end{tabular}
\(z^{\circ} 9 \varepsilon 7\)
I．652
\begin{tabular}{l}
\(\dot{\#}\) \\
\(\stackrel{\rightharpoonup}{\circ}\) \\
\hline
\end{tabular}

0
N
N
80.0

0
0
0
0 lJIyIS10 indino
\(5 \cdot 92\)
s．0t
5052
\(9 \cdot 012\) \(\stackrel{0}{0}\) でs』 \(\$\)
\(\$ 35.2\)
T． 652
N
\(\dot{0}\)
\(\dot{0}\)
is
\begin{tabular}{l}
0 \\
\multirow{3}{*}{}
\end{tabular}
\(\because\)
\(\sim\)
\(\sim\)
\(\because \quad \because\)

TOTAL
DO：HESIIC
\(0-0-0000\)
SUPPLY OELAAN BALANCE BY DISTRIC，T
QEFITING INOUSTRY MODEL－ 1974 VALIDAIION CASE
0．2．T．TRAMSPORTATION SYSTEHS CENTĒZ
SUPPLY OENANO BALANCE BY OISTRICT
INTER－STATE QECEIPIS FROM
TOTAL

INTER－STATE QECEIPIS FROM

正
\(\stackrel{\square}{\circ}\)

0
\[
-00000=0=0
\]
\[
\begin{gathered}
5 \\
-\infty=-2
\end{gathered}
\] TOTAL
MOVEMENTS
\(=-0-O-0-\infty\) IMPORT
／－EXPORT
\(-0-0-0-0-\)
\(0-0-\infty=00\)
0
：
\(\begin{array}{ll}5 & 4 \\ 0 & 5 \\ 0 & 5 \\ 0 & 5\end{array}\)

\(\square\)
0
0
\(n\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
－0．0．0．0．0．
－m
CITON B． 9
BISTRICY
O－000000000000000000
C3 LPG
PIPE I INE
MARINE
G4 LPG PIPE－LINE
PIPE－LINE
MARINE
NAPHTHA
PIPE－LINE
PIPE F INE
MARINE
REGULAR GASOLINE
PIPE－LINE PIPE－LINE
MARINE
PREMIUY GASOLINE
PIPE－LINE
MAPINE
LOW LEAD GASOLINE
PIPE－LINE
PIPE－LINE
HARINE
LEAD FREE GASOLINE
PIPE－LINE
MARINE
JP－L JEI FUEL
PIPE－LINE
PIPE－LINE
HAOINE
JEY A JET FUEL
PIPE－LINE
MARIVE
OTESEL
PIPE－L．IM．E
PIPE－L．I
MAPINE
NO． 2 FIJEL OIL
OISTPICT

\(\stackrel{\circ}{\dot{\sim}} \stackrel{\bullet}{\circ} \stackrel{n}{\circ}\)

OISTRICT
OUTPUT



Mris
च

\begin{tabular}{l}
\(\bullet\) \\
\(\vdots\) \\
\(\vdots\) \\
\hdashline \\
\hline
\end{tabular}

\(\begin{array}{lll}1 & n & n \\ i & 0 & 0 \\ i & n & 0\end{array}\)
\begin{tabular}{c} 
MPORT \\
\hdashline-9. \\
14.6 \\
14.6 \\
14.6 \\
14.6
\end{tabular}
afining, inoustry model - 1974 Valifitaidoti cas:
SUPPLY DEMANO RALAHCF BY DISTRICT
TOTAL
OOMESIIC
.-..-.
INIEK-STATE FEGEIPTS FROY
\(0-0000000\)

\(-0.1\)
OISTRICT S
HI SULFUR NO. 6
PIPE-LINE
PIPE-LINE
MARINE
10 SULFUR NO. 6
MARIVE
LUAE STOCKS
PIPE-LIME
PIPEELIHE
MARINE
\(\underset{\text { PIDE-LINE }}{\text { ASPHALT }}\)
PIDE-LINE
MARINE
COKE ©LO SULFURI
PIPE-LINE
HAOINE
COKE THI SULFUQ)
PIPE-LINE
MARINE
COKE SCAL CRUOEI
PIPE-LINE
PIPE-LINE
MARIVE
BENJENE
PIOE-LINE
MARINE
TOLUENE
PIPE -LINE
MARINE
MIXET XYLEMES
PIPF-LINE
HAPIVE
MISC. Pronucts
PIDE-LINE
MARINE
TOTAL IMPORTS
PTOE-LIHÉ
HANINE
\(\begin{array}{cc}2 ? .3 & 60.0 \\ 23.3 & 60.3\end{array}\)
\(\stackrel{?}{\sigma}\)



H.s. EYPOPTS =rp Tot
on !
\[
\begin{aligned}
& \sigma N \\
& \therefore \sim+ \\
& \sim
\end{aligned}
\]
EYPOPIS EXP TOT
 2..9 27.5

7. า. T. PPANSPORTATIDN SYSTEQS COEQTER






?:ロ
\[
\begin{array}{r}
29.0 \\
.1 \\
2.9
\end{array}
\]
r. 4. n. ntstolit

\section*{16506.7}

\title{
\[
\because \circ 5122
\]
}
\begin{tabular}{|c|}
\hline peginlar gasolive \\
\hline PREMIUY GASOLINE \\
\hline LOW LEAO GASOLINE \\
\hline LEAC FQEE GASOLINE \\
\hline JP-4 JET FUEL \\
\hline JET A JET FUEL \\
\hline MIESFL \\
\hline NO. 2 FUEL OIL \\
\hline HI SULFIJR NO. 5 \\
\hline LO CULFUP NO. \\
\hline LUAF STORKS \\
\hline ASPHALT ANO ROAC OIL \\
\hline COKE* (LO SULFUR) \\
\hline COK = ©HI SULFUQ) \\
\hline COK = (CAL F,OUDE) \\
\hline PEN7E VE \\
\hline TOLIE YE \\
\hline MIX \(=\) O XVLENES \\
\hline MIS \({ }^{\text {H }}\) - PRONUC.TS \\
\hline
\end{tabular}
0. 0. T. TKANSPORTATION SYSTFMS CENTE?

REFINING INDUSTRY HOUEL - 1974 VALIDATION CASE
REFINERY CAPACITY UTILIIATION (MAPJI
\(-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-\)
PETROLEUM AOMINSTRATION FOR DEFENSE DISTRICTS IPAOI


2698.8
2698.8
1306.0
1300.0

A \(\because=\)
\(S_{0}=0\)
\(=0\)
\(?\)
\(?\)
0
0
\(j\)
2954.J
\(?\)
?
领
2699.8

130 O
\(1378 .\).
1370.4
191.0
191.9
295t.
LARGE REFINERY
SMEE CRUDE
SHEE GASE CASE
ANCJ HOIH
LOH CONV
SUBTOTAL

い
HIGH CONV
LOW CONV
7viotens

ANCJ HOIH
7V101BRS
ANOJ MOT

ANOJ HOT
ANOJ HOIH
TOTAL FURIOTAL LARSE
TOTAL FOR LARSE REFINERY
MEO REFINERV
\(-0-0-0-0-0-0-0-0-0\)
SHEET CRUUE
ANOJ MOI
ANOJ HOI
LOH CONV
SHBTOTAL
couz cuunz
cous CHIJNE
naSE CISE
HISH COAV
LOW CONV
SUSTOTAL



U．S．
QEFIHINF，INOUSTRY MUDEL－ 1 G74 VALIDATIO：A CASE
RFFINEKY CAPARIITY IVILITATITN（MAPT）




OIFSEL
MYO？OCRACKING
EXIST．HC FOF OSL
HYOROTREATIHK，
CASO OESULF
OIESEL OESULF
TOTAL FOR DIESEL
DESULFURIZATION
gNI》コロとJOACAH
\(80 \leftrightarrows\) JH •ISIX 3
HYOROTREATING
GASO DESULF
PUIIVZI日fitirs？O yos TVIOI
- \({ }^{\text {d Nossoss }}\)
\[
\begin{aligned}
& \text { ELEC. PNR (1GULKHH/J) } \\
& \text { FUEL PEOO. (1OCEFOE3/TI } \\
& \text { ENERGY CONS. \&IUOEFOET/ } \\
& \text { LAMOR (NO. EMPLDYEES) } \\
& \text { NPEP COSTS (MS/D) }
\end{aligned}
\]
TNVESTMENTS (MM\&)
U.S.


\(n\)
0
5
3
3


PEFIHTNG INOUSTRY AONCL - 1476 VALIOATITOH CASE
SUIMARY OF FLEEC. PWP. (ILC(KWH/つ)
\(n!\)
2 \(844 j .1\)
114201
9622.1
9622.1
2977.3
12977.3
12977.3
436 JoA
436 L .8
12063.8
12063.8
12663.8
5391.2
5331.2
5391.6
\begin{tabular}{|c|}
\hline SWEET CRUOE \\
\hline RLSE CASE \\
\hline HIGH CONV \\
\hline LOM COHV \\
\hline SUBTOTAL \\
\hline soue crune \\
\hline hase case \\
\hline HIGH CONV \\
\hline LOH CONV \\
\hline SURTOTAL \\
\hline calif crude \\
\hline BASE CASE \\
\hline HIGH CONV \\
\hline LOM CONV \\
\hline SUATOTAL \\
\hline alaskan crude \\
\hline base case \\
\hline HIGH CONV \\
\hline LOH CONV \\
\hline SUATOTAL \\
\hline TOTAL FOR LARGE REFINERY \\
\hline MEn REFINERV \\
\hline SHEET CRUDE \\
\hline base case \\
\hline HIGH CONV \\
\hline LOW CONV \\
\hline SURTOTAL \\
\hline
\end{tabular}
            \(\begin{array}{lll}i & & 0 \\ \vdots & \dot{\infty} & \infty \\ i & 0 & 5 \\ i & & 0\end{array}\)
                                    5014.5


4654.5
74.1
364.2
5396.7



                    \(\begin{array}{ll}\therefore & 0 \\ \sim & 0 \\ 0 & n \\ 0 & 0\end{array}\)
                                    5614.5
1738.1
1738.1
                                    1843.3
1843.3

SECTION ח. 2
    MFD RIFINERY
    MFी RIFINERY
sojp grude
    RASE CASE
HIGH COYV
LDH CONY
SURTOTAL
    calif crune
    BASE CASE
HTGH COVY
LOH CONV
SUBTOTAL
    subtotal
QLASKAN CRUDE
RASE CASE
HIGH COYV
LOH CONY
SUBTOTAL
TOTAL FOR MEO REAFINERY
SMALL REFIHERY
-O-OO-C.
sheet crude
RASE CASE
HIGH CONV
LOH CONY
SUATOTAL
BASE CASE,
HTGH COVV

U.S.
\(n\)
\(\cdots\)
\(\cdots\)
0

い wi
1673.1

17:4.7

1733.1

1640.3

368.2

0. 0. t. transportation eysteos ceiliter
SUMMARY RF ELKC. PHP (ILi!KWHIJI




SMALL KEFINERY
rALIF CRUDE
3SVJ \(35 \forall G\)
HIGH COVV
LOW CONV
SUBTOTAL
ALASKAN CRUOE
gase chis
LOW GONV
subtoral
TOTAL FOP SMALL REFINERY
INCREMENTAL PROCESSES

HYOROCRACKING
EXIST. HC FOR OSL
HYOROTREATIHG
GASO DESIHLF
DIESEL OESULF
SURTOTAL
nesulfurization


gaso oesulf
oiesel oesulf
jtility total
            U.S.
\(-\infty-\infty-\infty\)

                                \(\stackrel{0}{0}\)
                                N
i]. J. T. IRA*SPORIAIIUN SYSTH.95 G:EWT: ?
REFIHING INDUSTRY MODEL - 1r, 7 - VILI'JATIOH CASE
SUHMARY OF ËNEPGY CDHSUHPIION (FO SB/D)

\(\because \backsim\)
133.9
\(\underset{\sim}{\bullet} \quad \ddot{0}\)
85.1
157.8
157.8
157. 8
\(\begin{array}{ll}\infty & x \\ \stackrel{\circ}{\circ} & 2\end{array}\)
\(\stackrel{\infty}{\infty}\)
LARGE RF.FINERY
\(-0-0-0-0-0-\infty-0-0-0.0\)
LARUE RFFINERY
30ny 13ミMS
RASE CASE
HASE CONV
HIGH COYV
LOH CONV
LOH CONV
SUBTOTAL
sour crune
3SVO 3SV\&
BASE CASE
HIGH COVV
LOW CONV
LOH CONV
SUBIOTAL
calif crude
RASE CASE
LOH CONV
SU日TOTAL
alaskan cruje
BASE CASE
BASE CASE
HYGH ROYV
SOW CONY
LOW CONY
SUBTOIAL
TOTAL FIR LAPGE REFIHERY
MEN REFINEAY
\(--0-0-0-0-0.0-0\).
MEN REFINERY
T CRUNE
BASE CASE
HIGH CONV
LOH CONV
SJQTOTAL
T CRUDE
BASE CASE
HIGH CONV
LOH CONV
SIARTOTAL
74.5
78.5
- 0 NC1133
0.15
\(0.1 \pi\)
\(-0.20 n\)


SECTION 0 .
MEI REFINERY
UR CRUDE
RASE CASE
HIGH CONV
LOW CONV
SUATOIAL
IF CPUOE
BASE CASE
HIGH GOVV
LOW CONV
SUBTOTAL

ASKAN CRUDE
BASE CASE
HIGH CONY
LOH CONV
SUBTOTAL
TOTAL FOR MEN REFINERY
SMALL PEFINEPY
SPALL PEFINEPY
ChEst CRUDE
BASE CASE
HIGH COYV
LOW CONV
SIJATOTAL
scue raunz
BLSE CAS:
H?G.H :OONV
LOW RONV
SHITIAL
\[
117.0
\]
\[
n:
\]
\[
\begin{aligned}
& m \\
& \dot{N}
\end{aligned}
\]
SECIION \(\cap\) ．
CALIF CRUOE
OASE CASF
HISH COYY
LOH CONV
alaskan cruje
BASE CASE
HIGH COVV
LDW CONV
SUBTOTAL
\[
\begin{array}{cc}
1 & 2 \\
\cdots \cdots-\infty & \cdots-\infty-\infty \\
\\
5.4 & 32.9
\end{array}
\]
\[
\begin{gathered}
3 \\
0.0-0.0 \\
31.0
\end{gathered}
\]

TNCREMENTAL PROCESSES
DIESEL
HYDOOCRACKING
\[
\text { PEFFIMING [NOUSTRY MUOIGL - } 1970 \text { VALIOAIIOH CASE }
\]

TSO YO』 JH ISIXB
EXIST．HK，
HYOROTREATING
GASO DESULF
GASO DESULF
OIFSFL DESULF
SUATOTAL
SUHTOTAL
NE SULFURITATION
EXIST HC FO
HYDROTREATING
GASO DE SULF
OIESEL DESULF
SUBTOTAL
subTotal
\[
75.15
\]
\[
\text { 190.76 } 3,5.6 .6
\]
\[
\begin{aligned}
& \text { 1G7. VALIOAI } \\
& \text { (IEG:FOEi/DI }
\end{aligned}
\]
\[
28.5
\]
\[
28.06 \quad 121.18
\]
ज
78101 人1I7115
            \(i\)
\(=i\) 180.6
291.5 472.1 \(m \times 0\)
min
\(=0\) -
NR 193.7
15.7
127.0

117.1 \(\begin{array}{cc}\subseteq & 5 \\ \therefore & \vdots \\ \sim & \underset{\sim}{4}\end{array}\)
21.0t
An .7
AE .7
183.6
183.6
183.6
\(\begin{array}{ll}0 & \pi \\ 0 & 0 \\ 0 & 0\end{array}\)
0. 9
BASE CASE
HIGH COVV
HIGH COVV
LOH CONY
SUETOTAL
AL ASKAN (RU):
? TSVJ 3Sロ日
HIGH SOVV
LOH CONV
SUBTOTAL
TOTAL FOR LAFG
MFI RFFIN:ERV
C.WEET CRUDE
BASE CASE
HIGH CONV
LOW CJHV
SURTOTAL



\(\ddot{n} \quad \ddot{n}\)

-
m m
\(\stackrel{5}{0}\)
\(\ddot{\square}\)
SECTION 0 .

a．o．t．tpatispoptation sustins cellita
PEFIVING INOUSTKY MOOCL－ 1374 VALIUATIOH CASF

\(0!\)
0
0
5
0
\(!\)
\(!\)
129.7
22.3
31.7
\(\rightarrow \vdots\)
\(\approx\)
\(\vdots\)
\(\vdots\)
\[
\begin{gathered}
\underset{\sim}{4} \\
\vdots \\
\vdots \\
\therefore \\
\vdots \\
\vdots
\end{gathered}
\]

33.3
36.4
a
\(\vdots\)
\(\vdots\)
\(\vdots\)
3－2．\({ }^{2}\)
4ย． 0 ： 7

GALIF GRUOE
J〇VS 3S甘甘
ANOS HOT
AL ASKAN CRUJE
3SVS こSVQ
BASE CASE
LOH COHIV
SUATOTAL
WWS 80」 78101
TV1016ns
TOTAL FOR SMALL REFINERY
INCREMENTAL PPOCESSES
OIESEL
nIESEL
HYOROCRACKING
EXIST．HC FOR
HYOROTREATING
GASO DESULF
DIESEL OE
SURTOTAL
nE SULFURITAIIION HYIROCRACKING

EXIST．N．FING
GASO OESULF
SURTOTAL
mTILITH TOTAL
            U.S.13494.2
21250.034744.25993.4
1006.6
7300.0\(\begin{array}{ll}00 & \text { N } \\ 0 & \vdots \\ 0 & j \\ 0 & \vdots\end{array}\)\(\begin{array}{ll}\because & \because \\ \sim & n \\ = & \sigma \\ 0 & \infty \\ 0 & 0\end{array}\)

n. -. T. IRAHSPORTATION SYEIERS ROEHTES

\[
\text { HEFINING I NBUSTRY HUNEL - } 1 \text { F7L VAL IIGTICD CASE }
\]

SIJMMARY OF LABOX (HO. EMFLOYEG's)


\[
-0-0-0=-0
\]\(5 \div 93.4\)
1060.6
7003.0750」．014750.0
1475500
14756.06542.1
6892.1
\begin{tabular}{ll}
\(\because \sim\) \\
\(\vdots\) & \\
\(\sim\) & 0 \\
0 & 0 \\
0 & 0
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{SWEET CRUOE} \\
\hline base case & & & \\
\hline HIGH COVV & & & \\
\hline LOH CONV & & & \\
\hline SUBTOTAL & & & \\
\hline \multicolumn{4}{|l|}{sour raude} \\
\hline BASE CASE & & ：3494．2 & \\
\hline HIGH CONV & \＆う00．C & & 14750.0 \\
\hline LOW CONY & & & \\
\hline SUBTOTAL & E500． & \(1349 * .2\) & 14755．0 \\
\hline \multicolumn{4}{|l|}{rialif reude} \\
\hline base case & & & \\
\hline HIGH COVV & & & \\
\hline LOW CONV & & & \\
\hline SUBTOTAL & & & \\
\hline \multicolumn{4}{|l|}{alaskan cruje} \\
\hline basc Case & & & \\
\hline high covv & & & \\
\hline LCH CONV & & & \\
\hline Suntotal & & & \\
\hline TOTAL FOR LAPGE REFINERY & 653 C & \(1549+02\) & 14750 \\
\hline
\end{tabular}

AめENI」ゴメ Э9avา 80」 TV101
MET RFFINEPY
SWEET CRUNE
BASE CASE
HIGH CONV
LON COHV
SURTOTAL
SW
CT •1 INC 18335
LARGE REFINERY
SMEET CRHOE
BASE CASE
SUBTOTAL
30nxj onus
3SVO ミ5V8
LOH CONV
SUBTOTAL
BASS CASE
HISH LOVV
LCH GONV
suntoral
\[
653 \mathrm{c} . \mathrm{s}
\]
\[
\begin{aligned}
& : 349402 \\
& 13494.2
\end{aligned}
\]
\[
15+9+02
\]
TV1018nS
ANOS MOT

3 505 ミ578

\begin{tabular}{|c|c|c|c|c|c|}
\hline  & \% & ¢ & & &  \\
\hline  & & & 迢 & 웅 & \\
\hline  & & & \(\stackrel{\circ}{\circ}\) & \(\stackrel{\square}{\square}\) &  \\
\hline  & \% & 号 & 3 & \(\underset{\sim}{\text { ¢ }}\) & \\
\hline  & & & - & - & \\
\hline \[
\begin{array}{l:l}
\stackrel{u}{\alpha} & -1
\end{array}
\] & & & & & \\
\hline
\end{tabular}
BASE CASE
SUBTOTAL
alaskan crude
AASE CASE
HIGH COVV
LOW CONY
SUBTOTAL
TOTAL FOR MẼ R REFINERY
SHALL REFINEKY
SHEET CRUDE
RASE CASE
LOW CONV
SUBTOTAL
SOUR CRUDE
BASE CASE

            \(\begin{array}{ll}0 & i \\ 0 & i \\ 5 & i\end{array}\)
                    13056.3
                                    \(n\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
0

SECTIJN D. \(1 ?\)
    SMALL RĒFINERY
        ---0-0-0-0-0-0-0-0-0-0-0
CALIf CRUDE
hase case SURTOTAL
alaskan cruje
BASE CASE
LOW CONU
SURTOTAL
total for shall réfineqy INSREHENTAL PROCESSES
OTESEL hVIROCFACKINR DSL.
EXIST. HC FOR
GASO OESULF
OIESEL DESULF
ne SuLfurization


gaso nesulf
SUBTOTAL
hidlity iotal
0. 0. T. TRAHSPOKTAIION SYSTR.NS CEHT - R





\begin{tabular}{l}
\(\bullet\) \\
\(\stackrel{0}{\circ}\) \\
\hline
\end{tabular}
A
0
0
0
0
 \(\begin{array}{ll}v \\ \vdots \\ i & \vdots\end{array}\) \(\underset{\sim}{n} \quad \because \because\)

15 ć. 7
70.2
\(7 r .2\)
\(\stackrel{\square}{0} \stackrel{\circ}{\circ}\)
\(\because:\)

SERTION D. 14
MES REFINERV
nenoun=

SOUR CRUDE
AASE CASE
SUBTOTAL
ralif cruoe
BASE CASE
BASE CASE
HIGH CONV
SUPTOTAL
alaskan coude
RASE CASE
HIGH COYV
HIGH COVV
LON CONV
SUATOTAL
TOTAL FOR MED REFINERY
SMALL PEFINEPY
SHALL PEFINEPV
SHEET CRUNE
BCSE CASE
HIGH CONV
701018MS
ANOJ MUT
zunaj erios
nAE = CASH
LIM RJNV
sIATOTAL
U.S.
\[
\begin{aligned}
& 0 \\
& 0 \\
& \stackrel{\rightharpoonup}{N}
\end{aligned}
\]
\[

\]
\[
\begin{aligned}
& \stackrel{+}{4} \\
& \stackrel{8}{\square} \\
& \stackrel{1}{1}
\end{aligned}
\]
\[
\begin{aligned}
& 0 \\
& 0 \\
& \vdots \\
& 0
\end{aligned}
\]

\section*{SfCTION 10.15}
SHALL REFINERY
r,ALIF CRUDE
CALIF CRUDE
HASE CASE
HIGH CONV
LOW CONV
SIBTOTAL
ALASKAN CRUJE
BASE CASE
HIGH COYV
LOW CDNV

INCQEHENTAL FROCESSES
DIESEL
HYOROCRASKIHG
EXIST. HC FOK ISL
HYOROTFEATIHG
GASO DESIJLF
OIESEL DESILF
SURTOTAL
nf SULFURI7ATIOH
HYOROCRACKIf:G
EXIST. HC. FOR
HYORDIDEAIING
CASO DESUUF
CASO DESULF
SUATOIAL
hititity total
\[
13.6
\]
\[
73.9
\]
\[
\varepsilon_{21} \varepsilon_{i}
\]
\[
78.2
\]
\[
592.72
\]
\[
\begin{aligned}
& (M B / 1)) \\
& -0-0.0
\end{aligned}
\]
\[
54.7
\]
\[
\begin{gathered}
m \\
\dot{\sigma} \\
\ddot{\sigma}
\end{gathered}
\]

RIFIMING INOUSTINY YJOEL－197．VALIOATIOM CAF：

-106.00
-1.03
-.63
\(-0-0.00\)
-101.63





4
0
\(\vdots\)
\(\vdots\)
\(\vdots\)
\begin{tabular}{l}
\(58^{\circ}\) \\
\(52^{\circ}-\) \\
\(02^{\circ}\) \\
\hline
\end{tabular}
\(\begin{array}{ll}n \\ 1 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ 1 & 1\end{array}\)

\(\overbrace{i}^{n}:\)

\(\begin{array}{rr}6.0 \mathrm{~J} & 2.48 \\ 1.47 & .55 \\ & 1.09 \\ 15.21 & 28.11\end{array}\)

 Mn
 ： ．
 103.66
～

\(90^{\circ}\)
\(90^{\circ} \varepsilon\)


30
0
0
-1
is．
－
シ～
 ．

3
is

\(90^{\circ}\) \(66^{\circ}\) ク
\(86^{\circ}\) の？
 \(n\)
\(\sim\)
 － 옹 \(50^{\circ}\) \(65^{\circ}\)
\(05^{\circ}\)
\(55^{\circ}\) \(92 \circ \%\)
\(06^{\circ} \mathrm{EDT}\)
\(-\infty-0-0-0-0\) \(\stackrel{\sim}{2}\)


120
00
0
0
0
0

000
0
0
0

－
 らッロ －ッ ロ ••• 970
65。
\(35^{\circ}\)

E
2.64


n \(89^{\circ}\)
\(59^{\circ}\)
 -8
\(i\)




\(1, P A L I A\)
\(-00-0.0-0\)

INPUT
SHEFT CRUIE SOUP SOUOE
CALIF PRUOE
aLASKAN CRUOE
NA TURAL GASOLINE
NORMAL BUTANE
TOTAL
OUTPIIT

2.74
\(\stackrel{\Perp}{\stackrel{1}{*}}\)
－ \(100 . \mathrm{C} 1\)
\(\stackrel{:}{i}\)
N
\(\stackrel{3}{3}\)
.82
j9． 9.88
\(-2.17\)
\(n\)
\(: ?\)
\(\vdots\)
\(\vdots\)
\(i\)
\(i\)
2.18
\(46^{\circ} 19\)
\(\div-0-0\)
2.37

\section*{\(\begin{aligned} & \\ & 3 \text { LP＇} \\ & \text { CH }\end{aligned}\)} LEAD FRCE GASOL
\[
\begin{aligned}
& -0.62 \\
& 1[0.67
\end{aligned}
\]








OPERATING COST＝ACTIORS




0.000 .00
102.16
.25









 indino－indwi TOTAL
 INITOSVG OVİ HOา
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(20 C A L H C\) & 2 LCALLS & \(20 C A S B A\) & \(20 C A S H C\) & 20 CaSlC & \(26 C B L B A\) & 20 CBLLC & 2CCBLHC & 30 CAMAA & \(30 C\) AMLC \\
\hline \multicolumn{11}{|l|}{INPUT} \\
\hline SHEET こRUDE & \(-103.40\) & －100．ci & －106．0i & \(-100.00\) & －10ũoru & & & & －100．03 & －108．00 \\
\hline SOUR CRUDE & & & & & & －109．06 & －100．c0 & －100．00 & & \\
\hline calif crude & & & & & & & & & & \\
\hline alaskan cruos & & & & & & & & & & \\
\hline NATIJRAL GASOLIVE & －1．85 & －1．85 & －2．14 & －2．14 & －2．01 & －1．85 & －1．05 & －1．85 & －2．53 & －2．50 \\
\hline ISOTUTANS & －1．33 & －1． 33 & －1．40 & －1．48 & －1．39 & －1． 33 & －1．33 & －1．33 & －1．00 & －1．00 \\
\hline NORHAL BUTANE & －1．33 & －1．33 & －1．48 & －1．48 & －1．13 & －1．33 & －1．33 & －1．33 & －． 15 & \\
\hline TOTAL & \(-10+51\) & \(-1.1 \rightarrow 51\) & －105．19 & －1i5．20 & －104．53 & －164．51 & －104．51 & \(-104.50\) & －103．65 & －103．50 \\
\hline \multicolumn{11}{|l|}{OUTPUT} \\
\hline C3 LP & 2.44 & 2.45 & 2.97 & 2．30 & 1.85 & 2.44 & 2.44 & 2.44 & .03 & ． 83 \\
\hline C4 LPG & － 54 & －54 & ． 49 & ． 59 & ． 46 & ． 54 & ． 44 & ． 54 & ． 25 & － 25 \\
\hline NAPHTHA & ． 88 & ． 18 & & & & 1． \(0^{\circ} \mathrm{A}\) & ． 08 & ． 88 & ． 86 & － 80 \\
\hline PEGULAR GASOLINE & 23.78 & 13.45 & 17．31 & 14.91 & 13.01 & 25．39 & 21.56 & 27.37 & 10.48 & 10.50 \\
\hline PREMIUM GASOLIVE & 16.07 & 16．i7 & 12.20 & 4.97 & －9，34 & 10.67 & 16.07 & 16.07 & 9.95 & 3.53 \\
\hline LOM LEAO GASOLINE & 9． 31 & 7．2i & 8.37 & 14.91 & 13.11 & 11.64 & 7.20 & 13.24 & 5.53 & 10.50 \\
\hline Lean free gasoline & 13.31 & 9.54 & 7.27 & 14.91 & 13.61 & 9．54 & 9.54 & 12.40 & 3.71 & 10.50 \\
\hline JP－4 JET FUEL & 1.34 & 1． 57 & 1.27 & 1.27 & 1.20 & 1.34 & 1．69 & 1.09 & 1.93 & 1.30 \\
\hline JET A JET FUEL & 5.36 & 4.37 & 4.01 & 4.01 & ． 94 & 4.59 & 4.37 & 4.59 & 7.19 & 6.30 \\
\hline DIESEL & 7.75 & 14.75 & 11.00 & 10.60 & 23.96 & 6． 32 & 15.51 & 5.69 & 9.80 & 25.99 \\
\hline NO． 2 FUEL OIL & 15.61 & 15.61 & 22.19 & 20.69 & 17.99 & 15.61 & 15.61 & 11.48 & 10.010 & 18.86 \\
\hline HI SULFUR NO． 6 & 1.78 & 2.24 & 3.89 & 3.54 & 3.65 & 2． 24 & 2.24 & 1.78 & 4.30 & 2.80 \\
\hline LO SULFUR NO． 6 & 2.73 & 2.26 & 3.89 & 5.54 & 3.65 & 2.24 & 2.24 & 1.78 & 5.23 & 2.80 \\
\hline LUBE SIOCKS & 1.22 & 1.22 & & & & 1.22 & 1.22 & 1.22 & 3.19 & 2.00 \\
\hline ASPHALT ANO ROAD OIL & 3041 & 3． 11 & 7.65 & 7． 65 & 5.72 & 3.02 & 3.01 & 3.31 & 2.19 & 1.40 \\
\hline COKE ILO SULFURI & ． 63 & －E1 & & & & & & & ． 23 & ． 23 \\
\hline COKE（HI SULFUR） & & & & & & －94 & ． 87 & ． 94 & & \\
\hline COKE ICAL CRUDEb & & & & & & & & & & \\
\hline AENTENE & & & & & & .14 & －14 & ． 14 & ． 53 & － 59 \\
\hline TOLIFNE & & & & & & －16 & －16 & －10 & ．67 & ． 69 \\
\hline MIX \({ }^{\text {M }}\) S YLETES & & & & & & －19 & ． 19 & ． 07 & ． 87 & ． 87 \\
\hline MISC．PRODUCIS & 2．7？ & 1.42 & 1.37 & 1.51 & 1.29 & \(1.4 i\) & 1.40 & 1.40 & 2.63 & 2.17 \\
\hline toral & 105013 & 16h．l： & 1JL．an． & 104.95 & 1 U 400 H & 1！： 4 43 & 106.12 & 105.93 & 96．2． & 102.99 \\
\hline IHPUT－SUTPUT & － 25 & 2．1： & －． 22 & － 32 & －． 45 & －92 & 1.63 & 1.42 & －7．41 & －． 51 \\
\hline \multicolumn{11}{|l|}{OPSPATIHG COCT FACTURS} \\
\hline cter．PW，1よこ：こKLH／の & 3）1．1： & sis．c． & 24.309. & 271．f： & 207.79 & 4.1 .6 & 42 ヶ．した & －65．00 & 32 Caj & 316.36 \\
\hline FUCL PGhf．116：FOS & －． 36 & r．f： & 4．7： & 4.4 & －or．？ & \(\therefore\) ors & 「．45 & 6.97 & 5.67 & 5.70 \\
\hline －niosir cras．s．limuifer & ．\({ }^{5} 7\) & r．\({ }^{\prime}\) & ；．\(\because\)＇， & －9． 39 & ¢．\(:\) ？ & ．．1 is & riof 4 & 6.77 & 5.30 & 6.29 \\
\hline  & 71.01 & ¢ \(\because .\). & \(=1.0\) ： & こ？2．しi & ＇u．．． & r．．．し！ & 503.65 & 200．3j & 532.03 & 500.60 \\
\hline  & 1．．：- & ：＋． & \(\therefore \therefore\) ，\({ }^{\text {a }}\) & ：\({ }^{\text {c．．}}\) ： & －处 & ： 1. & 1いら。 & \(1{ }^{\text {H．}} 57\) & 10.13 & 9.86 \\
\hline
\end{tabular}
－3 N01153s
万．D．T．TRAMSPORTATION SYSIC＇IS LENTE？
zefining industry monel－ 1974 valillation case
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 3SC，AMHC & 30CALBC & 3）CALHC， & 3CCALCC & 3uCASEA & ®CCASHC & \(34 C A S L C\) & ЗСС ЗMSA & 3CCTM ： & 30C9MHC \\
\hline \multicolumn{11}{|l|}{INPUT} \\
\hline SHEET SRUDE & －104．c） 0 & －163．32 & －1 u0．ul & \(-15000\) & －10J．L6 & －1コび。じ & －106．00 & & & \\
\hline SOUR JPUUE & & & & & & & & －100．00 & －100．0J & － 100.00 \\
\hline \multicolumn{11}{|l|}{\multirow[t]{2}{*}{CALIF CRIIDE
ALASKAN TRUDE}} \\
\hline & & & & & & & & & & \\
\hline NATIJDAL GASOLIVE & －2．53 & －2．5： & －2．50 & －2． 50 & \(-2.93\) & －2．81 & －2．93 & \(-2.50\) & －2．51 & －2．50 \\
\hline 1SOTUTANE & －． 77 & －． 52 & －． 11 & －． 98 & －． 75 & －． 51 & －． 75 & 1.00 & －1．03 & －1．0C \\
\hline NORHAL BUTANE & －． 16 & －1． 12 & －1．13 & －． 58 & －1．14 & －1．17 & －1．14 & 1.38 & & －1． 32 \\
\hline TOTAL & －103．45 & －164．14 & \(-103.74\) & －134．06 & －134．82 & －1i4．51 & －104． 82 & －100．42 & \(-103.53\) & －104．82 \\
\hline \multicolumn{11}{|l|}{OUTPIT} \\
\hline C3LPS & ． 83 & ． 83 & ． 83 & －83 & 1．67 & ：．i2 & 1.07 & － 83 & ． 83 & － 33 \\
\hline C4 LPS & ． 25 & － 25 & ． 25 & － 25 & － 30 & － 29 & － 30 & ． 25 & － 25 & － 25 \\
\hline NAPHTHA & ． 88 & ． 85 & － 18 & ． 88 & － 3 ？ & ． 74 & ． 80 & ． 88 & 1.32 & ． 88 \\
\hline REGIILAR GASOLIVE & 11.15 & 21．11 & 14.76 & 12．3i & 15．6： & 12.76 & 10.63 & 21.19 & 11.63 & 14.61 \\
\hline PREHIUN GASOLINE & \(3.7 ?\) & 15．92 & 4.92 & 4.80 & 3.85 & 3.69 & 3.54 & 15.90 & 3.93 & 4.87 \\
\hline LOM LEAD GASOLINE & 11.15 & E． 1 i & 14.76 & 12．30 & 6．25 & 11.75 & 16.63 & 5.50 & 11.63 & 14.81 \\
\hline LEAT FREE GASOLINE & 14.15 & E． 16 & 17.73 & 12．38 & ＋ 110 & 11.74 & 10.63 & 6.10 & 11.75 & 17． 88 \\
\hline JP－4 DET FUEL & 1.30 & 1．9i & \(1.3 i\) & 1． 36 & 1.29 & 1.24 & 1.29 & 1.30 & 1.93 & 1． 30 \\
\hline JET A JET FUEL & 7.30 & 7．1］ & 6.30 & 6． 33 & 6.33 & B． 67 & 6.33 & 6.30 & 6．7） & 6.30 \\
\hline DIESEL & 11.80 & 9．45 & 9．4U & 29.65 & 1玉．j1 & ！¢． 91 & 23.42 & 6.50 & 19.85 & 6.50 \\
\hline NO．？5UFL OIL & 18.00 & 10．6j & 10．UC & 12．0C & 2J． 25 & 20.25 & 13.11 & 12.00 &  & 12．00 \\
\hline HI SULFUR NO． 6 & 4.30 & ？．86 & 2.80 & 2．83 & 7.66 & 4.72 & 4.92 & 2.30 & 2．81 & 2．80 \\
\hline LO SULFUC HC． 6 & 4.20 & 2．86 & 2． 20 & 2．80 & 7.65 & 4.72 & 4.92 & 4.20 & 4.91 & 4.60 \\
\hline LUEE STORKS & 6.33 & 2．05 & 2.00 & 2．06 & 2.65 & 2．7C & 2.81 & 7.10 & 6.31 & 6.07 \\
\hline ASPHALF AHO ROAO OIL & 1.49 & 1．42 & 1.45 & 2.45 & 6.56 & 6.30 & 6.56 & 2.20 & 2.23 & 2.20 \\
\hline COKF ILO SULFURI & ． 23 & － 35 & ． 47 & ． 47 & ． 32 & ． 31 & －32 & & & \\
\hline COKF IHI SULFURI & & & & & & & & .29 & ． 29 & － 29 \\
\hline COKF CCAL CPIJOEI & & & － & & & & & & & \\
\hline BENTENE & ． 59 & －2： & ． 24 & ． 24 & & & & ． 61 & ．7） & ． 59 \\
\hline TOLIF VE & ． 69 & － 5.7 & － 57 & － 57 & & & & ． 69 & ． 67 & ． 69 \\
\hline MIXEn MrIENES & － Bl 7 & －52 & ． 2 & ． 52 & & & & ． 57 & 1.33 & ． 87 \\
\hline MISC．ponoucts & 3.61 & 2．1n & & & 1．4 3 & 1.57 & 1.43 & 2.57 & & 1.29 \\
\hline TOTCL & 1）2．12 & 16？．70 & 14．．．？ & 1． 3.11 & 1：3．31 & い！etr & 162.71 & 98．30 & 102.69 & 102.23 \\
\hline IHOUT－NUTPUT & \(-1.41\) & － 3.36 & －3．4： & －1．：3 & －1．5： & －4． H & －2．11 & \(-2.34\) & \(-2.42\) & －2．59 \\
\hline \multicolumn{11}{|l|}{OPFRAIINS，COET FACIJOL} \\
\hline FLER．DH： \(1: \therefore\) ：\(K\) WH／II & ！ \(7:\) ： 4 & 18.14 & 39：． 3 n & \％．\({ }^{\text {a }}\) & －．1．3． & ©．．\({ }^{\text {a }}\) ．1！ & 24．3．30 & 1：7．37 & 335．07 & 341.25 \\
\hline  & \(\because \because\) & \(\because \cdot\) & \(\therefore{ }^{2} 1\) & \(5 . \%\) & －－\({ }^{\text {a }}\) & ．． 7 & 4.2 .3 & 5.17 & 4.5 & 5.73 \\
\hline Eliçorr rive．1：clebro &  & ；．7－ & P．．4 &  & ． 7 7r & \(\because: 4\) & 4．78 &  & \(5 \cdot 0: 7\) & 6.37 \\
\hline LAgint Ifre ：uncryc： & 5：\％ & ：\({ }^{\text {jo．．}}\) & ＝．．．6 6 & ！1．\(\because\) U & \(\therefore \ldots\) & r：i．．．： & rju．fic & 505.31 & 5uc．0） & 500.00 \\
\hline  & ？．f： & ：＇．＇． & 14．03 & 1：\({ }^{\circ}\) & ：：\(: 7\) & 1：\({ }^{\text {a }}\) & ： 1.17 & \(1^{1} \cdot 1 ?\) & 7．こう & 1 A． 85 \\
\hline
\end{tabular}
n. 2. t. rRahspoutation grsters cienter
REFIMING IMDUStRy honel - 1974 validatitill C: SF DEFIHERY DATA INPUT

-100.60
-7.36
-.67
-0.0 .0 .0.
-107.97
\begin{tabular}{|c|c|}
\hline Di
\[
\because{ }^{\circ}
\] & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline \[
\stackrel{\sim}{\sim}
\] & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline  & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline \[
\stackrel{\oplus}{\stackrel{\sim}{\sim}} \stackrel{\rightharpoonup}{\circ}
\] & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline \[
\stackrel{\text { No }}{\text { N. }}
\] & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline \[
\stackrel{\rightharpoonup}{\rightrightarrows}
\] & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline
\end{tabular}

 \(\begin{array}{ll:l}3 & \min & 0 \\ 0 & j 0 & 0 \\ 0 & 0 & 0 \\ 0 & & 0\end{array}\) \(-108.30-104.97\)



\(\begin{array}{ll}\text { n } & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0\end{array}\)


99.58

101.25
-3.75

439.41
0.31
7.14
56.64
12.13

11.0.

InPUI-OUIPUT \(\quad-5.59\)
TOTAL

COKE IHI SULFURI
COKE ICAL CRUDE:
日ENTENE
TOLIIENE
MIXCO XYLENES
MISC. PRONUCIS

 JFT A JET FUEL
NO. 2 FUEL OIL
HI SULFUP NO. 6
LO SULFUD NO.
LUAE STOCKS
LEAN FREF. GASOLINE E. 10
\(\therefore\)
ngis
!
.24
.57
.69
2.34 --0---.-.-.
SUET CRUD
shest crude
Caltf CPMOE
ALASURAL CIASOLIVE
NORMAL BIJTANE
toral
outpit
 －3 HOLAJ3S
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{REFINEPY WATA INPUJ} \\
\hline & 53 CALBA & ¢CCALH & 50 rallc & SOCASRA & 50 CASHC & 56C．ASLC & 5icclab & 5icclec & 50CCLHE & \(50 C D L B A\) \\
\hline \multicolumn{11}{|l|}{INPUT} \\
\hline SMEET GRUNE & －109．00 & －1．0．6： & －1 JC．L0 & －100．00 & －1GJ．EJ & －1Ewoli & & & & \\
\hline SOUP SZUNE CALIF CRUOE & & & & & & & －100．10 & －100．00 & －103．63 & \\
\hline alajkan cruoz & & & & & & & & & & －100．00 \\
\hline matural gasoline & \(-1.40\) & －1．45 & －1．40 & －1．40 & －1．72 & －1．4t & \(-1.40\) & －1．40 & －1．43 & －1．40 \\
\hline ISOBUTANE & －． 07 & & \(-1.40\) & & & & －．E0 & －1．03 & －． 60 & －． 46 \\
\hline NORHAL BUTANE & －1．50 & －1．\({ }^{17}\) & －1．50 & －2．06 & －1．84 & －． 66 & －1．50 & －1．50 & －1．53 & －1．50 \\
\hline TOTAL & \(-102.97\) & －112．57 & －1［3．93 & －132．46 & －103．56 & －142．06 & －103．50 & －103．90 & －103．56 & －103．36 \\
\hline \multicolumn{11}{|l|}{OUTPIIT} \\
\hline C3 LP\％ & 1.50 & 1． \(5_{i}\) & 1.50 & 1．53 & 1.84 & 1.23 & 1.50 & 1.50 & 1.53 & 1.50 \\
\hline C4 LPG & ． 91 & 1.00 & ． 55 & 1.00 & 2.10 & 1．Ji & － 31 & ． 19 & ． 43 & 1.00 \\
\hline NAPHTHA & ． 95 & －6L & ． 64 & 3.70 & －E 3 & 3.76 & ． 96 & ． 50 & ． 50 & ． 96 \\
\hline PEGILLAF GASOLIVE & 13.56 & ：6．60 & 13.32 & 4.53 & 7.99 & 5.86 & 16.30 & 15.40 & 18.14 & 11.40 \\
\hline PREHIUM GASOLIVE & 31.56 & 5．55 & 4.42 & 10.50 & 2.66 & 2． 31 & 31.60 & 5.13 & 6.04 & 31.60 \\
\hline LON LEAD GASOLINE & 6.24 & 16.66 & 17.32 & 2． 20 & 6.76 & 5．cc & 6.24 & 15.46 & 18.18 & 6.24 \\
\hline LEAD FREE GASOLIHE & 4.15 & 19．5E & 13.32 & 2． 30 & 7.99 & 5.86 & E． 24 & 15.40 & 22.75 & 4.16 \\
\hline AP－6 JET FUEL & 3.35 & 2.77 & 2.24 & 2.24 & 2.75 & 2.24 & 3.36 & 2.24 & 2.24 & 2.24 \\
\hline JEJ A JEJ FUEL & 7.14 & 7.14 & 6.94 & 5.15 & 6.60 & 5.10 & 7.14 & 6.94 & 6．9\％ & 6.56 \\
\hline OIESEL & 8.88 & 8． 08 & 27.42 & 12．00 & 12．63 & 25.26 & 5.92 & 21.24 & 5．9？ & 9.51 \\
\hline NO． 2 FUEL OIL & 5．5？ & 5.52 & 3．t． 8 & 11.07 & 7.45 & 11.87 & 4.43 & 3.68 & 3.63 & 5.52 \\
\hline HI SULFUP NO． 5 & 7．25 & 7．20 & 7.28 & 16.70 & 14.75 & 16．Cl & 7.26 & 7.28 & 7.25 & 7.28 \\
\hline LO SULFUR NO． 6 & 17.28 & 7． 28 & 7.28 & 16.70 & 14.75 & 7.26 & 7.20 & 7.28 & 7.29 & 7.20 \\
\hline LUAE STOCKS & 1．32 & 1．1．2 & 1.02 & 1.03 & 1.63 & ． 56 & 1．C2 & 1.02 & 2.02 & \\
\hline ASPHALI AND ROAO OIL & 2．03 & 2．65 & 2．6 6 & 7．98 & 7.98 & 5.76 & 2.06 & 2.00 & 2.00 & 2． 40 \\
\hline COKE＂LO SULFUR］ & & ． 14 & & ． 27 & .27 & ． 22 & & & & \\
\hline COKE（HI SULFUR） & & & & & & & & & & 1． 55 \\
\hline COKF（CAL CRUOE） & & & & & & & ． 65 & ． 74 & 1．6？ & \\
\hline BENZENE & ． 12 & －12 & ． 12 & & & & ． 14 & ． 12 & －12 & －14 \\
\hline TOLIJENE & ． 29 & ． 27 & ． 29 & & & & ． 29 & ． 29 & ． 27 & － 23 \\
\hline MIXEO XYLENES & ． 26 & － 26 & ． 26 & & & & ． 26 & － 26 & .25 & ． 35 \\
\hline MISC．PRODUCTS & & & & － 5 ！ & 1.44 & －5u & ． 50 & & & \\
\hline JOTAL & 132.34 & 144.27 & 105.60 & 106.17 & 18.94 & 99．91 & 103.42 & 106.61 & 106.03 & 99.58 \\
\hline INPUT－DUTPUT & －．93 & 1.74 & 1．76 & －2．23 & －4．57 & \(-2.15\) & －． 08 & 2.71 & 2.53 & －3． 78 \\
\hline \multicolumn{11}{|l|}{OPERATING COST FACIIORS} \\
\hline FLEC．PWP（1CJJKHH／O & －61．5？ & と〔J．2： & 5こ6．93 & 215.22 & 253.61 & 215．22 & 647.56 & 587.14 & 714.11 & 643.80 \\
\hline FUEL PEON．CIOJEFOEB & 7.27 & 7．？5 & 6.24 & 4.65 & 4.025 & 3．46． & A．40 & 6.69 & 7.30 & 7.22 \\
\hline tentor cons．llullifo & 7.51 & 8.58 & 7.19 & 4.45 & 4.53 & 3． 86 & 9.62 & 7.30 & 8． 62 & 6． 43 \\
\hline LAAOR PHO．EMPLCYEĖ & ¢JJ．J1 & のレシ．1： & 5 ¢0．ch & 510.13 & 5iu．ui & cijutid & 5 yc 00 & 510.00 & \(5 \mathrm{JC.00}\) & 500.00 \\
\hline OPED SOSTS（Y8／n）
TNVEST：5，1－（1．94） & 21．51 & 12．53 & 7.67 & \(\rightarrow .37\) & 5.83 & －037 & 21.94 & 10.54 & 14.43 & 23.59 \\
\hline
\end{tabular}

\section*{Appendix D}

INDUSTRY DATA SOURCES

\section*{Appendix D}

\section*{INDUSTRY DATA SOURCES}

The primary sources of refining industry data used in this work are listed below. The data are summarized in Tables D-1 through D-4.
- Refining capacity by PAD district and size class: Oil and Gas Journal, pp. 100-118 (4 April 1975)
- Supply and demand by PAD districts: Bureau of Mines, Mineral Industry Surveys, "Petroleum Statement," monthly, Table 32, pp. 36-40, U.S. Department of the Interior (January 1975)
- Movements of petroleum products by pipeline: Bureau of Mines, "Petroleum Statement," monthly, Table 12, p. 13, U.S. Department of the Interior (December 1974)
- Movements by tanker and barge: Bureau of Mines, "Petroleum Statement," monthly, Table 13, P. 14, U.S. Department of the Interior (December 1974)
- Crude oil and product prices: Crude oil--Federal Energy Administration, "Monthly Energy Review" (July 1976); products--Platt's Oil Price Handbook and Oilmanac, 1974 prices, McGraw-Hill, New York (1975).
I-a әโqe」
REFINERY CAPACITY ANALYSIS

\begin{tabular}{rr}
\hline & \multicolumn{1}{c}{V} \\
\hline No. & \(10^{3} \mathrm{~b} / \mathrm{cd}\) \\
22 & 197 \\
13 & 430 \\
8 & 647 \\
7 & 928 \\
1 & 230 \\
\hline 51 & 2,432
\end{tabular}

\(\frac{\text { strict }}{1 \mathrm{II}}\)
\(\frac{10^{3} \mathrm{~b} / \mathrm{cd}}{228}\)
604
915
909
3,476
6,132
Source: Oil and Gas Journal, p. 100-118 (7 April 1975)
Table D-2
SUPPLY, DEMAND AND STOCKS OF ALL OILS BY PAD DISTRICTS FOR YEAR 1974
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{7}{|l|}{PAD Diatricta} \\
\hline & 1 & 11 & III & IV & I-IV & \(\nabla\) & 0.3. Totel \\
\hline \begin{tabular}{l}
Dosestic Prod.: Crude olaan condanata----- \\
Natural gas plant 11quide-e-e
\end{tabular} & 120
24 & 915
249 & \[
\begin{aligned}
& 5,959 \\
& 1,336
\end{aligned}
\] & 691 & 7,685
1,656 & 1,080
\(-\quad 32\) & \[
\begin{aligned}
& 8,765 \\
& 1,688
\end{aligned}
\] \\
\hline  & 2.947 & 2.610 & 206 & . 61 & 23 & 185 & - \\
\hline Imports: & & & & & & & \\
\hline Neturel gasolina and plant condanasta- & 8 & 52 & -- & 23 & 83 & 6 & 89 \\
\hline  & 1.174 & 687 & 795 & 45 & 2,701 & 876 & 3,477 \\
\hline Unfinished oils & 39 & 3 & 52 & -- & 94 & 27 & 121 \\
\hline Rafinad product & 2.046 & 85 & 115 & 16 & l/ 2,262 & 2/ 139 & 2,401 \\
\hline Othar hydrocarbone and hydrogen inpu & 2 & 3 & 18 & 1 & 24 & 12. & 36 \\
\hline  & 6,360 & 4.604 & 8.481 & 884 & 14.528 & 2.257 & 16,577 \\
\hline Inaccountad for cruda ofle-------e-e-e & -- & 58 & -86 & 12 & -16 & -- & -16 \\
\hline Procabeing gein & 64 & 135 & 187 & 10 & 396 & 85 & 481 \\
\hline Total supply--- & 6,424 & 4.797 & 8.582 & 906 & 14.908 & 2.342 & 17.062 \\
\hline  & -10 & +56 & 492 & 47 & +145 & +34 & +179 \\
\hline Total dieposition of primery supply--e- & 6.434 & 4.741 & 8.490 & 899 & 14.763 & 2.308 & 16,863 \\
\hline Exports: & & & & & & & \\
\hline Cruda oil-- & - & -- & 3 & -- & 3 & \(\cdots\) & 3 \\
\hline  & 17 & 10 & 99 & -- & 126 & 92 & 218 \\
\hline  & 244 & 211 & 5,102 & 429 & 185 & 23 & \\
\hline Crude losees (ast. for individual Dist. I-IV)- & 1 & 2 & 8 & 1 & 12 & 1 & 13 \\
\hline \begin{tabular}{l}
Domatic demand for products: \\
Gasoline, total-
\end{tabular} & 2,160 & 2,249 & 1,003 & 211 & 5,623 & 959 & 6,582 \\
\hline Motor gasolina & 2.150 & 2.238 & 992 & 209 & 5,589 & 948 & 6,537 \\
\hline Aviation gasolina & 10 & 11 & 11 & 2 & 34 & 11 & 45 \\
\hline Jat Fual , total- & 370 & 192 & 118 & 31 & 711 & 282 & 993 \\
\hline  & 57 & 42 & 48 & 9 & 156 & 66 & 222 \\
\hline  & 313 & 250 & 70 & 22 & 555 & 216 & 771 \\
\hline  & 5 & 40 & 294 & 1 & 340 & 1 & 341 \\
\hline Liquafied gasea & 158 & 352 & 473 & 25 & 1,008 & 56 & 1.064 \\
\hline Kerosina-o & 73 & 52 & 40 & 3 & 168 & 8 & 176 \\
\hline Distillata fuel ofl & 1.338 & 879 & 355 & 107 & 2.679 & 260 & 2,939 \\
\hline Realdual fual oll & 1.706 & 240 & 252 & 34 & 2,232 & 392 & 2,624 \\
\hline Patrochemical fasest & 30 & 30 & 286 & --0 & 346 & 17 & 363 \\
\hline Spacial nephthas & 21 & 30 & 21 & - & 72 & 15 & 87 \\
\hline Lubricante- & 61 & 38 & 41 & 2 & 142 & 13 & 155 \\
\hline Hax- & 7 & 4 & 6 & - & 17 & 3 & 20 \\
\hline Cok & 32 & 98 & 69 & 11 & 210 & 29 & 239 \\
\hline Asphalt & 136 & 154 & 84 & 27 & 401 & 62 & 463 \\
\hline Road ofl- & 1 & 11 & -- & 2 & 14 & 5 & 19 \\
\hline Still gat for fuel & 53 & 122 & 206 & 15 & 396 & 85 & 481 \\
\hline Plant condensata & -- & 17 & -- & -0 & 17 & -- & 17 \\
\hline Miscellanaous produc & 21 & 10 & 30 & -- & 61 & 5 & 66 \\
\hline Total- & 6.172 & 4,518 & 3,278 & 469 & 14,437 & 2,192 & 16,629 \\
\hline Stocke of all oils ( \(10^{3}\) berrals) & & & & & & & \\
\hline Cruda oil and lasea condansata & 16,864 & 79.553 & 110,410 & 15,807 & 222,634 & 42,386 & 265,020 \\
\hline Unfinishad ofla & 15,055 & 22,143 & 39,600 & 2,900 & 79,698 & 26,333 & 106,031 \\
\hline Natural gesolina and plant condansate & 165 & 1.622 & 5,458 & 218 & 7,463 & 87 & 7,550 \\
\hline  & 194. 129 & 201,596 & 213,178 & 17,705 & 626,608 & 68,437 & 695,045 \\
\hline Total- & 226,213 & 304,914 & 368,646 & 36.630 & 936,403 & 137.243 & 1,073.646 \\
\hline
\end{tabular}
Table D-2 (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Nafinery autput} & \multicolumn{2}{|l|}{Haturel gea ITguide} & \multirow[t]{2}{*}{bthar 3/ hydroo cerbone blanded} & \multirow[t]{2}{*}{Leporte} & \multicolumn{5}{|l|}{boHESTTC RECETPTS} & \multirow[t]{2}{*}{Stock clienge} & \multirow[t]{2}{*}{Epporte} & \multirow[t]{2}{*}{\begin{tabular}{l}
2 \\
hiprente to othet Dhetricte
\end{tabular}} & \multirow[t]{2}{*}{Locel demand} & \multicolumn{2}{|l|}{Inventoriae \({ }^{\text {g }}\)} \\
\hline & & cetinery & produc-
slon & & & Froor & \[
\begin{array}{r}
\text { Froa } \\
11
\end{array}
\] & \({ }^{\text {from }} 11\) & \({ }^{7} \mathrm{Fan}\) & \({ }^{7} \mathrm{ma}\) & & & & & crict of & cre of \\
\hline \multirow[t]{7}{*}{} & 688 & 11 & - & ? & 176 & - & 34 & 1,366 & & - & -1 & & 126 & 2,130 & 50,891 & 80,641 \\
\hline & 1.7ss & 106 & & \({ }^{3}\) & 1 & 126 & & 256 & 16 & - & +6 & & . 93 & 2,230 & 65,602 & 67,516 \\
\hline & 2,123 & 463 & 3 & 18 & 19 & - & 34 & & & 12 & +17 & 2 & 1.669
50 & 292
209 & 56,339
7.629 & 60.584 \\
\hline & 103 & 60 & & 1 & 1 & - & 7 & 16 & & & -1 & & & & & \\
\hline & 6,769 & 709 & 3 & 76 & 197 & - & - & & \({ }^{6}\) & 12 & +21 & 8 & 13 & 3.589 & 166,737 & 194,191 \\
\hline & 826 & 46 & \(-\) & 12 & 1 & . & - & 31 & 36 & - & +3 & & 12 & \% 6 & 23, 221 & 26.219 \\
\hline & 3.517 & 74. & 3 & 36 & 204 & & & & & & +26 & 3 & & 6,537 & 209, 678. & 218,610 \\
\hline \multirow[t]{7}{*}{\(\square\)} & & & & & & & & & & & & & & 10 & 397 & 613 \\
\hline & - & - & - & - & - & - & - & 5 & - & - & - - & - & & 11 & 919 & 807 \\
\hline & 24 & - & & - & & - & & & - & - & -1 & - & 14 & 11 & 1,660 & 1.829 \\
\hline & 2 & - & - & - & - & - & - & - & - & - & - & - & & 2 & 34 & 69 \\
\hline & 33 & - & - & - & - & - & - & - & & - & -1 & - & - & 3 & 3.238 & 2.798 \\
\hline & 11 & - & . & - & - & - & - & \(-\) & \(\bigcirc\) & - & \(\square\) & - & - & & 103 & \\
\hline & 4 & \(\square\) & - & - & - & & & & & & -1 & . & & 65 & 3.939 & 3.41 \\
\hline \multirow[t]{6}{*}{} & & & & & & & & & & & & & & & 293 & 231 \\
\hline & 41 & - & - & - & - & 1 & , & 1 & 1 & - & \(+1\) & - & 1 & 42 & 1.214 & 1,329 \\
\hline & 80 & - & & - & & & & & & - & & - & 35 & 46 & 2.25 & 2,119 \\
\hline & 12 & \(\square\) & - & - & & \(\cdots\) & - & . & & - & \(\square\) & & 1 & 136 & 3.930 & 4.818 \\
\hline & 13 & : & : & - & 6 & : & - & 4 & 2 & . & \(\pm\) & \(\stackrel{\square}{-}\) & - & 186 & 1.609 & 1.162 \\
\hline & 195 & \(\square\) & - & \(\square\) & 41 & & & & & & - & - & & 232 & 3.392 & 1,329 \\
\hline \multirow[t]{7}{*}{} & & & & & & & & & & & & & & 313 & & \\
\hline & 129 & : & - & - & S & - 6 & - & 13 & : & : & & : & & 150 & 6.026 & 3,690 \\
\hline & 312 & \(\bullet\) & - & - & & & - & & - & - & 4 & - & 246 & 70 & 6.178 & 1.836 \\
\hline & 16 & - & . & - & \(-\) & & & 10 & & - & \(\bullet\) & & 1 & 22 & 318 & \(4{ }_{4}\) \\
\hline & 6i9 & - & - & - & & - & - & & & - & \({ }^{43}\) & - & 9 & 335 & 17.038 & 10.181 \\
\hline & 162 & - & - & - & 67 & - & - & 1 & 2 & \(-\) & \(\square\) & & - & 316 & 23, 121 & 3.169 \\
\hline & 64 & - & - & - & 135 & & & & & & +3 & & & 171 & 22,965 & 23,203 \\
\hline \multirow[t]{6}{*}{\begin{tabular}{rr} 
Ethene (Incl. ethylena) \\
Dlatrice & 1 \\
11 \\
111 \\
10 \\
\(2-1 v\)
\end{tabular}} & & & & & & & & & & & & & & & & \\
\hline & & - & 40 & - & - & - & - & - & - & - & * 1 & - & - & 40 & 1.22s & 1.350 \\
\hline & 13 & - & 277 & & & & & - & - & - & -2 & - & - & 296 & 3,793 & 3,009 \\
\hline & - & \(\bigcirc\) & 1 & & . & & & & & - & \(\bullet\) & . & - & 1 & & \\
\hline & 16 & -1 & 323 & - & - & - & - & - & : & : & -1 & - & - & 350 & 3.083 & 8.932 \\
\hline & 11 & \(\square\) & 123 & \(\bigcirc\) & & & & & & & -1 & \(\bigcirc\) & & 311 & 5.023 & 8.362 \\
\hline \multirow[t]{6}{*}{} & & & & & & & & & & & & & & & & \\
\hline & 16 & -83 & 192 & : & 33 & & & 207 & & - & +10 & & 39 & 193 & 3.308
38.760 & 38.1100 \\
\hline & 149 & -105 & 691 & - & 26 & - & 10 & & 10 & \(\bullet\) & +31 & 20 & 238 & 473 & 32,903 & 4.399 \\
\hline & 5 & -19 & 11 & - & 15 & & & & & & +1 & & 11 & 23 & 6M & 830 \\
\hline & 275 & - 200 & 890 & - & 109 & & \(\bullet\) & - & & - & +18 & 20 & \(B\) & 2.006 & 9.13 & 105.168 \\
\hline & 381 & - -219 & 9 & \(\div\) & 172 & & & & - & & +19 & 15 & & 1.056 & 9, 011 & 107,900 \\
\hline
\end{tabular}
Table D-2 (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{nofinery out put} & \multicolumn{2}{|l|}{Retural sion lisulda} & \multirow[t]{2}{*}{Ochar \(2 /\) bydro blended} & \multirow[t]{2}{*}{Imorte} & \multicolumn{5}{|l|}{OOMEBTAC oECEIPTO} & \multirow[t]{2}{*}{Otock shange} & \multirow[t]{2}{*}{Exporse} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { local } \\
& \text { dexenen }
\end{aligned}
\]} & \multicolumn{2}{|l|}{Inventortoo 4} \\
\hline & & ot raflemet & producilon & & & Trou & \[
\begin{array}{r}
1800 \\
11
\end{array}
\] & \[
\begin{gathered}
7 \mathrm{Frai} \\
111
\end{gathered}
\] & \[
\begin{gathered}
\text { Trow } \\
\text { IV }
\end{gathered}
\] & \({ }^{\text {Proman }}\) & & & & & Trat \(\begin{gathered}\text { vear } \\ \text { reat }\end{gathered}\) & Lesor \\
\hline Moroime Diatice 1 & 16 & \(\bigcirc\) & - & & & \(\cdots\) & \(\bigcirc\) & & & & -4 & Exeme & & \({ }^{33}\) & 0.501 & 6.007 \\
\hline (12 & 30 & - & & - & - & & - & & - & - & -3 & : & - 0 & 32
40 & 6.216
3.612 & 4.293
3.562 \\
\hline \({ }_{\substack{121 \\ 10}}\) & 93 & & & & & & & - & & \(\bullet\) & -3
-1 & \(:\) & \(\infty\) & \({ }^{4}\) & 3.612 & \\
\hline & 167 & \(\bigcirc\) & 1 & - & 3 & & - & - & & - & -13 & - & - & 166 & 8.604 & 14.3)3 \\
\hline & & - & - & - & & . & . & - & - & - & - & - & - & 0 & 418 & 136 \\
\hline \multirow[t]{2}{*}{Dratilote fori oft -} & 133 & \(\bigcirc\) & 1 & \(\square\) & 3 & & & & & & -15 & - & & 176 & 21,022 & 15.26 \\
\hline & 372 & & & & & & & & & & & & 32 & 1,310 & 19,470 & 76,739 \\
\hline \multirow[t]{2}{*}{111} & 769 & : & \(:\) & c \({ }^{\text {c }}\) & 23 & 32 & - & 66 & 10 & - & +1 & - & 19 & . 819 & 61,104 & 61,336 \\
\hline & 1,177 & - & 1 & c . & 13 & & 13 & & & & +13 & - & 030 & 333 & 37,014 & 43,676 \\
\hline \multirow[t]{4}{*}{0.s.erat} & 125 & . & - & c. & & & & 2 & . & 5 & - & - & 26 & 107 & 4.150 & 3, \(\frac{18}{69}\) \\
\hline & 2,463 & - & 1 & \({ }_{6}{ }^{8}\) & 273 & - & \(\square\) & & - & 3 & +9 & & 33 & 2.679 & 167.636 & 113.733 \\
\hline & 113 & - & & 1 & 1 & & & 19 & 16 & - & +1 & & 5 & 260 & 13.129 & 16.315 \\
\hline & 2.628 & \(\square\) & 1 & C 2 & 280 & & & & & & 410 & 2 & & 2.232 & 176.641 & 209, 06 \\
\hline \multirow[t]{7}{*}{\(\square\)} & 154 & & & & & & & & & & 4 & & - & 1,704 & 23,610 & 27,039 \\
\hline & 100 & - & - & c 1 & \({ }^{21}\) & . & - & 36 & - & - & -1 & - & & 240 & 0,293 & 0,032 \\
\hline & 361 & - & - & c 3 & 32 & - & - & & - & - & 4 & 2 & 136 & 232 & 1,056 & 10,072 \\
\hline & 3 & - & - & c \({ }^{\text {c }}\) & & & . & & & - & \(-\) & & & 4 & C01 & \\
\hline & 730 & , & - & c ? & 1,313 & - & & & & - & +16 & , & & 2.232 & 81.038 & 85.678 \\
\hline & 200 & - & - & C \(\quad 6\) & & - & \(=\) & 1 & 1 & - & +3 & 11 & - & 398 & 11,638 & 13.016 \\
\hline & 1.970 & \(=\) & - & C. 13 & 1.572 & & & & & & 117 & 14 & & 2.616 & 34.460 & \$2.6\% \\
\hline \multirow[t]{7}{*}{} & & & & & & & & & & & & & & & & \\
\hline & 20 & - & - & & & - & & & & & & & & 30 & \({ }_{436}^{12}\) & \(1 \%\) \\
\hline & 29
299 & - & : & \(\bullet\) & - 10 & - & \(\bullet\) & & \(:\) & \(\square\) & \(\bullet+2\) & 7 & 14 & 206 & 1,390 & 2,233 \\
\hline & & . & . & . & - & & . & . & - & & - & - & - & & & \\
\hline & 346 & - & - & - & 12 & - & - & - & - & - & +2 & & - & 346 & 1,076 & 8, 909 \\
\hline & 21 & - & - & - & - & \(=\) & - & - & - & - & +1 & 13 & - & 17 & 311 & 517 \\
\hline & 369 & - & - & - & 12 & & & & & & + & 13 & & 3 & 2,367 & 3.606 \\
\hline \multirow[t]{6}{*}{} & & & & & & & & & & & & & & & & \\
\hline & 30 & - & - & - & 3 & - & - & , & - & - & +1 & 1 & & 30 & 901 & 1,164 \\
\hline & 33 & - & - & - & & & - & & - & & +2 & 2 & 30 & 21 & 1,999 & 2.719 \\
\hline & & & & & & & & & & & & 6 & & 72 & 5,683 & \\
\hline & 19 & . & - & - & . & . & . & . & - & - & - & - & . & 13 & \(6 \%\) & 148 \\
\hline & 11 & - & - & - & 3 & & & & & & 4 & 5 & & 67 & \(\underline{3} 1831\) & 3.720 \\
\hline \multirow[t]{6}{*}{} & & & & & & & & & & & & & & & & \\
\hline & 33 & - & : & \(:\) & & & : & 11 & & & +2 & 1 & & 30 & 3,374 & 3,032 \\
\hline & 113 & - & - & - & & - & - & 1 & - & & 4 & 20 & 31 & 41 & 3,229 & 8.448 \\
\hline & & & & & & & & - & - & & & & & & 111 & \\
\hline & 179 & \(\square\) & - & \(\square\) & 3 & & - & 9 & 1 & 6 & 4 & 3 & 4 & 13 & 1.098 & 1.30 \\
\hline & 194 & & & - & & & & & & & 418 & 13 & & 13 & 12,166 & 16.050 \\
\hline
\end{tabular}
Table D-2 (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Rofinery output} & \multicolumn{2}{|l|}{Matural see 1iguide} & \multirow[t]{2}{*}{Ocher 3 / hydrocerbone Dtended} & \multirow[t]{2}{*}{Impare} & \multicolumn{5}{|l|}{donestic receipts} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Stock } \\
& \text { change } \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{Exporse} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Locel demand} & \multicolumn{2}{|l|}{Inventorlae if} \\
\hline & & \multicolumn{2}{|l|}{\begin{tabular}{l|l}
\hline Eisnded & \begin{tabular}{l} 
Pisnt \\
it \\
reflinery
\end{tabular} \\
ition
\end{tabular}} & & & \({ }^{\text {Fras }}\) & Fras & From & \({ }_{\text {Fram }}^{16}\) & \(\stackrel{F}{5}\) & & & & &  & End of \\
\hline \multirow[t]{5}{*}{} & & & & & 3 & & - & 1 & - & & - & - & - & & 208 & 222 \\
\hline & - & - & - & - . & - & : & : & : & : & - & : & - 2 & - 1 & 6 & 228
651 & 270
564 \\
\hline & 9 & - & - & & & & & & & & & 2 & & - & 93 & 63 \\
\hline & & \(\bigcirc\) & : & - & , & - & : & - & . & . & . & .\(^{2}\) & : & 17 & \({ }_{9} 98\) & 1.097 \\
\hline & & & \(\cdots\) & - & 3 & & & & & & - & 2 & & 20 & 980 & 1,193 \\
\hline \multirow[t]{6}{*}{} & & & & & & & & & & & & & & & & \\
\hline & 33 & : & - & \(:\) & : & : & : & - & \(\bullet\) & : & -8 & 7 & : & \({ }_{9} 8\) & 2.533 & 4\% \\
\hline & 109 & \(:\) & \(\square\) & : & & & . & : & - & - & & 41 & - & 69 & 561 & 264 \\
\hline & 11 & - & . & - & - & & - & - & . & . & \(-\) & - & & 11 & 1.028 & l.hst \\
\hline & 232 & \(\bullet\) & - & - & - & - & - & - & - & ? & -9 & \({ }_{62}\) & - & 210 & 7.469
2.529 & 8.26] \\
\hline & 139 & \(\div\) & \(\cdots\) & \(\div\) & - & & & & & & -13 & 113 & & 239 & 9.976 & 5.420 \\
\hline \multirow[t]{6}{*}{} & & & & & & & & & & & & & & & & \\
\hline & 93 & - & - & : & & \(:\) & : & 16 & - & : & +9 & & & 154 & 6.636 & 8.011 \\
\hline & 113 & : & : & : & & : & - & & - & & 43 & 1 & 26 & \({ }^{64}\) & 2.165 & 6,178 \\
\hline & 21 & - & . & - & - & - & . & - & - & & 4 & \(\cdots\) & - & 27 & 12.270 & 1.681 \\
\hline & 306 & - & - & - & 31 & - & - & - & - & & 416 & \({ }^{1}\) & & 601 & 12.89 & 10, 900 \\
\hline & 64 & \(\div\) & \(\cdots\) & \(\bigcirc\) & & & & & & & +17 & 1 & & 463 & 13.024 & 21,370 \\
\hline \multirow[t]{7}{*}{} & & & & & & & & & & & & & & & & \\
\hline & & - & & & & & & & & & - & - & : & & \({ }^{64}\) & 5 \\
\hline & 11 & : & : & : & : & \(:\) & \(:\) & : & \(:\) & \(:\) & : & - & : & & 13 & \\
\hline & & - & : & : & - & - & - & . & - & . & - & & & & 11 & 11 \\
\hline & & - & - & - & - & - & - & - & - & - & - & - & \(\bullet\) & 16 & 267 & 138 \\
\hline & 6 & \(\bigcirc\) & \(\bigcirc\) & \(\div\) & - & - & . & - & & & 4 & \(\cdots\) & & 15 & 198 & 1.080 \\
\hline & & \% & , & & & & & & & & & & & & & \\
\hline \multirow[t]{6}{*}{} & 13 & & & & & & & & & & & & & & 160 & 229 \\
\hline & 0 & - & - & - & & - & : & & \(:\) & - & \({ }^{41}\) & 2 & & 10
30 & \({ }_{6}^{275}\) & 438 \\
\hline & 40 & - & & - & & : & & & & & & & & & 18 & 14 \\
\hline & & & & & & & & & & & +1 & 4 & & 61 & 1.119 & 1.394 \\
\hline & 6 & : & & . & & . & . & - & - & & - & & 1. & 9 & 376 & 441 \\
\hline & 67 & \(\square\) & 3 & - & 2 & & & & & & \(\pm 1\) & 4 & & 66 & 1.398 & 6325 \\
\hline \multirow[t]{7}{*}{} & & & & & & & & & & & & & & & & \\
\hline & 1,563
5,463 & 10 & 21
192 & \(\frac{2}{5}\) & 2,046 & & & 2.637 & & & +10 & 10 & 154 & 4,301 & 194,659 & 201, 598 \\
\hline & 3, 261 & 339 & 975 & 23 & 115 & - & & & & & +78 & 9 & 3,380 & 3,27 & 184.676 & 213,176 \\
\hline & & 30 & & & 16 & - & & 22 & - & & & & 101 & 469 & 17.003. & 12.703 \\
\hline & 10.740 & 500 & 1.220 & 32 & 2.262 & - & - & & & 35 & +92 & 126 & \({ }^{13}\) & 14.420 & 593.083 & \({ }^{626.608}\) \\
\hline & 1,976 & 27 & 14 & 19 & 139 & \(\bullet\) & \(=\) & 13 & & & 4 & \(\underline{218}\) & 33 & \(\frac{2,132}{16,612}\) & \(6{ }^{62} 0.350\) & 69, 693 \\
\hline & 12.716 & 527 & 1.236 & 31 & 2,401 & & & & & & 199 & 218 & & 16,612 & 638.080 & 695,003 \\
\hline
\end{tabular}
Table D-2 (Concluded)


\footnotetext{
c \(^{\text {c }}\) Crudes.


Source: Bureau of Mines, "Petroleum Statement," monthly, Table 32, pp. 36-40, U.S. Department of the Interior (January 1975)
}

Table D-3

MOVEMENT OF PETROLEUM PRODUCTS BY PIPELINE BETWEEN PAD DISTRICTS
(Thousands of Barrels)


Source: \(\begin{aligned} & \text { Bureau of Mines, "Petroleum Statement," monthly, } \\ & \text { Table 12, p.13, U.S. Department of the Interior } \\ & \text { (December 1974) }\end{aligned}\)

INTERDISTRICT MOVEMENTS BY TANKER AND BARGE OF CRUDE OIL
AND PETROLEUM PRODUCTS
(Thousands of Barrels)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Itee} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { December } \\
1974
\end{gathered}
\]} & \multirow[t]{2}{*}{November} & \multirow[t]{2}{*}{December 1973} & \multicolumn{2}{|l|}{January - December (Inc1.)} \\
\hline & & & & 1974 & 1973 \\
\hline \multirow[t]{2}{*}{} & & & & & \\
\hline & 2,330 & 2,914 & 4,155 & 52,337 & 56,614 \\
\hline \multirow[t]{2}{*}{Gasoline, total Motor} & 1, 1,899 & 917 918 & 17,291 & 18,128 & 14,797 \\
\hline & 16,693 & 17,312 & 17,188 & 176,908 & 204,258 \\
\hline \multirow[t]{2}{*}{Aviation
Spectal naphthas} & 266 & 259 & 275 & 2,980 & 3,216 \\
\hline & 681 & 692 & 629 & 7,646 & 7,192 \\
\hline Special aephthas .............
Rerosine & 1,224 & 1,076 & 1,328 & 10,879 & 15,078 \\
\hline \multirow[t]{2}{*}{Distillate fuel oll Residual fuel oil} & 13,195 & 10,068 & 8,973 & 93,460 & 96,283 \\
\hline & 3,312 & 3,961 & 2,129 & 36,023 & 16,960 \\
\hline \begin{tabular}{l}
Residual fuel oil \\
Jet fuel, total
\end{tabular} & 3,072 & 3,136 & 3,734 & 37,475 & 41.034 \\
\hline Jer fuel, total \(\begin{aligned} & \text { Napheha } \\ & \text {-type }\end{aligned}\) & 608 & 643 & 1.226 & 9,481 & 9,480 \\
\hline Kerosine-type & 2,464 & 2.493 & 2,508 & 27,994 & 31,554 \\
\hline \multirow[t]{2}{*}{Lubriesting ofl .............} & 1,134 & 1.402 & 1,198 & 12,922 & 12,342 \\
\hline & 15 & 28 & 32 & 353 & 573 \\
\hline \multirow[t]{2}{*}{Asphalt and road oll \(\ldots\).......
Liquefied gases ...........} & 364 & 440 & 276 & 5,796 & 5,689 \\
\hline & 144 & 111 & 131 & 1,541 & 1,304 \\
\hline  & 192 & 211 & 463 & 3,757 & 3,226 \\
\hline Other products .................. & 338 & 222 & 121 & 2,536 & 1,654 \\
\hline Tots1 .................... & 43,989 & 42,750 & 41.923 & 462.741 & 480,220 \\
\hline Gulf Coast to P.A.D. District II: & 1,010 & 1,300 & 974 & 12,841 & 10,250 \\
\hline \multirow[t]{2}{*}{Unfinished oils} & & & - & & 120 \\
\hline & 2,497 & 2,659 & 3,184 & 27,890 & 32,730 \\
\hline Gasoline, total
Motor ....... & 2,470 & 2,614 & 3,121 & 27,357 & 31,998 \\
\hline Aviation ... & 27 & 45 & 63 & 533 & 732 \\
\hline & 252 & 238 & 365 & 3,275 & 3,187 \\
\hline Special naphthas
Rerosine
Re..... & - & 96 & 144 & 764 & 956 \\
\hline Distillate fuel ofl & 620 & 524 & 855 & 6,449 & 9,224 \\
\hline \multirow[t]{2}{*}{Residual fuel
Jet fuel,
total} & 1,776 & 1,234 & 1,127 & 13,209 & 10,523 \\
\hline & 276 & 175 & 184 & 2,698 & 2,626 \\
\hline Jet fuel, total
Naphtha-type & & & & 227 & \\
\hline Naphtha-type
Reros ine-type & 276 & 175 & 184 & 2,471 & 2,612 \\
\hline & \({ }^{329}\) & \({ }^{310}\) & 259 & 4,125 & 3,692 \\
\hline Lubricst1ng oll & - & - & & 8 & \\
\hline & 118 & 212 & 348 & 3,684 & 3,523 \\
\hline \multirow[t]{2}{*}{} & - & 13 & 112 & 71 & 654 \\
\hline & 98 & 78 & 184 & 1,381 & 1,872 \\
\hline \multirow[t]{2}{*}{Other products Total} & 28 & 11 & 47 & 1,095 & 993 \\
\hline & 7,004 & 6,850 & 7,783 & 77.549 & 80.350 \\
\hline \multirow[t]{3}{*}{} & & & - & 564 & - \\
\hline & - & - & - & 288 & 372 \\
\hline & - & - & - & 1,392 & 675 \\
\hline \multirow[t]{2}{*}{Rerosine .................... Distillate fuel oil} & 46 & - & & & 36
687 \\
\hline & 46 & - & 43 & 2,279 & -687 \\
\hline Residual
Jet fuel fel
total
dil & - & - & 315
801 & 2,021 & 1,801 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Mephthe-type \\
Rerosine-type
\end{tabular}} & - & - & 110 & 489 & 110 \\
\hline & - & - & 691 & 1,532 & 691 \\
\hline  & 251 & 35 & 199 & 1,671 & 1.491 \\
\hline Lubricating oll & - & - & - & - & - \\
\hline \multirow[t]{2}{*}{Hex ...........................
\(\begin{aligned} & \text { Petrochemical feed stock: } \\ & \text { Other product }\end{aligned}\).............} & 26 & - & - & 105 & 4 \\
\hline & - & - & 8 & 15 & 105 \\
\hline Total .................... & 323 & 35 & 1,366 & 8,651 & 6,069 \\
\hline Hest Cosert to East Coser: & & & & & \\
\hline \multirow[t]{2}{*}{Special naphthai .o.............} & & & - & & - \\
\hline & - & - & - & - & - \\
\hline \begin{tabular}{l}
Distillate fuel oll \\
Residual fuel orl
\end{tabular} & - & - & \(-\) & - & - \\
\hline Resitusi fuel oil ............ & 88 & 41 & 29 & 785 & 690 \\
\hline \multirow[t]{2}{*}{Other products
Total} & 22 & 16 & 11 & 324 & 242 \\
\hline & 110 & 57 & 40 & 1,109 & 936 \\
\hline
\end{tabular}

2 Breakdown by region shown in Table 13 e.
Source: Bureau of Mines, "Petroleum Statement," monthly, Table 13, p. 14, U.S. Department of the Interior (December 1974)

\section*{Appendix E}

DEMAND FORECASTS FROM SRI STUDY FOR THE ELECTRIC POWER RESEARCH INSTITUTE

\section*{Appendix E}

\section*{DEMAND FORECASTS FROM SRI STUDY FOR THE ELECTRIC POWER RESEARCH INSTITUTE}

The petroleum product demands used in the diesel penetration and desulfurization study cases for 1990 are based on the "low demand" projections of an SRI report* produced for the Electric Power Research Institute (EPRI). This appendix presents the summary exhibits of primary petroleum product demands from this report.

Table E-1
ASSUMPTIONS
(a) Per Capita Gross National Products
(1975 Dollars)
\begin{tabular}{|c|c|c|c|c|}
\hline Case & 1975 & 1985 & 2000 & 2025 \\
\hline High demand & \$7,030 & \$11,200 & \$18,700 & \$40,600 \\
\hline Base & 7,030 & 10,081 & 13,783 & 20,713 \\
\hline Low demand & 7,030 & 8,800 & 10,100 & 9,600 \\
\hline
\end{tabular}
(b) Growth in Per Capita Gross National Products
\begin{tabular}{lccccc}
\multicolumn{1}{c}{ Case } & & \(1975-1985\) & & \(1985-2000\) & \\
\cline { 1 - 1 } & & & \(1975-2000\) & & \\
High demand & \(4.8 \%\) & & \(3.5 \%\) & & \(4.0 \%\) \\
& 3.7 & & 2.1 & & 2.7 \\
Base & 2.3 & & 0.9 & & 1.5
\end{tabular}

Source: EPRI EA-433, Vo1. I, p. 3-2

\footnotetext{
Stanford Research Institute, Fuel and Energy Price Forecasts, report for the Electric Power Research Institute, EPRI Research Project 759-1
(June 1977).
}


FIGURE E-1 DISTRIBUTED PRODUCTS IN THE TRANSPORTATION SECTOR LOW DEMAND CASE


\footnotetext{
FIGURE E-2 DISTRIBUTED PRODUCTS IN THE INDUSTRIAL SECTOR - LOW DEMAND CASE
}


FIGURE E-3 DISTRIBUTED PRODUCTS IN THE RESIDENTIAL/COMMERCIAL SECTOR - LOW DEMAND CASE


\footnotetext{
SOURCE: EPRI EA-433, D. 3-43
}

FIGURE E-4 BASE LOAD ELECTRIC POWER GENERATION - LOW DEMAND CASE

Appendix F
REPORT OF NEW TECHNOLOGY

A mathematical model of the U.S. oil refining industry has been developed. This model covers refining and bulk product distribution for each of the five Petroleum Administration for Defense districts. The model was validated against historical capacity and product demands and, after modification, applied to several case studies relating to desulfurization of automotive fuel and dieselization of the automotive fleet.






OUVA SI3! ONV 39VISOd
~~~


[^0]: Cost figures in this table are adjusted for inflation from the 1974 dollars shown in the body of the report to 1979 dollars using the W. L. Nelson inflation indices. The factors used are 1.50 for operating costs and 1.33 for investment.

[^1]: Cost figures in this table are adjusted for inflation from the 1974 dollars shown in the body of the report to 1979 dollars using the W. L. Nelson inflation indices. The factors used are 1.50 for operating costs and 1.33 for investment.

[^2]: *In general practice, FCC conversion means the volume percent of feedstock cracked to $430^{\circ} \mathrm{F}$ and lighter material.

[^3]: *

 Now available from Department of Energy (DOE), Energy Information Administration (EIA).

[^4]: Conversion in the general sense used in the industry describes the "cracking" of heavy crude oil fractions to lighter stocks, as by FCC, hydrocracking, and coking.

[^5]: *Refinery nomenclature code is as follows:
 20 PAD district II
 CA Low-sulfur crude
 CB High-sulfur crude
 L Large refinery, $>50,000 \mathrm{BPCD}$
 S Small refinery, <50,000 BPCD
 BA Base operating mode
 LC Low conversion mode
 HC High conversion mode.

[^6]: *Fuel oil equivalent barrels.

[^7]: *

 The DOE entitlements program is a scheme of intercompany transfer payments designed to alleviate crude oil pricing inequities resulting from price ceilings previously imposed under the Emergency Petroleum Allocation Act of 1973. A layman's explanation of these programs is presented in the DOE's "Monthly Energy Review" for January 1977.

[^8]: *Demands for other coproducts were not fixed for this study.
 the RIM could not meet this demand if production of other middle distillates was held constant and imports were limited; therefore, requirements in the final cases were relaxed to 60 percent of values shown.

[^9]: *Cetane number is a measure of the quality of combustion in the diesel engine, analogous to the octane rating for gasoline.

[^10]: \# Includes feedstock costs, imported product costs, refinery operating costs, and capital recovery costs for new facilities (in 1974 dollars).
 ${ }^{*}$ Crude oil and natural gas liquids.
 \# Volume percentage values given in parentheses refer to total production output, including the contribution of natural gas liquids. These values are, therefore, not comparable to Bumines/ Mineral Industry Surveys yields expressed as percentage of crude input.

